Search
Close this search box.

Emergence of task-related spatiotemporal population dynamics in transplanted neurons – Nature Communications

  • Guo, L., Kondapavulur, S., Lemke, S. M., Won, S. J. & Ganguly, K. Coordinated increase of reliable cortical and striatal ensemble activations during recovery after stroke. Cell Rep. 36, 109370, https://doi.org/10.1016/j.celrep.2021.109370 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramanathan, D. S. et al. Low-frequency cortical activity is a neuromodulatory target that tracks recovery after stroke. Nat. Med. 24, 1257–1267 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ganguly, K., Khanna, P., Morecraft, R. J. & Lin, D. J. Modulation of neural co-firing to enhance network transmission and improve motor function after stroke. Neuron 110, 2363–2385 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Churchland, M. M. et al. Neural population dynamics during reaching. Nature 487, 51–56 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Sauerbrei, B. A. et al. Cortical pattern generation during dexterous movement is input-driven. Nature 577, 386–391 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Gallego, J. A., Perich, M. G., Miller, L. E. & Solla, S. A. Neural manifolds for the control of movement. Neuron 94, 978–984 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shenoy, K. V., Sahani, M. & Churchland, M. M. Cortical control of arm movements: a dynamical systems perspective. Annu. Rev. Neurosci. 36, 337–359 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Linden, H., Petersen, P. C., Vestergaard, M. & Berg, R. W. Movement is governed by rotational neural dynamics in spinal motor networks. Nature 610, 526–531 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Lemke, S. M., Ramanathan, D. S., Guo, L., Won, S. J. & Ganguly, K. Emergent modular neural control drives coordinated motor actions. Nat. Neurosci. 22, 1122–1131 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peters, A. J., Chen, S. X. & Komiyama, T. Emergence of reproducible spatiotemporal activity during motor learning. Nature 510, 263–267 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Georgopoulos, A. P., Taira, M. & Lukashin, A. Cognitive neurophysiology of the motor cortex. Science 260, 47–52 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Khanna, P. et al. Low-frequency stimulation enhances ensemble co-firing and dexterity after stroke. Cell 184, 912–-930 e920 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ganguly, K., Byl, N. N. & Abrams, G. M. Neurorehabilitation: motor recovery after stroke as an example. Ann. Neurol. 74, 373–381 (2013).

    Article  PubMed  Google Scholar 

  • Bjorklund, A. & Lindvall, O. Cell replacement therapies for central nervous system disorders. Nat. Neurosci. 3, 537–544 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Kornack, D. R. & Rakic, P. Cell proliferation without neurogenesis in adult primate neocortex. Science 294, 2127–2130 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Bhardwaj, R. D. et al. Neocortical neurogenesis in humans is restricted to development. Proc. Natl Acad. Sci. USA 103, 12564–12568 (2006).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Huttner, H. B. et al. The age and genomic integrity of neurons after cortical stroke in humans. Nat. Neurosci. 17, 801–803 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Gould, E., Vail, N., Wagers, M. & Gross, C. G. Adult-generated hippocampal and neocortical neurons in macaques have a transient existence. Proc. Natl Acad. Sci. USA 98, 10910–10917 (2001).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, S. P. et al. Optochemogenetic stimulation of transplanted iPS-NPCs enhances neuronal repair and functional recovery after ischemic stroke. J. Neurosci. 39, 6571–6594 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palma-Tortosa, S. et al. Activity in grafted human iPS cell-derived cortical neurons integrated in stroke-injured rat brain regulates motor behavior. Proc. Natl Acad. Sci. USA 117, 9094–9100 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Andreoli, E. et al. Transplanted embryonic neurons improve functional recovery by increasing activity in injured cortical circuits. Cereb. Cortex 30, 4708–4725 (2020).

    Article  PubMed  Google Scholar 

  • Smith, E. J. et al. Implantation site and lesion topology determine efficacy of a human neural stem cell line in a rat model of chronic stroke. Stem Cells 30, 785–796 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Ghuman, H. et al. ECM hydrogel improves the delivery of PEG microsphere-encapsulated neural stem cells and endothelial cells into tissue cavities caused by stroke. Brain Res Bull. 168, 120–137 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Ghuman, H. et al. Physical therapy exerts sub-additive and suppressive effects on intracerebral neural stem cell implantation in a rat model of stroke. J. Cereb. Blood Flow. Metab. 42, 826–843 (2022).

    Article  PubMed  Google Scholar 

  • Espuny-Camacho, I. et al. Pyramidal neurons derived from human pluripotent stem cells integrate efficiently into mouse brain circuits in vivo. Neuron 77, 440–456 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Zhu, B., Eom, J. & Hunt, R. F. Transplanted interneurons improve memory precision after traumatic brain injury. Nat. Commun. 10, 5156 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardoso, T. et al. Target-specific forebrain projections and appropriate synaptic inputs of hESC-derived dopamine neurons grafted to the midbrain of Parkinsonian rats. J. Comp. Neurol. 526, 2133–2146 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson, M. N. et al. Multimodal monitoring of human cortical organoids implanted in mice reveal functional connection with visual cortex. Nat. Commun. 13, 7945 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Tornero, D. et al. Synaptic inputs from stroke-injured brain to grafted human stem cell-derived neurons activated by sensory stimuli. Brain 140, 692–706 (2017).

    PubMed  Google Scholar 

  • Liang, H. et al. Region-specific and activity-dependent regulation of SVZ neurogenesis and recovery after stroke. Proc. Natl Acad. Sci. USA 116, 13621–13630 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Arvidsson, A., Collin, T., Kirik, D., Kokaia, Z. & Lindvall, O. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat. Med. 8, 963–970 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Nih, L. R., Gojgini, S., Carmichael, S. T. & Segura, T. Dual-function injectable angiogenic biomaterial for the repair of brain tissue following stroke. Nat. Mater. 17, 642–651 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghuman, H. et al. Biodegradation of ECM hydrogel promotes endogenous brain tissue restoration in a rat model of stroke. Acta Biomater. 80, 66–84 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghuman, H. et al. Long-term retention of ECM hydrogel after implantation into a sub-acute stroke cavity reduces lesion volume. Acta Biomater. 63, 50–63 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falkner, S. et al. Transplanted embryonic neurons integrate into adult neocortical circuits. Nature 539, 248–253 (2016).

    Article  ADS  PubMed  Google Scholar 

  • Fricker-Gates, R. A., Shin, J. J., Tai, C. C., Catapano, L. A. & Macklis, J. D. Late-stage immature neocortical neurons reconstruct interhemispheric connections and form synaptic contacts with increased efficiency in adult mouse cortex undergoing targeted neurodegeneration. J. Neurosci. 22, 4045–4056 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaillard, A. et al. Reestablishment of damaged adult motor pathways by grafted embryonic cortical neurons. Nat. Neurosci. 10, 1294–1299 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Revah, O. et al. Maturation and circuit integration of transplanted human cortical organoids. Nature 610, 319–326 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Linaro, D. et al. Xenotransplanted human cortical neurons reveal species-specific development and functional integration into mouse visual circuits. Neuron 104, 972–986.e976 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Real, R. et al. In vivo modeling of human neuron dynamics and Down syndrome. Science 362, https://doi.org/10.1126/science.aau1810 (2018).

  • Mansour, A. A. et al. An in vivo model of functional and vascularized human brain organoids. Nat. Biotechnol. 36, 432–441 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iida, S., Shimba, K., Sakai, K., Kotani, K. & Jimbo, Y. Synchronous firing patterns of induced pluripotent stem cell-derived cortical neurons depend on the network structure consisting of excitatory and inhibitory neurons. Biochem. Biophys. Res. Commun. 501, 152–157 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Chen, X. & Dzakpasu, R. Observed network dynamics from altering the balance between excitatory and inhibitory neurons in cultured networks. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 82, 031907 (2010).

    Article  ADS  Google Scholar 

  • Wong, C. C., Ramanathan, D. S., Gulati, T., Won, S. J. & Ganguly, K. An automated behavioral box to assess forelimb function in rats. J. Neurosci. Methods 246, 30–37 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Grade, S. et al. Brain injury environment critically influences the connectivity of transplanted neurons. Sci. Adv. 8, eabg9445 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Athalye, V. R., Ganguly, K., Costa, R. M. & Carmena, J. M. Emergence of coordinated neural dynamics underlies neuroprosthetic learning and skillful control. Neuron 93, 955–970.e955 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Gulati, T., Guo, L., Ramanathan, D. S., Bodepudi, A. & Ganguly, K. Neural reactivations during sleep determine network credit assignment. Nat. Neurosci. 20, 1277–1284 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, A. et al. Immediate neurophysiological effects of transcranial electrical stimulation. Nat. Commun. 9, 5092 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Berman, N. J., Douglas, R. J., Martin, K. A. & Whitteridge, D. Mechanisms of inhibition in cat visual cortex. J. Physiol. 440, 697–722 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butovas, S. & Schwarz, C. Spatiotemporal effects of microstimulation in rat neocortex: a parametric study using multielectrode recordings. J. Neurophysiol. 90, 3024–3039 (2003).

    Article  PubMed  Google Scholar 

  • Hao, Y., Riehle, A. & Brochier, T. G. Mapping Horizontal spread of activity in monkey motor cortex using single pulse microstimulation. Front. Neural Circuits 10, 104 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Adhami, F. et al. Cerebral ischemia-hypoxia induces intravascular coagulation and autophagy. Am. J. Pathol. 169, 566–583 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferdinand, P. & Roffe, C. Hypoxia after stroke: a review of experimental and clinical evidence. Exp. Transl. Stroke Med 8, 9 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Kelly, S. et al. Transplanted human fetal neural stem cells survive, migrate, and differentiate in ischemic rat cerebral cortex. Proc. Natl Acad. Sci. USA 101, 11839–11844 (2004).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Modo, M., Stroemer, R. P., Tang, E., Patel, S. & Hodges, H. Effects of implantation site of stem cell grafts on behavioral recovery from stroke damage. Stroke 33, 2270–2278 (2002).

    Article  PubMed  Google Scholar 

  • Hicks, A. U. et al. Transplantation of human embryonic stem cell-derived neural precursor cells and enriched environment after cortical stroke in rats: cell survival and functional recovery. Eur. J. Neurosci. 29, 562–574 (2009).

    Article  PubMed  Google Scholar 

  • Lovett, M., Lee, K., Edwards, A. & Kaplan, D. L. Vascularization strategies for tissue engineering. Tissue Eng. Part B Rev. 15, 353–370 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carmeliet, P. & Jain, R. K. Angiogenesis in cancer and other diseases. Nature 407, 249–257 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Ghosh, K. K. et al. Miniaturized integration of a fluorescence microscope. Nat. Methods 8, 871–878 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keaveney, M. K. et al. CaMKIIalpha-positive interneurons identified via a microRNA-based viral gene targeting strategy. J. Neurosci. 40, 9576–9588 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larsson, M. Non-canonical heterogeneous cellular distribution and co-localization of CaMKIIalpha and CaMKIIbeta in the spinal superficial dorsal horn. Brain Struct. Funct. 223, 1437–1457 (2018).

    CAS  PubMed  Google Scholar 

  • Alvarez-Dolado, M. et al. Cortical inhibition modified by embryonic neural precursors grafted into the postnatal brain. J. Neurosci. 26, 7380–7389 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maroof, A. M., Brown, K., Shi, S. H., Studer, L. & Anderson, S. A. Prospective isolation of cortical interneuron precursors from mouse embryonic stem cells. J. Neurosci. 30, 4667–4675 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sebe, J. Y., Looke-Stewart, E., Dinday, M. T., Alvarez-Buylla, A. & Baraban, S. C. Neocortical integration of transplanted GABA progenitor cells from wild type and GABA(B) receptor knockout mouse donors. Neurosci. Lett. 561, 52–57 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Gaudet, A. D. & Fonken, L. K. Glial cells shape pathology and repair after spinal cord injury. Neurotherapeutics 15, 554–577 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pekny, M., Wilhelmsson, U., Tatlisumak, T. & Pekna, M. Astrocyte activation and reactive gliosis-A new target in stroke? Neurosci. Lett. 689, 45–55 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Tomov, N. Glial cells in intracerebral transplantation for Parkinson’s disease. Neural Regen. Res. 15, 1173–1178 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Llorente, I. L. et al. Patient-derived glial enriched progenitors repair functional deficits due to white matter stroke and vascular dementia in rodents. Sci. Transl. Med. 13, https://doi.org/10.1126/scitranslmed.aaz6747 (2021).

  • Jin, K. et al. Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc. Natl Acad. Sci. USA 99, 11946–11950 (2002).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Payne, T. R. et al. A relationship between vascular endothelial growth factor, angiogenesis, and cardiac repair after muscle stem cell transplantation into ischemic hearts. J. Am. Coll. Cardiol. 50, 1677–1684 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Christoffersson, G. et al. VEGF-A recruits a proangiogenic MMP-9-delivering neutrophil subset that induces angiogenesis in transplanted hypoxic tissue. Blood 120, 4653–4662 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller, F. D. & Gauthier, A. S. Timing is everything: making neurons versus glia in the developing cortex. Neuron 54, 357–369 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Massensini, A. R. et al. Concentration-dependent rheological properties of ECM hydrogel for intracerebral delivery to a stroke cavity. Acta Biomater. 27, 116–130 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lancaster, M. A. et al. Cerebral organoids model human brain development and microcephaly. Nature 501, 373–379 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Lancaster, M. A. et al. Guided self-organization and cortical plate formation in human brain organoids. Nat. Biotechnol. 35, 659–666 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Y. et al. Induction of expansion and folding in human cerebral organoids. Cell Stem Cell 20, 385–396 e383 (2017).

    Article  PubMed  Google Scholar 

  • Hughes, C. S., Postovit, L. M. & Lajoie, G. A. Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics 10, 1886–1890 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Pnevmatikakis, E. A. et al. Simultaneous denoising, deconvolution, and demixing of calcium imaging data. Neuron 89, 285–299 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giovannucci, A. et al. CaImAn an open source tool for scalable calcium imaging data analysis. Elife 8, https://doi.org/10.7554/eLife.38173 (2019).

  • Bollimunta, A. et al. Head-mounted microendoscopic calcium imaging in dorsal premotor cortex of behaving rhesus macaque. Cell Rep. 35, 109239 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen, M., Poggiali, D., Whitaker, K., Marshall, T. R. & Kievit, R. A. Raincloud plots: a multi-platform tool for robust data visualization. Wellcome Open Res. 4, 63 (2019).

    Article  PubMed  Google Scholar