Search
Close this search box.

Elucidation of genes enhancing natural product biosynthesis through co-evolution analysis – Nature Metabolism

  • Newman, D. J. & Cragg, G. M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 83, 770–803 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, S., Li, Z., Pang, S., Xiang, W. & Wang, W. Coordinating precursor supply for pharmaceutical polyketide production in Streptomyces. Curr. Opin. Biotechnol. 69, 26–34 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, W. et al. Harnessing the intracellular triacylglycerols for titer improvement of polyketides in Streptomyces. Nat. Biotechnol. 38, 76–83 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Liu, G., Chater, K. F., Chandra, G., Niu, G. & Tan, H. Molecular regulation of antibiotic biosynthesis in Streptomyces. Microbiol. Mol. Biol. Rev. 77, 112–143 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gavriilidou, A. et al. Compendium of specialized metabolite biosynthetic diversity encoded in bacterial genomes. Nat. Microbiol. 7, 726–735 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao, L. et al. The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor. Nat. Genet. 51, 1044–1051 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • de Vries, R. P. et al. Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus Aspergillus. Genome Biol. 18, 28 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cruz-Morales, P. et al. Revisiting the evolution and taxonomy of Clostridia, a phylogenomic update. Genome Biol. Evol. 11, 2035–2044 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chandra, G. & Chater, K. F. Developmental biology of Streptomyces from the perspective of 100 actinobacterial genome sequences. FEMS Microbiol. Rev. 38, 345–379 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schoch, C. L. et al. NCBI Taxonomy: a comprehensive update on curation, resources and tools. Database https://doi.org/10.1093/database/baaa062 (2020).

  • Bentley, S. D. et al. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417, 141–147 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Kim, J. N. et al. Comparative genomics reveals the core and accessory genomes of Streptomyces species. J. Microbiol. Biotechnol. 25, 1599–1605 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bu, Q. T. et al. Comprehensive dissection of dispensable genomic regions in Streptomyces based on comparative analysis approach. Micro. Cell Fact. 19, 99 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, Z., Gu, J., Li, Y. Q. & Wang, Y. Genome plasticity and systems evolution in Streptomyces. BMC Bioinf. 13, S8 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Belknap, K. C., Park, C. J., Barth, B. M. & Andam, C. P. Genome mining of biosynthetic and chemotherapeutic gene clusters in Streptomyces bacteria. Sci. Rep. 10, 2003 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zaburannyi, N., Rabyk, M., Ostash, B., Fedorenko, V. & Luzhetskyy, A. Insights into naturally minimised Streptomyces albus J1074 genome. BMC Genom. 15, 97 (2014).

    Article 

    Google Scholar
     

  • Chung, Y. H. et al. Comparative genomics reveals a remarkable biosynthetic potential of the Streptomyces phylogenetic lineage associated with rugose-ornamented spores. mSystems 6, e0048921 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Jonscher, K. R., Chowanadisai, W. & Rucker, R. B. Pyrroloquinoline-quinone is more than an antioxidant: a vitamin-like accessory factor important in health and disease prevention. Biomolecules 11, 1441 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wagh, J., Shah, S., Bhandari, P., Archana, G. & Kumar, G. N. Heterologous expression of pyrroloquinoline quinone (PQQ) gene cluster confers mineral phosphate solubilization ability to Herbaspirillum seropedicae Z67. Appl. Microbiol. Biotechnol. 98, 5117–5129 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, W. & Klinman, J. P. Biogenesis of the peptide-derived redox cofactor pyrroloquinoline quinone. Curr. Opin. Chem. Biol. 59, 93–103 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen, Y. Q. et al. Distribution and properties of the genes encoding the biosynthesis of the bacterial cofactor, pyrroloquinoline quinone. Biochemistry 51, 2265–2275 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yamauchi, Y. et al. Quinoprotein dehydrogenase functions at the final oxidation step of lankacidin biosynthesis in Streptomyces rochei 7434AN4. J. Biosci. Bioeng. 126, 145–152 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cruz-Morales, P. et al. Biosynthesis of polycyclopropanated high energy biofuels. Joule 6, 1590–1605 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Moumbock, A. F. A. et al. StreptomeDB 3.0: an updated compendium of streptomycetes natural products. Nucleic Acids Res. 49, D600–D604 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Olano, C. et al. Activation and identification of five clusters for secondary metabolites in Streptomyces albus J1074. Microb. Biotechnol. 7, 242–256 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, F., Nazari, B., Moon, K., Bushin, L. B. & Seyedsayamdost, M. R. Discovery of a cryptic antifungal compound from Streptomyces albus J1074 using high-throughput elicitor screens. J. Am. Chem. Soc. 139, 9203–9212 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beganovic, S. et al. Systems biology of industrial oxytetracycline production in Streptomyces rimosus: the secrets of a mutagenized hyperproducer. Microb. Cell Fact. 22, 222 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abbate, E. et al. Optimizing the strain engineering process for industrial-scale production of bio-based molecules. J. Ind. Microbiol. Biotechnol. 50, kuad025 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, F., Xu, S., Jiang, F. & Liu, W. Genomic-driven discovery of an amidinohydrolase involved in the biosynthesis of mediomycin A. Appl. Microbiol. Biotechnol. 102, 2225–2234 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Whitford, C. M., Cruz-Morales, P., Keasling, J. D. & Weber, T. The design-build-test-learn cycle for metabolic engineering of Streptomycetes. Essays Biochem. 65, 261–275 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Chen, X. et al. A new bacterial tRNA enhances antibiotic production in Streptomyces by circumventing inefficient wobble base-pairing. Nucleic Acids Res. 50, 7084–7096 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gessner, A. et al. Changing biosynthetic profiles by expressing bldA in Streptomyces strains. Chem. Bio. Chem. 16, 2244–2252 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tsunematsu, Y. et al. Distinct mechanisms for spiro-carbon formation reveal biosynthetic pathway crosstalk. Nat. Chem. Biol. 9, 818–825 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saihara, K., Kamikubo, R., Ikemoto, K., Uchida, K. & Akagawa, M. Pyrroloquinoline quinone, a redox-active o-quinone, stimulates mitochondrial biogenesis by activating the SIRT1/PGC-1alpha signaling pathway. Biochemistry 56, 6615–6625 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Simao, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chaudhari, N. M., Gupta, V. K. & Dutta, C. BPGA—an ultra-fast pan-genome analysis pipeline. Sci. Rep. 6, 24373 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blin, K. et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res. 49, W29–W35 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Komaki, H. & Tamura, T. Reclassification of Streptomyces cinnamonensis as a later heterotypic synonym of Streptomyces virginiae. Int. J. Syst. Evol. Microbiol. 71, 004813 (2021).

    CAS 

    Google Scholar
     

  • Wang, X. R., Wang, R. F., Kang, Q. J. & Bai, L. Q. The antitumor agent ansamitocin P-3 binds to cell division protein FtsZ in Actinosynnema pretiosum. Biomolecules 10, 699 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, M. et al. Phosphoproteomics reveals novel targets and phosphoprotein networks in cell cycle mediated by Dsk1 kinase. J. Proteome Res. 19, 1776–1787 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, Y., Xiang, S., Dai, X. & Yang, K. A simplified diphenylamine colorimetric method for growth quantification. Appl. Microbiol. Biotechnol. 97, 5069–5077 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nanchen, A., Fuhrer, T. & Sauer, U. Determination of Metabolic Flux Ratios From 13C-Experiments and Gas Chromatography-Mass Spectrometry Data (Humana, 2007).