
Gutmann, J. L. Grossman’s endodontic practice-13th Edition. J. Conserv. Dent.: JCD19(5), 494. https://doi.org/10.4103/0972-0707.190011 (2016).
Johnson, W., Kulild, J. C. & Tay, F. Obturation of the cleaned and shaped root canal system. In Cohen´s Pathway of the Pulp 11th edn (eds Hargreaves, K. H. & Berman, L. H.) 280–323 (Elsevier, St. Louis, 2016).
Granchi, D. et al. Endodontic cements induce alterations in the cell cycle of in vitro cultured osteoblasts. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod.79(3), 359–366. https://doi.org/10.1016/s1079-2104(05)80230-6 (1995).
de Pablo, O. V., Estevez, R., Péix Sánchez, M., Heilborn, C. & Cohenca, N. Root anatomy and canal configuration of the permanent mandibular first molar: a systematic review. J. Endod.36(12), 1919–1931. https://doi.org/10.1016/j.joen.2010.08.055 (2010).
Alfahlawy, A., Selim, M. A. A. & Hassan, H. Y. Biocompatibility of three different root canal sealers, experimental study. BMC Oral Health23(1), 715. https://doi.org/10.1186/s12903-023-03473-2 (2023).
Braga, J. M., Oliveira, R. R., de Castro, M. R., Vieira, L. Q. & Sobrinho, A. P. Assessment of the cytotoxicity of a mineral trioxide aggregate-based sealer concerning macrophage activity. Dent. Traumatol.31(5), 390–395. https://doi.org/10.1111/edt.12190 (2015).
Wataha, J. C. Principles of biocompatibility for dental practitioners. J. Prosthet. Dent.86(2), 203–209. https://doi.org/10.1067/mpr.2001.117056 (2001).
Huang, F. M., Tai, K. W., Chou, M. Y. & Chang, Y. C. Cytotoxicity of resin-, zinc oxide-eugenol-, and calcium hydroxide-based root canal sealers on human periodontal ligament cells and permanent V79 cells. Int. Endod. J.35(2), 153–158. https://doi.org/10.1046/j.1365-2591.2002.00459.x (2002).
Sylvester, K. G. & Longaker, M. T. Stem cells: review and update. Arch. Surg.139(1), 93–99. https://doi.org/10.1001/archsurg.139.1.93 (2004).
Bianco, P., Robey, P. G. & Simmons, P. J. Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell.2(4), 313–319. https://doi.org/10.1016/j.stem.2008.03.002 (2008).
d’Aquino, R. et al. Human dental pulp stem cells: from biology to clinical applications. J. Exp. Zool. B Mol. Dev. Evol.312B(5), 408–415. https://doi.org/10.1002/jez.b.21263 (2009).
Tirino, V., Paino, F., De Rosa, A. & Papaccio, G. Identification, isolation, characterization, and banking of human dental pulp stem cells. Methods Mol. Biol.879, 443–463. https://doi.org/10.1007/978-1-61779-815-3_26 (2012).
Khalil, M. M., Abdelrahman, M. H. & El-Mallah, S. Bond strength and solubility of a novel polydimethylsiloxane-gutta-percha calcium silicate-containing root canal sealer. Dent. Med. Probl.56(2), 161–165. https://doi.org/10.17219/dmp/105626 (2019).
Andriukaitiene, L. et al. The effect of smear layer removal on E. faecalis leakage and bond strength of four resin-based root canal sealers. BMC Oral Health.18(1), 213. https://doi.org/10.1186/s12903-018-0655-7 (2018).
Viola, N. V. et al. Biocompatibility of an experimental MTA sealer implanted in the rat subcutaneous: Quantitative and immunohistochemical evaluation. J. Biomed. Mater. Res. B Appl. Biomater.100(7), 1773–1781. https://doi.org/10.1002/jbm.b.32744 (2012).
Pandis, N., Polychronopoulou, A. & Eliades, T. Randomization in clinical trials in orthodontics: Its significance in research design and methods to achieve it. Eur. J. Orthod.33(6), 684–690. https://doi.org/10.1093/ejo/cjq141 (2011).
Raoof, M. et al. A modified efficient method for dental pulp stem cell isolation. Dent. Res. J.11(2), 244–250 (2014).
Verma, A., Verma, M. & Singh, A. Animal tissue culture principles and applications. Animal Biotechnol.https://doi.org/10.1016/B978-0-12-811710-1.00012-4 (2020).
Kim, I. H. et al. In vivo evaluation of decellularized human tooth scaffold for dental tissue regeneration. Appl. Sci. (Basel).11(18), 8472. https://doi.org/10.3390/app11188472 (2021).
Leite, M. L. et al. Bioactivity effects of extracellular matrix proteins on apical papilla cells. J Appl. Oral Sci.29, e20210038. https://doi.org/10.1590/1678-7757-2021-0038 (2021).
Ahmed, B., Ragab, M. H., Galhom, R. A. & Hassan, H. Y. Evaluation of Dental Pulp Stem Cells Behavior after Odontogenic Differentiation Induction by Three Different Bioactive Materials on Two Different Scaffolds. BMC Oral Health.23, 252. https://doi.org/10.1186/s12903-023-02975-3 (2023).
Inada, E. et al. PiggyBac transposon-mediated gene delivery efficiently generates stable transfectants derived from cultured primary human deciduous tooth dental pulp cells (HDDPCs) and HDDPC-derived iPS cells. Int. J. Oral Sci.7(3), 144–154. https://doi.org/10.1038/ijos.2015.18 (2015).
Konjhodzic-Prcic, A., Jakupovic, S., Hasic-Brankovic, L. & Vukovic, A. Evaluation of Biocompatibility of Root Canal Sealers on L929 Fibroblasts with Multiscan EX Spectrophotometer. Acta Inform. Med.23(3), 135–137. https://doi.org/10.5455/aim.2015.23.135-137 (2015).
Katsares, V. et al. A rapid and accurate method for the stem cell viability evaluation: the case of the thawed umbilical cord blood. Lab. Med.40, 557–560. https://doi.org/10.1309/LMLE8BVHYWCT82CL (2005).
Suchánek J, Browne KZ, Kleplová TS, Mazurová Y. Protocols for dental-related stem cells isolation, amplification and differentiation. Dental Stem Cells: Regenerative Potential, Humana Press, Cham. Pp 2016. 27–56 https://doi.org/10.1007/978-3-319-33299-4_2
Carvalho, P. P. et al. Use of animal protein-free products for passaging adherent human adipose-derived stromal/stem cells. Cytotherapy.13(5), 594–597. https://doi.org/10.3109/14653249.2010.544721 (2011).
Tsitrou, E. et al. Effect of extraction media and storage time on the elution of monomers from four contemporary resin composite materials. Toxicol. Int.21(1), 89–95. https://doi.org/10.4103/0971-6580.128811 (2014).
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods.65(1–2), 55–63. https://doi.org/10.1016/0022-1759(83)90303-4 (1983).
Karapınar-Kazandağ, M. et al. Cytotoxicity of 5 endodontic sealers on L929 cell line and human dental pulp cells. Int. Endod. J.44(7), 626–634. https://doi.org/10.1111/j.1365-2591.2011.01863.x (2011).
Prati, C. & Gandolfi, M. G. Calcium silicate bioactive cement: Biological perspectives and clinical applications. Dent. Mater.31(4), 351–370. https://doi.org/10.1016/j.dental.2015.01.004 (2015).
Zhou, H. M. et al. In vitro cytotoxicity of calcium silicate-containing endodontic sealers. J. Endod.41(1), 56–61. https://doi.org/10.1016/j.joen.2014.09.012 (2015).
Gandolfi, M. G., Siboni, F. & Prati, C. Properties of a novel polysiloxane-guttapercha calcium silicate-bioglass-containing root canal sealer. Dent. Mater.32(5), 113–126. https://doi.org/10.1016/j.dental.2016.03.001 (2016).
Marin-Bauza, G. A. et al. Physicochemical properties of methacrylate resin-based root canal sealers. J Endod.36(9), 1531–1536. https://doi.org/10.1016/j.joen.2010.05.002 (2010).
Schmalz, G., Widbiller, M. & Galler, K. M. Material tissue interaction-from toxicity to tissue regeneration. Oper Dent.41(2), 117–131. https://doi.org/10.2341/15-249-BL (2016).
Peters, O. A. Research that matters – biocompatibility and cytotoxicity screening. Int. Endod. J.46(3), 195–197. https://doi.org/10.1111/iej.12047 (2013).
da Silva, E. J. N. L., Zaia, A. A. & Peters, O. A. Cytocompatibility of calcium silicate-based sealers in a three-dimensional cell culture model. Clin. Oral Investig.21(5), 1531–1536. https://doi.org/10.1007/s00784-016-1918-9 (2017).
da Silva, J. M. et al. Effectiveness and biological compatibility of different generations of dentin adhesives. Clin. Oral Investig.18(2), 607–613. https://doi.org/10.1007/s00784-013-1000-9 (2014).
Abud, A. P. et al. The use of human adipose-derived stem cells-based cytotoxicity assay for acute toxicity test. Regul. Toxicol. Pharmacol.73(3), 992–998. https://doi.org/10.1016/j.yrtph.2015.09.015 (2015).
Hook, L. A. Stem cell technology for drug discovery and development. Drug Discov. Today.17(7–8), 336–342. https://doi.org/10.1016/j.drudis.2011.11.001 (2012).
De-Deus, G. et al. Optimal cytocompatibility of a bioceramic nanoparticulate cement in primary human mesenchymal cells. J. Endod.35(10), 1387–1390. https://doi.org/10.1016/j.joen.2009.06.022 (2009).
Economides, N., Pantelidou, O., Kokkas, A. & Tziafas, D. Short-term periradicular tissue response to mineral trioxide aggregate (MTA) as root-end filling material. Int. Endod. J.36(1), 44–48. https://doi.org/10.1046/j.0143-2885.2003.00611.x (2003).
Yoshino, P., Nishiyama, C. K., Modena, K. C., Santos, C. F. & Sipert, C. R. In vitro cytotoxicity of white MTA, MTA Fillapex® and Portland cement on human periodontal ligament fibroblasts. Braz. Dent. J.24(2), 111–116. https://doi.org/10.1590/0103-6440201302115 (2013).
Karimjee, C. K., Koka, S., Rallis, D. M. & Gound, T. G. Cellular toxicity of mineral trioxide aggregates mixed with an alternative delivery vehicle. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod.102(4), 115–120. https://doi.org/10.1016/j.tripleo.2005.12.020 (2006).
Huang, G. T., Shagramanova, K. & Chan, S. W. Formation of odontoblast-like cells from cultured human dental pulp cells on dentin in vitro. J. Endod.32(11), 1066–1073. https://doi.org/10.1016/j.joen.2006.05.009 (2006).
Lizier, N. F. et al. Scaling-up of dental pulp stem cells isolated from multiple niches. PLoS One.7(6), 39885. https://doi.org/10.1371/journal.pone.0039885 (2012).
Spath, L. et al. Explant-derived human dental pulp stem cells enhance differentiation and proliferation potentials. J. Cell Mol. Med.14(6B), 1635–1644. https://doi.org/10.1111/j.1582-4934.2009.00848.x (2010).
Baldión, P. A., Velandia-Romero, M. L. & Castellanos, J. E. Odontoblast-like cells differentiated from dental pulp stem cells retain their phenotype after subcultivation. Int. J. Cell Biol.2018, 6853189. https://doi.org/10.1155/2018/6853189 (2018).
Obeid, M., Saber Sel, D., Ismael Ael, D. & Hassanien, E. Mesenchymal stem cells promote hard-tissue repair after direct pulp capping. J. Endod.39(5), 626–631. https://doi.org/10.1016/j.joen.2012.12.012 (2013).
Patil, V. R., Kharat, A. H., Kulkarni, D. G., Kheur, S. M. & Bhonde, R. R. Long term explant culture for harvesting homogeneous population of human dental pulp stem cells. Cell Biol. Int.42(12), 1602–1610. https://doi.org/10.1002/cbin.11065 (2018).
Aslantürk, Ö. S. In vitro cytotoxicity and cell viability assays: principles, advantages, and disadvantages. InTech UK2, 64. https://doi.org/10.5772/intechopen.71923 (2018).
Alobaid, A. S. et al. Cell count and differentiation potential of isolated stem cells from extracted third molars. Int. J. Med. Dent.23, 46–50 (2019).
Pivoriuūnas, A. et al. Proteomic analysis of stromal cells derived from the dental pulp of human exfoliated deciduous teeth. Stem cells Dev.19(7), 1081–1093. https://doi.org/10.1089/scd.2009.0315 (2010).
Mehrabani, D. et al. Growth kinetics and characterization of human dental pulp stem cells: Comparison between third molar and first premolar teeth. J. Clin. Exp. Dent.9(2), 172–177. https://doi.org/10.4317/jced.52824 (2017).
Da Fonseca Roberti Garcia, L. et al. Transdentinal cytotoxicity of resin-based luting cements to pulp cells. Clin. Oral Investig.20, 1559–1566. https://doi.org/10.1007/s00784-015-1630-1 (2016).
Silva, G. O. et al. Cytotoxicity and genotoxicity of natural resin-based experimental endodontic sealers. Clin. Oral Investig.20, 815–819. https://doi.org/10.1007/s00784-015-1567-4 (2016).
Rodrıguez-Lozano, F. J. et al. Evaluation of cytocompatibility of calcium silicate-based endodontic sealers and their effects on the biological responses of mesenchymal dental stem cells. Int. Endod. J.50, 67–76. https://doi.org/10.1111/iej.12596 (2017).
Miletic, I. et al. The cytotoxicity of RoekoSeal and AH-Plus compared during different setting periods. J. Endod.31, 307–309. https://doi.org/10.1097/01.don.0000140570.95688.ee (2005).
Mandal, P., Zhao, J., Sah, S. K., Huang, Y. & Liu, J. In vitro cytotoxicity of guttaflow 2 on human gingival fibroblasts. J. Endod.40, 1156–1159. https://doi.org/10.1016/j.joen.2014.01.025 (2014).
Lee, J. K., Kim, S., Lee, S., Kim, H. C. & Kim, E. In vitro comparison of biocompatibility of calcium silicate-based root canal sealers. Materials12, 2411. https://doi.org/10.3390/ma12152411 (2019).
Lim, E. S. et al. Physical properties and biocompatibility of an injectable calcium-silicate-based root canal sealer: In vitro and in vivo study. BMC Oral Health15, 129. https://doi.org/10.1186/s12903-015-0112-9 (2015).
Elgendy, A. Y. A comparative analysis of cytotoxicity of three different root canal sealers. Int. J. Dent. Res.6(2), 33–38. https://doi.org/10.31254/dentistry.2021.6203 (2021).
Collado-Gonzalez, M., Tomas-Catala, C. J., Onate-Sanchez, R. E., Moraleda, J. M. & Rodriguez-Lozano, F. J. Cytotoxicity of GuttaFlow bioseal, GuttaFlow2, MTA Fillapex, and AH-Plus on human periodontal ligament stem cells. J. Endod.43, 816–822. https://doi.org/10.1016/j.joen.2017.01.001 (2017).
Pereira HP, Oliveiros JM, Santos D, Sequeira C, Brites P, Coimbra MM. Endodontic sealers in dentistry – in vitro and in vivo cytotoxicity studies. J Oral Sci, 2016, 171–177. https://www.researchgate.net/publication/315692658
Poggio, C., Riva, P., Chiesa, M., Colombo, M. & Pietrocola, G. Comparative cytotoxicity evaluation of eight root canal sealers. J. Clin. Exp. Dent.9(4), 574–578. https://doi.org/10.4317/jced.53724 (2017).
Silva, E. J., Santos, C. C. & Zaia, A. A. Long-term cytotoxic effects of contemporary root canal sealers. J. Appl. Oral Sci.21(1), 43–47. https://doi.org/10.1590/1678-7757201302304 (2013).
- SEO Powered Content & PR Distribution. Get Amplified Today.
- PlatoData.Network Vertical Generative Ai. Empower Yourself. Access Here.
- PlatoAiStream. Web3 Intelligence. Knowledge Amplified. Access Here.
- PlatoESG. Carbon, CleanTech, Energy, Environment, Solar, Waste Management. Access Here.
- PlatoHealth. Biotech and Clinical Trials Intelligence. Access Here.
- Source: https://www.nature.com/articles/s41598-024-73232-y