Efficacy of stem cells versus microvesicles in ameliorating chronic renal injury in rats (histological and biochemical study) – Scientific Reports

  • Ali, O. I. & Amin, I. M. M. Toxicological appraisal of some heavy metals level in water of EL-Ibrahemiacanal in Beni-Seuf Governorate. Egypt. J. Comp. Pathol. Clin. Pathol. 19(1), 25 (2006).


    Google Scholar
     

  • Malekshah, A. K., Torabizadeh, Z. & Naghshwar, F. Developmental toxicity of aluminum from high doses of AlCl3 in mice. J. Appl. Res. 5, 575–579 (2005).


    Google Scholar
     

  • Verstraeten, S. V., Aimo, L. & Oteiza, P. I. Aluminium and lead: Molecular mechanisms of brain toxicity. Arch. Toxicol. 82, 789–802 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Türkez, H., Yousef, M. I. & Geyikoglu, F. Propolis prevents aluminium-induced genetic and hepatic damage in rat liver. Food Chem. Toxicol. 48, 2741–2746 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Saad, H. M., Hassieb, M. M., Oda, S. S., Tohamy, H. G. & Khafaga, A. F. Histopathologic study on the toxic effect of aluminium chloride on the heart, liver, and kidneys of rabbits. AJVS 56(1), 102–109 (2018).

    Article 

    Google Scholar
     

  • Gonçalves, P. P. & Silva, V. S. Does neurotransmission impairment accompany aluminum neurotoxicity? J. Inorg. Biochem. 101(9), 1291–1338 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Yousef, M. I. et al. An in vitro study on the reproductive toxicity of aluminum chloride on rabbit sperm: The protective role of some antioxidants. Toxicology 239, 213–223 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fu, Y. et al. Effects of sub-chronic aluminum chloride exposure on rat ovaries. Life Sci. 100(1), 61–66 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • El-Sayed, W. M., Al-Kahtani, M. A. & Abdel-Moneim, A. M. Prophylactic and therapeutic effects of taurine against aluminum-induced acute hepatotoxicity in mice. J. Hazard Mater. 192(2), 880–886 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eman, E. E., Doha, Y. A. & Naveen, A. E. Influence of chelating therapy against aluminum chloride-induced immune suppression and hematological disorders in rabbits. Compar. Clin. Pathol. 22, 63–73 (2013).

    Article 

    Google Scholar
     

  • Stoehr, G., Luebbers, K., Wilhelm, M., Hoelzer, J. & Ohmann, C. Aluminum load in ICU patients during stress ulcer prophylaxis. Eur. J. Intern. Med. 17(8), 561–566 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alasmari, W. A. et al. Exosomes derived from BM-MSCs mitigate the development of chronic kidney damage post-menopause via interfering with fibrosis and apoptosis. Biomolecules 12(5), 663 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mattick, J. S. et al. Long non-coding RNAs: Definitions, functions, challenges, and recommendations. Nat. Rev. Mol. Cell Biol. 24(6), 430–447 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miguel, V. The extracellular miRNA fingerprint of kidney disease: A narrative review. ExRNA 31, 4 (2022).


    Google Scholar
     

  • Gomez, I. G., Nakagawa, N. & Duffield, J. S. MicroRNAs as novel therapeutic targets to treat kidney injury and fibrosis. Am. J. Physiol. R. Physiol. 310(10), F931–F944 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Ji, P. et al. MALAT-1, a novel noncoding RNA, and thymosin β4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene 22(39), 8031–8041 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Guo, J., Liu, Z. & Gong, R. Long noncoding RNA: An emerging player in diabetes and diabetic kidney disease. Clin. Sci. 133(12), 1321–1339 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Gong, W., Zhu, G., Li, J. & Yang, X. LncRNA MALAT1 promotes the apoptosis and oxidative stress of human lens epithelial cells via p38MAPK pathway in diabetic cataract. Diabetes Res. Clin. Pract. 144, 314–321 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, J., Zhu, Y., Cong, Q. & Xu, Q. Non-coding RNAs: Role of miRNAs and lncRNAs in the regulation of autophagy in hepatocellular carcinoma. Oncol. Rep. 49(6), 1–14 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Lee, S., Choi, E., Cha, M.-J. & Hwang, K.-C. Cell adhesion and long-term survival of transplanted mesenchymal stem cells: A prerequisite for cell therapy. Oxid. Med. Cell. Longev. 2015, 1–9 (2015).

    Article 

    Google Scholar
     

  • Yolanda, M. M. et al. Adult stem cell therapy inchronic wound healing. J. Stem Cell Res. Ther. 4(162), 2 (2014).


    Google Scholar
     

  • Ding, S. L. S., Kumar, S. & Mok, P. L. Cellular reparative mechanism of mesenchymal stem cells for retinal diseases. Int. J. Mol. Sci. 18(8), 1406 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zakrzewski, W., Dobrzyński, M., Szymonowicz, M. & Rybak, Z. Stem cells: Past, present, and future. Stem Cell Res. Ther. 10(1), 1–22 (2019).

    Article 

    Google Scholar
     

  • Shah, V. K. & Shalia, K. K. Stem cell therapy for acute myocardial infarction-longterm 24 months follow-up. J. Clin. Trials Cardiol. 1, 1–5 (2014).

    Article 

    Google Scholar
     

  • Lee, P. W., Wu, B. S., Yang, C. Y. & Lee, O. K. Molecular mechanisms of mesenchymal stem cell-based therapy in acute kidney injury. Int. J. Mol. Sci. 22(21), 11406 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wong, C. Y. Current advances of stem cell-based therapy for kidney diseases. World J. Stem Cells 13(7), 914–933 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gimble, J. M., Katz, A. J. & Bunnell, B. A. Adipose-derived stem cells for regenerative medicine. Circ. Res. 100(9), 1249–1260 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Radtke, C., Schmitz, B., Spies, M., Kocsis, J. D. & Vogt, P. M. Peripheral glial cell differentiation from neurospheres derived from adipose mesenchymal stem cells. Int. J. Dev. Neurosci. 27(8), 817–823 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lindroos, B., Suuronen, R. & Miettinen, S. The potential of adipose stem cells in regenerative medicine. Stem Cell Rev. Rep. 7(2), 269–291 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Shiffman, M. A. et al. (eds) Stem Cells in Aesthetic Procedures: Art, Science, and Clinical Techniques (Springer, 2014).


    Google Scholar
     

  • Murray, L. M. & Krasnodembskaya, A. D. Concise review: Intercellular communication via organelle transfer in the biology and therapeutic applications of stem cells. Stem Cells 37(1), 14–25 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Toh, W. S., Lai, R. C., Zhang, B. & Lim, S. K. MSC exosome works through a protein-based mechanism of action. Biochem. Soc. Trans. 46(4), 843–853 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cabral, J., Ryan, A. E., Griffin, M. D. & Ritter, T. Extracellular vesicles as modulators of wound healing. Adv. Drug Deliv. Rev. 129, 394–406 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Konala, V. B. et al. The current landscape of the mesenchymal stromal cell secretome: A new paradigm for cell-free regeneration. Cytotherapy 18(1), 13–24 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Raisi, A. et al. The mesenchymal stem cell-derived microvesicles enhance sciatic nerve regeneration in the rat: A novel approach in peripheral nerve cell therapy. J. Trauma Acute Care Surg. 76(4), 991–997 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Abdel Mohsen, M. A. & Ahmed, M. M. Histological study on the effect of adipose mesenchymal stem cells derived microvesicles and the role of its RNA content on experimentally induced ulcerative colitis in albino rats. Egypt. J Histol. 42(2), 496–512 (2019).


    Google Scholar
     

  • Mahmoud, M. E. & Elsoadaa, S. S. Protective effect of ascorbic acid, biopropolis and royal jelly against aluminum toxicity in rats. J. Nat. Sci. Res. 3, 102–112 (2013).


    Google Scholar
     

  • Al Dera, H. S. & Abushouk, A. Protective effect of resveratrol against aluminium chloride (ALCL3) induced testicular damage in rats entails inhibition of intrinsic apoptotic pathway. Sci. Adv. Mater. 7, 384–395 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Al Dera, H. S. Protective effect of resveratrol against aluminum chloride-induced nephrotoxicity in rats. Saudi Med. J. 37(4), 369–378 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Ezquer, F. E. et al. Systemic administration of multipotent mesenchymal stromal cells reverts hyperglycemia and prevents nephropathy in type 1 diabetic mice. Biol. Blood Marrow. Trans. 14(6), 631–640 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Hu, L. et al. Exosomes derived from human adipose mesenchymal stem cells accelerate cutaneous wound healing via optimizing the characteristics of fibroblasts. Sci. Rep. 12(6), 32993 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Niyaz, M., Gürpinar, Ö. A., Günaydin, S. & Onur, M. A. Isolation, culturing, and characterization of rat adipose tissue-derived mesenchymal stem cells: A simple technique. Turk. J. Biol. 36(6), 658–664 (2012).


    Google Scholar
     

  • Yanai, G. et al. Electrofusion of mesenchymal stem cells and islet cells for diabetes therapy: A rat model. PLoS ONE 8(5), e64499 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qin, Y. J. et al. Green tea extract treatment alleviates ocular inflammation in a rat model of endotoxin-induced uveitis. PLoS ONE 9(8), e103995 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ali, H., Al-Yatama, M. K., Abu-Farha, M., Behbehani, K. & Al Madhoun, A. Multi-lineage differentiation of human umbilical cord Wharton’s Jelly mesenchymal stromal cells mediates changes in the expression profile of stemness markers. PLoS ONE 10(4), e0122465 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pham, H., Tonai, R., Wu, M., Birtolo, C. & Chen, M. CD73, CD90, CD105 and Cadherin-11 RT-PCR screening for mesenchymal stem cells from cryopreserved human cord tissue. Int. J. Stem Cells 11(1), 26–38 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mohammadi, M. R. et al. Isolation and characterization of microvesicles from mesenchymal stem cells. Methods 177, 50–57 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Haas, S., Bauer, P., Rolfs, A. & Were, A. Immunocytochemical characterization of in vitro PKH26-labelled and intracerebrally transplanted neonatal cells. Acta Histochem. 102(3), 273–280 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dominkuš, P. et al. PKH26 labeling of extracellular vesicles: Characterization and cellular internalization of contaminating PKH26 nanoparticles. Biochim. Biophys. Acta 1860(6), 1350–1361 (2018).

    Article 

    Google Scholar
     

  • Ohkawa, H., Ohishi, N. & Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95(2), 351–358 (1979).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nishikimi, M., Rao, N. A. & Yagi, K. The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem. Biophys. Res. Commun. 46(2), 849–854 (1972).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Beutler, E. Improved method for the determination of blood glutathione. J. Lab. Clin. Med. 61, 882–888 (1963).

    CAS 
    PubMed 

    Google Scholar
     

  • den Er, M. & Bor, N. M. Changes of reduced glutathione, glutathione reductase, and glutathione peroxidase after radiation in guinea pigs. Biochem. Med. 31(2), 217–227 (1984).

    Article 

    Google Scholar
     

  • Koracevic, D., Koracevic, G., Djordjevic, V., Andrejevic, S. & Cosic, V. Method for the measurement of antioxidant activity in human fluids. J. Clin. Pathol. 54(5), 356–361 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, K. et al. Expression of interleukin 6 in brain and colon of rats with TNBS-induced colitis. World J. Gasteroenterol. 16, 2252 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Mariappan, N., Carrie, M. E., Masudul, H. & Joseph, F. Interaction of TNF with angiotensin II contributes to mitochondrial oxidative stress and cardiac damage in rats. PLoS ONE 7, e46568 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, H., Guowei, Z. & Zhenying, G. lncRNA MALAT1 promotes renal fibrosis in diabetic nephropathy by targeting the miR-2355-3p/IL6ST axis. Front. Pharm. 1, 812 (2021).


    Google Scholar
     

  • Schmittgen, T. D. & Livak, K. J. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 3, 1101 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, J. D., Li, X. M., Liu, J. L., Li, J. & Zhou, H. Effects of miR-150-5p on cerebral infarction rats by regulating the Wnt signaling pathway via p53. Eur. Rev. Med. Pharmacol. Sci. 24(7), 3882–3891 (2020).

    PubMed 

    Google Scholar
     

  • Suvarna, K. S., Layton, C. & Bancroft, J. D. Bancroft’s Theory and Practice of Histological Techniques E-Book (Elsevier, 2018).


    Google Scholar
     

  • Ramos-Vara, J. et al. Suggested guidelines for immunohistochemical techniques in veterinary diagnostic laboratories. J. Vet. Diagn. Investig. 20, 393–413 (2008).

    Article 

    Google Scholar
     

  • Tizro, P., Choi, C. & Khanlou, N. Sample preparation for transmission electron microscopy. Biobanking 1897, 417–424 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Krewski, D. et al. Human health risk assessment for aluminum, aluminum oxide, and aluminum hydroxide. J. Toxicol. Environ. Health B Crit. Rev. 10(Suppl 1), 1–269 (2007).

    Article 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aguilar, F. et al. Safety of aluminum from dietary intake. Scientific opinion of the panel on food additives, flavourings, processing aids, and food contact materials (AFC). Euro. Food Saf. Auth. 754, 1–34 (2008).


    Google Scholar
     

  • Drüeke, T. B. Intestinal absorption of aluminum in renal failure. Nephrol. Dial Transplant. 17(suppl 2), 13–16 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Nehru, B. & Anand, P. Oxidative damage following chronic aluminum exposure in adult and pup rat brains. J. Trace Elem. Med. Biol. 19, 203–208 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ghosh, J., Das, J., Manna, P. & Sil, P. C. Acetaminophen-induced renal injury via oxidative stress and TNF-alpha production: Therapeutic potential of arjunolic acid. Toxicology 268, 8–18 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sargazi, M., Shenkin, A. & Roberts, N. B. Aluminium-induced injury to kidney proximal tubular cells: Effects on markers of oxidative damage. J. Trace Elem. Med. Biol. 19, 267–273 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stacchiotti, A. et al. Stress protein expression in rat kidney and liver chronically exposed to aluminium sulphate. Histol. Histopathol. 21, 131–140 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Gonzalez-Muٌoz, M. J. et al. Beer consumption reduces cerebral oxidation caused by aluminum toxicity by normalizing gene expression of tumor necrotic factor alpha and several antioxidant enzymes. Food Chem. Toxicol. 46, 1111–1118 (2008).

    Article 

    Google Scholar
     

  • Ghanim, H. et al. An antiinflammatory and reactive oxygen species suppressive effects of an extract of Polygonum cuspidatum containing resveratrol. J. Clin. Endocrinol. Metab. 95, E1–E8 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Belaïd-Nouia, Y., Bakhta, H., Haouas, Z., Flehi-Slim, I. & Ben Cheikh, H. Fenugreek seeds reduce aluminum toxicity associated with renal failure in rats. Nutr. Res. Pract. 7, 466–474 (2013).

    Article 

    Google Scholar
     

  • Okail, H. A., Ibrahim, A. S. & Badr, A. H. The protective effect of propolis against aluminum chloride-induced hepatorenal toxicity in albino rats. J. Basic Appl. Zool. 81, 1 (2020).

    Article 

    Google Scholar
     

  • Mannaa, F. A., Abdalla, M. S., Abdel-Wahhab, K. G. & El-Kassaby, M. I. Effect of some nutraceutical agents on aluminum-induced functional neurotoxicity in senile rats: I. Effect of rosemary aqueous extract and docosahexaenoic acid. J. Appl. Sci. Res. 9, 2322–2334 (2013).

    CAS 

    Google Scholar
     

  • Hassan, N. H., Yousef, D. M. & Alsemeh, A. E. Hesperidin protects against aluminum-induced renal injury in rats via modulating MMP-9 and apoptosis: Biochemical, histological, and ultrastructural study. Environ. Sci. Pollut. Res. 30(13), 36208–36227 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Jangra, A. et al. Hesperidin and silibinin ameliorate aluminum-induced neurotoxicity: Modulation of antioxidants and inflammatory cytokines level in mice hippocampus. Biol. Trace Elem. Res. 168(2), 462–471 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maksoud, H. A., Said, A. M., Abdeldaiem, M. A. & Hassan, M. A. Aluminum chloride induced inflammatory process in rat’s brain. SchInt. J. Biochem. 3(10), 1–4 (2020).


    Google Scholar
     

  • Osman, N. N. & Al-Shubailly, F. Antiinflammatory, immune-modulatory and antioxidant effects of date fruit (Phoenix dactylifera) extract in rats treated with AlCl3. Int. J. Pharm. Res. Allied Sci. 6, 2 (2017).


    Google Scholar
     

  • Kawahara, M. Effects of aluminum on the nervous system and its possible link with neurodegenerative diseases. J. Alzheimer Dis. 8(2), 171–182 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Gonzalez, M. A. et al. Involvement of oxidative stress in the impairment in biliary secretory function induced by intraperitoneal administration of aluminum to rats. Biol. Trace Elem. Res. 116, 329–348 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Genin, M., Clement, F., Fattaccioli, A., Raes, M. & Michiels, C. M1 and M2 macrophages derived from THP-1 cells differentially modulate the response of cancer cells to etoposide. BMC Cancer 15, 577 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jian, Y. et al. Crosstalk between macrophages and cardiac cells after myocardial infarction. Cell Commun. Signal. 21(1), 1–7 (2023).

    Article 

    Google Scholar
     

  • Witherel, C. E., Abebayehu, D., Barker, T. H. & Spiller, K. L. Macrophage and fibroblast interactions in biomaterial-mediated fibrosis. Adv. Healthc. Mater. 8(4), 1801451 (2019).

    Article 

    Google Scholar
     

  • Humphreys, B. D. & Bonventre, J. V. Mesenchymal stem cells in acute kidney injury. Annu. Rev. Med. 59, 311–325 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Humphreys, B. D. et al. Intrinsic epithelial cells repair the kidney after injury. Cell Stem Cell. 2(3), 284–291 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ishiuchi, N. et al. Hypoxia-preconditioned mesenchymal stem cells prevent renal fibrosis and inflammation in ischemia-reperfusion rats. Stem Cell Res. Ther. 11(1), 130 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, W. Y. et al. Injection of hybrid 3D spheroids composed of podocytes, mesenchymal stem cells, and vascular endothelial cells into the renal cortex improves kidney function and replenishes glomerular podocytes. Bioeng. Transl. Med. 6(2), e10212 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Y., Li, G. & Liu, M. L. Microvesicles as emerging biomarkers and therapeutic targets in cardiometabolic diseases. Genom. Prot. Bioinform. 16(1), 50–62 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Huang, Y. & Yang, L. Mesenchymal stem cells and extracellular vesicles in therapy against kidney diseases. Stem Cell Res. Ther. 12(1), 219 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, L. et al. Exosomes derived from mesenchymal stem cells ameliorate renal ischemic reperfusion injury through inhibiting inflammation and cell apoptosis. Front. Med. 6, 269 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Gao, F. et al. Protective function of exosomes from adipose tissue-derived mesenchymal stem cells in acute kidney injury through SIRT1 pathway. Life Sci. 255, 117719 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alasmari, W. A. et al. Mesenchymal stem cells’ exosomes are renoprotective in postmenopausal chronic kidney injury via reducing inflammation and degeneration. Free Radic. Biol. Med. 182, 150–159 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Song, T. et al. Mesenchymal stem cell-derived extracellular vesicles induce regulatory t cells to ameliorate chronic kidney injury. Hypertension 75(5), 1223–1232 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, Y. et al. Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro. Stem Cell Res. Ther. 4(2), 34 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grange, C. et al. Stem cell-derived extracellular vesicles inhibit and revert fibrosis progression in a mouse model of diabetic nephropathy. Sci. Rep. 9(1), 4468 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, B. et al. Exosomes released by human umbilical cord mesenchymal stem cells protect against renal interstitial fibrosis through ROS-mediated P38MAPK/ERK signaling pathway. Am. J. Transl. Res. 12(9), 4998–5014 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao, H. et al. In vivo tracking of mesenchymal stem cell-derived extracellular vesicles improving mitochondrial function in renal ischemia-reperfusion injury. ACS Nano 14(4), 4014–4026 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y., Wang, C., Bai, Z. & Li, P. Umbilical cord mesenchymal stem cell exosomes alleviate the progression of kidney failure by modulating inflammatory responses and oxidative stress in an ischemia-reperfusion mice model. J. Biomed. Nanotechnol. 17(9), 1874–1881 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abreu, S. C., Weiss, D. J. & Rocco, P. R. Extracellular vesicles derived from mesenchymal stromal cells: A therapeutic option in respiratory diseases? Stem Cell Res. Ther. 7(1), 1 (2016).

    Article 

    Google Scholar
     

  • Zhao, L., Hu, C., Zhang, P., Jiang, H. & Chen, J. Genetic communication by extracellular vesicles is an important mechanism underlying stem cell-based therapy-mediated protection against acute kidney injury. Stem Cell Res. Ther. 10(1), 119 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, F. et al. Mesenchymal stem cell therapy in kidney diseases: Potential and challenges. Cell Transplant. 32, 1–23 (2023).

    Article 

    Google Scholar
     

  • Lu, M. et al. Differentially expressed microRNAs in kidney biopsies from various subtypes of nephrotic children. Exp. Mol. Pathol. 99(3), 590–595 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Van Craenenbroeck, A. H. et al. Impaired vascular function contributes to exercise intolerance in chronic kidney disease. Nephrol. Dial. Transplant. 31(12), 2064–2072 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Zhou, H. et al. miR-150 promotes renal fibrosis in lupus nephritis by downregulating SOCS1. J. Am. Soc. Nephrol. 24(7), 1073–1087 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ranganathan, P. et al. MicroRNA-150 deletion in mice protects the kidney from myocardial infarction-induced acute kidney injury. Am. J. Physiol. Renal Physiol. 309(6), F551–F558 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar