Ali, O. I. & Amin, I. M. M. Toxicological appraisal of some heavy metals level in water of EL-Ibrahemiacanal in Beni-Seuf Governorate. Egypt. J. Comp. Pathol. Clin. Pathol. 19(1), 25 (2006).
Malekshah, A. K., Torabizadeh, Z. & Naghshwar, F. Developmental toxicity of aluminum from high doses of AlCl3 in mice. J. Appl. Res. 5, 575–579 (2005).
Verstraeten, S. V., Aimo, L. & Oteiza, P. I. Aluminium and lead: Molecular mechanisms of brain toxicity. Arch. Toxicol. 82, 789–802 (2008).
Türkez, H., Yousef, M. I. & Geyikoglu, F. Propolis prevents aluminium-induced genetic and hepatic damage in rat liver. Food Chem. Toxicol. 48, 2741–2746 (2010).
Saad, H. M., Hassieb, M. M., Oda, S. S., Tohamy, H. G. & Khafaga, A. F. Histopathologic study on the toxic effect of aluminium chloride on the heart, liver, and kidneys of rabbits. AJVS 56(1), 102–109 (2018).
Gonçalves, P. P. & Silva, V. S. Does neurotransmission impairment accompany aluminum neurotoxicity? J. Inorg. Biochem. 101(9), 1291–1338 (2007).
Yousef, M. I. et al. An in vitro study on the reproductive toxicity of aluminum chloride on rabbit sperm: The protective role of some antioxidants. Toxicology 239, 213–223 (2007).
Fu, Y. et al. Effects of sub-chronic aluminum chloride exposure on rat ovaries. Life Sci. 100(1), 61–66 (2014).
El-Sayed, W. M., Al-Kahtani, M. A. & Abdel-Moneim, A. M. Prophylactic and therapeutic effects of taurine against aluminum-induced acute hepatotoxicity in mice. J. Hazard Mater. 192(2), 880–886 (2011).
Eman, E. E., Doha, Y. A. & Naveen, A. E. Influence of chelating therapy against aluminum chloride-induced immune suppression and hematological disorders in rabbits. Compar. Clin. Pathol. 22, 63–73 (2013).
Stoehr, G., Luebbers, K., Wilhelm, M., Hoelzer, J. & Ohmann, C. Aluminum load in ICU patients during stress ulcer prophylaxis. Eur. J. Intern. Med. 17(8), 561–566 (2006).
Alasmari, W. A. et al. Exosomes derived from BM-MSCs mitigate the development of chronic kidney damage post-menopause via interfering with fibrosis and apoptosis. Biomolecules 12(5), 663 (2022).
Mattick, J. S. et al. Long non-coding RNAs: Definitions, functions, challenges, and recommendations. Nat. Rev. Mol. Cell Biol. 24(6), 430–447 (2023).
Miguel, V. The extracellular miRNA fingerprint of kidney disease: A narrative review. ExRNA 31, 4 (2022).
Gomez, I. G., Nakagawa, N. & Duffield, J. S. MicroRNAs as novel therapeutic targets to treat kidney injury and fibrosis. Am. J. Physiol. R. Physiol. 310(10), F931–F944 (2016).
Ji, P. et al. MALAT-1, a novel noncoding RNA, and thymosin β4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene 22(39), 8031–8041 (2003).
Guo, J., Liu, Z. & Gong, R. Long noncoding RNA: An emerging player in diabetes and diabetic kidney disease. Clin. Sci. 133(12), 1321–1339 (2019).
Gong, W., Zhu, G., Li, J. & Yang, X. LncRNA MALAT1 promotes the apoptosis and oxidative stress of human lens epithelial cells via p38MAPK pathway in diabetic cataract. Diabetes Res. Clin. Pract. 144, 314–321 (2018).
Wu, J., Zhu, Y., Cong, Q. & Xu, Q. Non-coding RNAs: Role of miRNAs and lncRNAs in the regulation of autophagy in hepatocellular carcinoma. Oncol. Rep. 49(6), 1–14 (2023).
Lee, S., Choi, E., Cha, M.-J. & Hwang, K.-C. Cell adhesion and long-term survival of transplanted mesenchymal stem cells: A prerequisite for cell therapy. Oxid. Med. Cell. Longev. 2015, 1–9 (2015).
Yolanda, M. M. et al. Adult stem cell therapy inchronic wound healing. J. Stem Cell Res. Ther. 4(162), 2 (2014).
Ding, S. L. S., Kumar, S. & Mok, P. L. Cellular reparative mechanism of mesenchymal stem cells for retinal diseases. Int. J. Mol. Sci. 18(8), 1406 (2017).
Zakrzewski, W., Dobrzyński, M., Szymonowicz, M. & Rybak, Z. Stem cells: Past, present, and future. Stem Cell Res. Ther. 10(1), 1–22 (2019).
Shah, V. K. & Shalia, K. K. Stem cell therapy for acute myocardial infarction-longterm 24 months follow-up. J. Clin. Trials Cardiol. 1, 1–5 (2014).
Lee, P. W., Wu, B. S., Yang, C. Y. & Lee, O. K. Molecular mechanisms of mesenchymal stem cell-based therapy in acute kidney injury. Int. J. Mol. Sci. 22(21), 11406 (2021).
Wong, C. Y. Current advances of stem cell-based therapy for kidney diseases. World J. Stem Cells 13(7), 914–933 (2021).
Gimble, J. M., Katz, A. J. & Bunnell, B. A. Adipose-derived stem cells for regenerative medicine. Circ. Res. 100(9), 1249–1260 (2007).
Radtke, C., Schmitz, B., Spies, M., Kocsis, J. D. & Vogt, P. M. Peripheral glial cell differentiation from neurospheres derived from adipose mesenchymal stem cells. Int. J. Dev. Neurosci. 27(8), 817–823 (2009).
Lindroos, B., Suuronen, R. & Miettinen, S. The potential of adipose stem cells in regenerative medicine. Stem Cell Rev. Rep. 7(2), 269–291 (2011).
Shiffman, M. A. et al. (eds) Stem Cells in Aesthetic Procedures: Art, Science, and Clinical Techniques (Springer, 2014).
Murray, L. M. & Krasnodembskaya, A. D. Concise review: Intercellular communication via organelle transfer in the biology and therapeutic applications of stem cells. Stem Cells 37(1), 14–25 (2019).
Toh, W. S., Lai, R. C., Zhang, B. & Lim, S. K. MSC exosome works through a protein-based mechanism of action. Biochem. Soc. Trans. 46(4), 843–853 (2018).
Cabral, J., Ryan, A. E., Griffin, M. D. & Ritter, T. Extracellular vesicles as modulators of wound healing. Adv. Drug Deliv. Rev. 129, 394–406 (2018).
Konala, V. B. et al. The current landscape of the mesenchymal stromal cell secretome: A new paradigm for cell-free regeneration. Cytotherapy 18(1), 13–24 (2016).
Raisi, A. et al. The mesenchymal stem cell-derived microvesicles enhance sciatic nerve regeneration in the rat: A novel approach in peripheral nerve cell therapy. J. Trauma Acute Care Surg. 76(4), 991–997 (2014).
Abdel Mohsen, M. A. & Ahmed, M. M. Histological study on the effect of adipose mesenchymal stem cells derived microvesicles and the role of its RNA content on experimentally induced ulcerative colitis in albino rats. Egypt. J Histol. 42(2), 496–512 (2019).
Mahmoud, M. E. & Elsoadaa, S. S. Protective effect of ascorbic acid, biopropolis and royal jelly against aluminum toxicity in rats. J. Nat. Sci. Res. 3, 102–112 (2013).
Al Dera, H. S. & Abushouk, A. Protective effect of resveratrol against aluminium chloride (ALCL3) induced testicular damage in rats entails inhibition of intrinsic apoptotic pathway. Sci. Adv. Mater. 7, 384–395 (2015).
Al Dera, H. S. Protective effect of resveratrol against aluminum chloride-induced nephrotoxicity in rats. Saudi Med. J. 37(4), 369–378 (2016).
Ezquer, F. E. et al. Systemic administration of multipotent mesenchymal stromal cells reverts hyperglycemia and prevents nephropathy in type 1 diabetic mice. Biol. Blood Marrow. Trans. 14(6), 631–640 (2008).
Hu, L. et al. Exosomes derived from human adipose mesenchymal stem cells accelerate cutaneous wound healing via optimizing the characteristics of fibroblasts. Sci. Rep. 12(6), 32993 (2016).
Niyaz, M., Gürpinar, Ö. A., Günaydin, S. & Onur, M. A. Isolation, culturing, and characterization of rat adipose tissue-derived mesenchymal stem cells: A simple technique. Turk. J. Biol. 36(6), 658–664 (2012).
Yanai, G. et al. Electrofusion of mesenchymal stem cells and islet cells for diabetes therapy: A rat model. PLoS ONE 8(5), e64499 (2013).
Qin, Y. J. et al. Green tea extract treatment alleviates ocular inflammation in a rat model of endotoxin-induced uveitis. PLoS ONE 9(8), e103995 (2014).
Ali, H., Al-Yatama, M. K., Abu-Farha, M., Behbehani, K. & Al Madhoun, A. Multi-lineage differentiation of human umbilical cord Wharton’s Jelly mesenchymal stromal cells mediates changes in the expression profile of stemness markers. PLoS ONE 10(4), e0122465 (2015).
Pham, H., Tonai, R., Wu, M., Birtolo, C. & Chen, M. CD73, CD90, CD105 and Cadherin-11 RT-PCR screening for mesenchymal stem cells from cryopreserved human cord tissue. Int. J. Stem Cells 11(1), 26–38 (2018).
Mohammadi, M. R. et al. Isolation and characterization of microvesicles from mesenchymal stem cells. Methods 177, 50–57 (2020).
Haas, S., Bauer, P., Rolfs, A. & Were, A. Immunocytochemical characterization of in vitro PKH26-labelled and intracerebrally transplanted neonatal cells. Acta Histochem. 102(3), 273–280 (2000).
Dominkuš, P. et al. PKH26 labeling of extracellular vesicles: Characterization and cellular internalization of contaminating PKH26 nanoparticles. Biochim. Biophys. Acta 1860(6), 1350–1361 (2018).
Ohkawa, H., Ohishi, N. & Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95(2), 351–358 (1979).
Nishikimi, M., Rao, N. A. & Yagi, K. The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem. Biophys. Res. Commun. 46(2), 849–854 (1972).
Beutler, E. Improved method for the determination of blood glutathione. J. Lab. Clin. Med. 61, 882–888 (1963).
den Er, M. & Bor, N. M. Changes of reduced glutathione, glutathione reductase, and glutathione peroxidase after radiation in guinea pigs. Biochem. Med. 31(2), 217–227 (1984).
Koracevic, D., Koracevic, G., Djordjevic, V., Andrejevic, S. & Cosic, V. Method for the measurement of antioxidant activity in human fluids. J. Clin. Pathol. 54(5), 356–361 (2001).
Wang, K. et al. Expression of interleukin 6 in brain and colon of rats with TNBS-induced colitis. World J. Gasteroenterol. 16, 2252 (2010).
Mariappan, N., Carrie, M. E., Masudul, H. & Joseph, F. Interaction of TNF with angiotensin II contributes to mitochondrial oxidative stress and cardiac damage in rats. PLoS ONE 7, e46568 (2012).
Huang, H., Guowei, Z. & Zhenying, G. lncRNA MALAT1 promotes renal fibrosis in diabetic nephropathy by targeting the miR-2355-3p/IL6ST axis. Front. Pharm. 1, 812 (2021).
Schmittgen, T. D. & Livak, K. J. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 3, 1101 (2008).
Sun, J. D., Li, X. M., Liu, J. L., Li, J. & Zhou, H. Effects of miR-150-5p on cerebral infarction rats by regulating the Wnt signaling pathway via p53. Eur. Rev. Med. Pharmacol. Sci. 24(7), 3882–3891 (2020).
Suvarna, K. S., Layton, C. & Bancroft, J. D. Bancroft’s Theory and Practice of Histological Techniques E-Book (Elsevier, 2018).
Ramos-Vara, J. et al. Suggested guidelines for immunohistochemical techniques in veterinary diagnostic laboratories. J. Vet. Diagn. Investig. 20, 393–413 (2008).
Tizro, P., Choi, C. & Khanlou, N. Sample preparation for transmission electron microscopy. Biobanking 1897, 417–424 (2019).
Krewski, D. et al. Human health risk assessment for aluminum, aluminum oxide, and aluminum hydroxide. J. Toxicol. Environ. Health B Crit. Rev. 10(Suppl 1), 1–269 (2007).
Aguilar, F. et al. Safety of aluminum from dietary intake. Scientific opinion of the panel on food additives, flavourings, processing aids, and food contact materials (AFC). Euro. Food Saf. Auth. 754, 1–34 (2008).
Drüeke, T. B. Intestinal absorption of aluminum in renal failure. Nephrol. Dial Transplant. 17(suppl 2), 13–16 (2002).
Nehru, B. & Anand, P. Oxidative damage following chronic aluminum exposure in adult and pup rat brains. J. Trace Elem. Med. Biol. 19, 203–208 (2005).
Ghosh, J., Das, J., Manna, P. & Sil, P. C. Acetaminophen-induced renal injury via oxidative stress and TNF-alpha production: Therapeutic potential of arjunolic acid. Toxicology 268, 8–18 (2010).
Sargazi, M., Shenkin, A. & Roberts, N. B. Aluminium-induced injury to kidney proximal tubular cells: Effects on markers of oxidative damage. J. Trace Elem. Med. Biol. 19, 267–273 (2006).
Stacchiotti, A. et al. Stress protein expression in rat kidney and liver chronically exposed to aluminium sulphate. Histol. Histopathol. 21, 131–140 (2006).
Gonzalez-Muٌoz, M. J. et al. Beer consumption reduces cerebral oxidation caused by aluminum toxicity by normalizing gene expression of tumor necrotic factor alpha and several antioxidant enzymes. Food Chem. Toxicol. 46, 1111–1118 (2008).
Ghanim, H. et al. An antiinflammatory and reactive oxygen species suppressive effects of an extract of Polygonum cuspidatum containing resveratrol. J. Clin. Endocrinol. Metab. 95, E1–E8 (2010).
Belaïd-Nouia, Y., Bakhta, H., Haouas, Z., Flehi-Slim, I. & Ben Cheikh, H. Fenugreek seeds reduce aluminum toxicity associated with renal failure in rats. Nutr. Res. Pract. 7, 466–474 (2013).
Okail, H. A., Ibrahim, A. S. & Badr, A. H. The protective effect of propolis against aluminum chloride-induced hepatorenal toxicity in albino rats. J. Basic Appl. Zool. 81, 1 (2020).
Mannaa, F. A., Abdalla, M. S., Abdel-Wahhab, K. G. & El-Kassaby, M. I. Effect of some nutraceutical agents on aluminum-induced functional neurotoxicity in senile rats: I. Effect of rosemary aqueous extract and docosahexaenoic acid. J. Appl. Sci. Res. 9, 2322–2334 (2013).
Hassan, N. H., Yousef, D. M. & Alsemeh, A. E. Hesperidin protects against aluminum-induced renal injury in rats via modulating MMP-9 and apoptosis: Biochemical, histological, and ultrastructural study. Environ. Sci. Pollut. Res. 30(13), 36208–36227 (2023).
Jangra, A. et al. Hesperidin and silibinin ameliorate aluminum-induced neurotoxicity: Modulation of antioxidants and inflammatory cytokines level in mice hippocampus. Biol. Trace Elem. Res. 168(2), 462–471 (2015).
Maksoud, H. A., Said, A. M., Abdeldaiem, M. A. & Hassan, M. A. Aluminum chloride induced inflammatory process in rat’s brain. SchInt. J. Biochem. 3(10), 1–4 (2020).
Osman, N. N. & Al-Shubailly, F. Antiinflammatory, immune-modulatory and antioxidant effects of date fruit (Phoenix dactylifera) extract in rats treated with AlCl3. Int. J. Pharm. Res. Allied Sci. 6, 2 (2017).
Kawahara, M. Effects of aluminum on the nervous system and its possible link with neurodegenerative diseases. J. Alzheimer Dis. 8(2), 171–182 (2005).
Gonzalez, M. A. et al. Involvement of oxidative stress in the impairment in biliary secretory function induced by intraperitoneal administration of aluminum to rats. Biol. Trace Elem. Res. 116, 329–348 (2007).
Genin, M., Clement, F., Fattaccioli, A., Raes, M. & Michiels, C. M1 and M2 macrophages derived from THP-1 cells differentially modulate the response of cancer cells to etoposide. BMC Cancer 15, 577 (2015).
Jian, Y. et al. Crosstalk between macrophages and cardiac cells after myocardial infarction. Cell Commun. Signal. 21(1), 1–7 (2023).
Witherel, C. E., Abebayehu, D., Barker, T. H. & Spiller, K. L. Macrophage and fibroblast interactions in biomaterial-mediated fibrosis. Adv. Healthc. Mater. 8(4), 1801451 (2019).
Humphreys, B. D. & Bonventre, J. V. Mesenchymal stem cells in acute kidney injury. Annu. Rev. Med. 59, 311–325 (2008).
Humphreys, B. D. et al. Intrinsic epithelial cells repair the kidney after injury. Cell Stem Cell. 2(3), 284–291 (2008).
Ishiuchi, N. et al. Hypoxia-preconditioned mesenchymal stem cells prevent renal fibrosis and inflammation in ischemia-reperfusion rats. Stem Cell Res. Ther. 11(1), 130 (2020).
Yang, W. Y. et al. Injection of hybrid 3D spheroids composed of podocytes, mesenchymal stem cells, and vascular endothelial cells into the renal cortex improves kidney function and replenishes glomerular podocytes. Bioeng. Transl. Med. 6(2), e10212 (2021).
Chen, Y., Li, G. & Liu, M. L. Microvesicles as emerging biomarkers and therapeutic targets in cardiometabolic diseases. Genom. Prot. Bioinform. 16(1), 50–62 (2018).
Huang, Y. & Yang, L. Mesenchymal stem cells and extracellular vesicles in therapy against kidney diseases. Stem Cell Res. Ther. 12(1), 219 (2021).
Li, L. et al. Exosomes derived from mesenchymal stem cells ameliorate renal ischemic reperfusion injury through inhibiting inflammation and cell apoptosis. Front. Med. 6, 269 (2019).
Gao, F. et al. Protective function of exosomes from adipose tissue-derived mesenchymal stem cells in acute kidney injury through SIRT1 pathway. Life Sci. 255, 117719 (2020).
Alasmari, W. A. et al. Mesenchymal stem cells’ exosomes are renoprotective in postmenopausal chronic kidney injury via reducing inflammation and degeneration. Free Radic. Biol. Med. 182, 150–159 (2022).
Song, T. et al. Mesenchymal stem cell-derived extracellular vesicles induce regulatory t cells to ameliorate chronic kidney injury. Hypertension 75(5), 1223–1232 (2020).
Zhou, Y. et al. Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro. Stem Cell Res. Ther. 4(2), 34 (2013).
Grange, C. et al. Stem cell-derived extracellular vesicles inhibit and revert fibrosis progression in a mouse model of diabetic nephropathy. Sci. Rep. 9(1), 4468 (2019).
Liu, B. et al. Exosomes released by human umbilical cord mesenchymal stem cells protect against renal interstitial fibrosis through ROS-mediated P38MAPK/ERK signaling pathway. Am. J. Transl. Res. 12(9), 4998–5014 (2020).
Cao, H. et al. In vivo tracking of mesenchymal stem cell-derived extracellular vesicles improving mitochondrial function in renal ischemia-reperfusion injury. ACS Nano 14(4), 4014–4026 (2020).
Zhang, Y., Wang, C., Bai, Z. & Li, P. Umbilical cord mesenchymal stem cell exosomes alleviate the progression of kidney failure by modulating inflammatory responses and oxidative stress in an ischemia-reperfusion mice model. J. Biomed. Nanotechnol. 17(9), 1874–1881 (2021).
Abreu, S. C., Weiss, D. J. & Rocco, P. R. Extracellular vesicles derived from mesenchymal stromal cells: A therapeutic option in respiratory diseases? Stem Cell Res. Ther. 7(1), 1 (2016).
Zhao, L., Hu, C., Zhang, P., Jiang, H. & Chen, J. Genetic communication by extracellular vesicles is an important mechanism underlying stem cell-based therapy-mediated protection against acute kidney injury. Stem Cell Res. Ther. 10(1), 119 (2019).
Chen, F. et al. Mesenchymal stem cell therapy in kidney diseases: Potential and challenges. Cell Transplant. 32, 1–23 (2023).
Lu, M. et al. Differentially expressed microRNAs in kidney biopsies from various subtypes of nephrotic children. Exp. Mol. Pathol. 99(3), 590–595 (2015).
Van Craenenbroeck, A. H. et al. Impaired vascular function contributes to exercise intolerance in chronic kidney disease. Nephrol. Dial. Transplant. 31(12), 2064–2072 (2016).
Zhou, H. et al. miR-150 promotes renal fibrosis in lupus nephritis by downregulating SOCS1. J. Am. Soc. Nephrol. 24(7), 1073–1087 (2013).
Ranganathan, P. et al. MicroRNA-150 deletion in mice protects the kidney from myocardial infarction-induced acute kidney injury. Am. J. Physiol. Renal Physiol. 309(6), F551–F558 (2015).
- SEO Powered Content & PR Distribution. Get Amplified Today.
- PlatoData.Network Vertical Generative Ai. Empower Yourself. Access Here.
- PlatoAiStream. Web3 Intelligence. Knowledge Amplified. Access Here.
- PlatoESG. Carbon, CleanTech, Energy, Environment, Solar, Waste Management. Access Here.
- PlatoHealth. Biotech and Clinical Trials Intelligence. Access Here.
- Source: https://www.nature.com/articles/s41598-024-66299-0