Effect of three different root canal sealants on human dental pulp stem cells – Scientific Reports

  • Gutmann, J. L. Grossman’s endodontic practice-13th Edition. J. Conserv. Dent.: JCD19(5), 494. https://doi.org/10.4103/0972-0707.190011 (2016).

    Article 
    PubMed Central 

    Google Scholar
     

  • Johnson, W., Kulild, J. C. & Tay, F. Obturation of the cleaned and shaped root canal system. In Cohen´s Pathway of the Pulp 11th edn (eds Hargreaves, K. H. & Berman, L. H.) 280–323 (Elsevier, St. Louis, 2016).


    Google Scholar
     

  • Granchi, D. et al. Endodontic cements induce alterations in the cell cycle of in vitro cultured osteoblasts. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod.79(3), 359–366. https://doi.org/10.1016/s1079-2104(05)80230-6 (1995).

    Article 
    PubMed 

    Google Scholar
     

  • de Pablo, O. V., Estevez, R., Péix Sánchez, M., Heilborn, C. & Cohenca, N. Root anatomy and canal configuration of the permanent mandibular first molar: a systematic review. J. Endod.36(12), 1919–1931. https://doi.org/10.1016/j.joen.2010.08.055 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Alfahlawy, A., Selim, M. A. A. & Hassan, H. Y. Biocompatibility of three different root canal sealers, experimental study. BMC Oral Health23(1), 715. https://doi.org/10.1186/s12903-023-03473-2 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Braga, J. M., Oliveira, R. R., de Castro, M. R., Vieira, L. Q. & Sobrinho, A. P. Assessment of the cytotoxicity of a mineral trioxide aggregate-based sealer concerning macrophage activity. Dent. Traumatol.31(5), 390–395. https://doi.org/10.1111/edt.12190 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Wataha, J. C. Principles of biocompatibility for dental practitioners. J. Prosthet. Dent.86(2), 203–209. https://doi.org/10.1067/mpr.2001.117056 (2001).

    Article 
    PubMed 

    Google Scholar
     

  • Huang, F. M., Tai, K. W., Chou, M. Y. & Chang, Y. C. Cytotoxicity of resin-, zinc oxide-eugenol-, and calcium hydroxide-based root canal sealers on human periodontal ligament cells and permanent V79 cells. Int. Endod. J.35(2), 153–158. https://doi.org/10.1046/j.1365-2591.2002.00459.x (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Sylvester, K. G. & Longaker, M. T. Stem cells: review and update. Arch. Surg.139(1), 93–99. https://doi.org/10.1001/archsurg.139.1.93 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Bianco, P., Robey, P. G. & Simmons, P. J. Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell.2(4), 313–319. https://doi.org/10.1016/j.stem.2008.03.002 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • d’Aquino, R. et al. Human dental pulp stem cells: from biology to clinical applications. J. Exp. Zool. B Mol. Dev. Evol.312B(5), 408–415. https://doi.org/10.1002/jez.b.21263 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Tirino, V., Paino, F., De Rosa, A. & Papaccio, G. Identification, isolation, characterization, and banking of human dental pulp stem cells. Methods Mol. Biol.879, 443–463. https://doi.org/10.1007/978-1-61779-815-3_26 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Khalil, M. M., Abdelrahman, M. H. & El-Mallah, S. Bond strength and solubility of a novel polydimethylsiloxane-gutta-percha calcium silicate-containing root canal sealer. Dent. Med. Probl.56(2), 161–165. https://doi.org/10.17219/dmp/105626 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Andriukaitiene, L. et al. The effect of smear layer removal on E. faecalis leakage and bond strength of four resin-based root canal sealers. BMC Oral Health.18(1), 213. https://doi.org/10.1186/s12903-018-0655-7 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Viola, N. V. et al. Biocompatibility of an experimental MTA sealer implanted in the rat subcutaneous: Quantitative and immunohistochemical evaluation. J. Biomed. Mater. Res. B Appl. Biomater.100(7), 1773–1781. https://doi.org/10.1002/jbm.b.32744 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Pandis, N., Polychronopoulou, A. & Eliades, T. Randomization in clinical trials in orthodontics: Its significance in research design and methods to achieve it. Eur. J. Orthod.33(6), 684–690. https://doi.org/10.1093/ejo/cjq141 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Raoof, M. et al. A modified efficient method for dental pulp stem cell isolation. Dent. Res. J.11(2), 244–250 (2014).


    Google Scholar
     

  • Verma, A., Verma, M. & Singh, A. Animal tissue culture principles and applications. Animal Biotechnol.https://doi.org/10.1016/B978-0-12-811710-1.00012-4 (2020).

    Article 

    Google Scholar
     

  • Kim, I. H. et al. In vivo evaluation of decellularized human tooth scaffold for dental tissue regeneration. Appl. Sci. (Basel).11(18), 8472. https://doi.org/10.3390/app11188472 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leite, M. L. et al. Bioactivity effects of extracellular matrix proteins on apical papilla cells. J Appl. Oral Sci.29, e20210038. https://doi.org/10.1590/1678-7757-2021-0038 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahmed, B., Ragab, M. H., Galhom, R. A. & Hassan, H. Y. Evaluation of Dental Pulp Stem Cells Behavior after Odontogenic Differentiation Induction by Three Different Bioactive Materials on Two Different Scaffolds. BMC Oral Health.23, 252. https://doi.org/10.1186/s12903-023-02975-3 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Inada, E. et al. PiggyBac transposon-mediated gene delivery efficiently generates stable transfectants derived from cultured primary human deciduous tooth dental pulp cells (HDDPCs) and HDDPC-derived iPS cells. Int. J. Oral Sci.7(3), 144–154. https://doi.org/10.1038/ijos.2015.18 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Konjhodzic-Prcic, A., Jakupovic, S., Hasic-Brankovic, L. & Vukovic, A. Evaluation of Biocompatibility of Root Canal Sealers on L929 Fibroblasts with Multiscan EX Spectrophotometer. Acta Inform. Med.23(3), 135–137. https://doi.org/10.5455/aim.2015.23.135-137 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Katsares, V. et al. A rapid and accurate method for the stem cell viability evaluation: the case of the thawed umbilical cord blood. Lab. Med.40, 557–560. https://doi.org/10.1309/LMLE8BVHYWCT82CL (2005).

    Article 

    Google Scholar
     

  • Suchánek J, Browne KZ, Kleplová TS, Mazurová Y. Protocols for dental-related stem cells isolation, amplification and differentiation. Dental Stem Cells: Regenerative Potential, Humana Press, Cham. Pp 2016. 27–56 https://doi.org/10.1007/978-3-319-33299-4_2

  • Carvalho, P. P. et al. Use of animal protein-free products for passaging adherent human adipose-derived stromal/stem cells. Cytotherapy.13(5), 594–597. https://doi.org/10.3109/14653249.2010.544721 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Tsitrou, E. et al. Effect of extraction media and storage time on the elution of monomers from four contemporary resin composite materials. Toxicol. Int.21(1), 89–95. https://doi.org/10.4103/0971-6580.128811 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods.65(1–2), 55–63. https://doi.org/10.1016/0022-1759(83)90303-4 (1983).

    Article 
    PubMed 

    Google Scholar
     

  • Karapınar-Kazandağ, M. et al. Cytotoxicity of 5 endodontic sealers on L929 cell line and human dental pulp cells. Int. Endod. J.44(7), 626–634. https://doi.org/10.1111/j.1365-2591.2011.01863.x (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Prati, C. & Gandolfi, M. G. Calcium silicate bioactive cement: Biological perspectives and clinical applications. Dent. Mater.31(4), 351–370. https://doi.org/10.1016/j.dental.2015.01.004 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Zhou, H. M. et al. In vitro cytotoxicity of calcium silicate-containing endodontic sealers. J. Endod.41(1), 56–61. https://doi.org/10.1016/j.joen.2014.09.012 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Gandolfi, M. G., Siboni, F. & Prati, C. Properties of a novel polysiloxane-guttapercha calcium silicate-bioglass-containing root canal sealer. Dent. Mater.32(5), 113–126. https://doi.org/10.1016/j.dental.2016.03.001 (2016).

    Article 

    Google Scholar
     

  • Marin-Bauza, G. A. et al. Physicochemical properties of methacrylate resin-based root canal sealers. J Endod.36(9), 1531–1536. https://doi.org/10.1016/j.joen.2010.05.002 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Schmalz, G., Widbiller, M. & Galler, K. M. Material tissue interaction-from toxicity to tissue regeneration. Oper Dent.41(2), 117–131. https://doi.org/10.2341/15-249-BL (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Peters, O. A. Research that matters – biocompatibility and cytotoxicity screening. Int. Endod. J.46(3), 195–197. https://doi.org/10.1111/iej.12047 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • da Silva, E. J. N. L., Zaia, A. A. & Peters, O. A. Cytocompatibility of calcium silicate-based sealers in a three-dimensional cell culture model. Clin. Oral Investig.21(5), 1531–1536. https://doi.org/10.1007/s00784-016-1918-9 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • da Silva, J. M. et al. Effectiveness and biological compatibility of different generations of dentin adhesives. Clin. Oral Investig.18(2), 607–613. https://doi.org/10.1007/s00784-013-1000-9 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Abud, A. P. et al. The use of human adipose-derived stem cells-based cytotoxicity assay for acute toxicity test. Regul. Toxicol. Pharmacol.73(3), 992–998. https://doi.org/10.1016/j.yrtph.2015.09.015 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Hook, L. A. Stem cell technology for drug discovery and development. Drug Discov. Today.17(7–8), 336–342. https://doi.org/10.1016/j.drudis.2011.11.001 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • De-Deus, G. et al. Optimal cytocompatibility of a bioceramic nanoparticulate cement in primary human mesenchymal cells. J. Endod.35(10), 1387–1390. https://doi.org/10.1016/j.joen.2009.06.022 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Economides, N., Pantelidou, O., Kokkas, A. & Tziafas, D. Short-term periradicular tissue response to mineral trioxide aggregate (MTA) as root-end filling material. Int. Endod. J.36(1), 44–48. https://doi.org/10.1046/j.0143-2885.2003.00611.x (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Yoshino, P., Nishiyama, C. K., Modena, K. C., Santos, C. F. & Sipert, C. R. In vitro cytotoxicity of white MTA, MTA Fillapex® and Portland cement on human periodontal ligament fibroblasts. Braz. Dent. J.24(2), 111–116. https://doi.org/10.1590/0103-6440201302115 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Karimjee, C. K., Koka, S., Rallis, D. M. & Gound, T. G. Cellular toxicity of mineral trioxide aggregates mixed with an alternative delivery vehicle. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod.102(4), 115–120. https://doi.org/10.1016/j.tripleo.2005.12.020 (2006).

    Article 

    Google Scholar
     

  • Huang, G. T., Shagramanova, K. & Chan, S. W. Formation of odontoblast-like cells from cultured human dental pulp cells on dentin in vitro. J. Endod.32(11), 1066–1073. https://doi.org/10.1016/j.joen.2006.05.009 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Lizier, N. F. et al. Scaling-up of dental pulp stem cells isolated from multiple niches. PLoS One.7(6), 39885. https://doi.org/10.1371/journal.pone.0039885 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Spath, L. et al. Explant-derived human dental pulp stem cells enhance differentiation and proliferation potentials. J. Cell Mol. Med.14(6B), 1635–1644. https://doi.org/10.1111/j.1582-4934.2009.00848.x (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Baldión, P. A., Velandia-Romero, M. L. & Castellanos, J. E. Odontoblast-like cells differentiated from dental pulp stem cells retain their phenotype after subcultivation. Int. J. Cell Biol.2018, 6853189. https://doi.org/10.1155/2018/6853189 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Obeid, M., Saber Sel, D., Ismael Ael, D. & Hassanien, E. Mesenchymal stem cells promote hard-tissue repair after direct pulp capping. J. Endod.39(5), 626–631. https://doi.org/10.1016/j.joen.2012.12.012 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Patil, V. R., Kharat, A. H., Kulkarni, D. G., Kheur, S. M. & Bhonde, R. R. Long term explant culture for harvesting homogeneous population of human dental pulp stem cells. Cell Biol. Int.42(12), 1602–1610. https://doi.org/10.1002/cbin.11065 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Aslantürk, Ö. S. In vitro cytotoxicity and cell viability assays: principles, advantages, and disadvantages. InTech UK2, 64. https://doi.org/10.5772/intechopen.71923 (2018).

    Article 

    Google Scholar
     

  • Alobaid, A. S. et al. Cell count and differentiation potential of isolated stem cells from extracted third molars. Int. J. Med. Dent.23, 46–50 (2019).


    Google Scholar
     

  • Pivoriuūnas, A. et al. Proteomic analysis of stromal cells derived from the dental pulp of human exfoliated deciduous teeth. Stem cells Dev.19(7), 1081–1093. https://doi.org/10.1089/scd.2009.0315 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Mehrabani, D. et al. Growth kinetics and characterization of human dental pulp stem cells: Comparison between third molar and first premolar teeth. J. Clin. Exp. Dent.9(2), 172–177. https://doi.org/10.4317/jced.52824 (2017).

    Article 

    Google Scholar
     

  • Da Fonseca Roberti Garcia, L. et al. Transdentinal cytotoxicity of resin-based luting cements to pulp cells. Clin. Oral Investig.20, 1559–1566. https://doi.org/10.1007/s00784-015-1630-1 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Silva, G. O. et al. Cytotoxicity and genotoxicity of natural resin-based experimental endodontic sealers. Clin. Oral Investig.20, 815–819. https://doi.org/10.1007/s00784-015-1567-4 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Rodrıguez-Lozano, F. J. et al. Evaluation of cytocompatibility of calcium silicate-based endodontic sealers and their effects on the biological responses of mesenchymal dental stem cells. Int. Endod. J.50, 67–76. https://doi.org/10.1111/iej.12596 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Miletic, I. et al. The cytotoxicity of RoekoSeal and AH-Plus compared during different setting periods. J. Endod.31, 307–309. https://doi.org/10.1097/01.don.0000140570.95688.ee (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Mandal, P., Zhao, J., Sah, S. K., Huang, Y. & Liu, J. In vitro cytotoxicity of guttaflow 2 on human gingival fibroblasts. J. Endod.40, 1156–1159. https://doi.org/10.1016/j.joen.2014.01.025 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Lee, J. K., Kim, S., Lee, S., Kim, H. C. & Kim, E. In vitro comparison of biocompatibility of calcium silicate-based root canal sealers. Materials12, 2411. https://doi.org/10.3390/ma12152411 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lim, E. S. et al. Physical properties and biocompatibility of an injectable calcium-silicate-based root canal sealer: In vitro and in vivo study. BMC Oral Health15, 129. https://doi.org/10.1186/s12903-015-0112-9 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elgendy, A. Y. A comparative analysis of cytotoxicity of three different root canal sealers. Int. J. Dent. Res.6(2), 33–38. https://doi.org/10.31254/dentistry.2021.6203 (2021).

    Article 

    Google Scholar
     

  • Collado-Gonzalez, M., Tomas-Catala, C. J., Onate-Sanchez, R. E., Moraleda, J. M. & Rodriguez-Lozano, F. J. Cytotoxicity of GuttaFlow bioseal, GuttaFlow2, MTA Fillapex, and AH-Plus on human periodontal ligament stem cells. J. Endod.43, 816–822. https://doi.org/10.1016/j.joen.2017.01.001 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Pereira HP, Oliveiros JM, Santos D, Sequeira C, Brites P, Coimbra MM. Endodontic sealers in dentistry – in vitro and in vivo cytotoxicity studies. J Oral Sci, 2016, 171–177. https://www.researchgate.net/publication/315692658

  • Poggio, C., Riva, P., Chiesa, M., Colombo, M. & Pietrocola, G. Comparative cytotoxicity evaluation of eight root canal sealers. J. Clin. Exp. Dent.9(4), 574–578. https://doi.org/10.4317/jced.53724 (2017).

    Article 

    Google Scholar
     

  • Silva, E. J., Santos, C. C. & Zaia, A. A. Long-term cytotoxic effects of contemporary root canal sealers. J. Appl. Oral Sci.21(1), 43–47. https://doi.org/10.1590/1678-7757201302304 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar