
Nybo, L. & Nielsen, B. Hyperthermia and central fatigue during prolonged exercise in humans. J. Appl. Physiol. 91, 1055–1060. https://doi.org/10.1152/jappl.2001.91.3.1055 (2001).
Périard, J. D., Christian, R. J., Knez, W. L. & Racinais, S. Voluntary muscle and motor cortical activation during progressive exercise and passively induced hyperthermia. Exp. Physiol. 99, 136–148. https://doi.org/10.1113/expphysiol.2013.074583 (2014).
Racinais, S., Gaoua, N. & Grantham, J. Hyperthermia impairs short-term memory and peripheral motor drive transmission. J. Physiol. 586, 4751–4762. https://doi.org/10.1113/jphysiol.2008.157420 (2008).
Morrison, S., Sleivert, G. G. & Cheung, S. S. Passive hyperthermia reduces voluntary activation and isometric force production. Eur. J. Appl. Physiol. 91, 729–736. https://doi.org/10.1007/s00421-004-1063-z (2004).
Mtibaa, K., Thomson, A., Nichols, D., Hautier, C. & Racinais, S. Hyperthermia-induced neural alterations impair proprioception and balance. Med. Sci. Sports Exerc. 50, 46–53. https://doi.org/10.1249/mss.0000000000001418 (2018).
Armand, M., Huissoon, J. P. & Patla, A. E. Stepping over obstacles during locomotion: insights from multiobjective optimization on set of input parameters. IEEE Trans. Rehabil. Eng. 6, 43–52. https://doi.org/10.1109/86.662619 (1998).
Chou, L. S., Kaufman, K. R., Brey, R. H. & Draganich, L. F. Motion of the whole body’s center of mass when stepping over obstacles of different heights. Gait Posture 13, 17–26. https://doi.org/10.1109/86.662619 (2001).
Vrieling, A. H. et al. Obstacle crossing in lower limb amputees. Gait Posture 26, 587–594. https://doi.org/10.1016/j.gaitpost.2006.12.007 (2007).
Kim, S. & Lockhart, T. Lower limb control and mobility following exercise training. J. Neuroeng. Rehabil. 9, 15. https://doi.org/10.1186/1743-0003-9-15 (2012).
Antonopoulos, C. et al. The effect of fatigue on electromyographic characteristics during obstacle crossing of different heights in young adults. J Sports Sci. Med. 13, 724–730 (2014).
Wang, I. L. et al. Whole-body passive heating at moderate hyperthermic state impairs static and dynamic balance in healthy females. Gait Posture 107, 199–206. https://doi.org/10.1016/j.gaitpost.2023.10.004 (2024).
Vereeck, L., Wuyts, F., Truijen, S. & Van de Heyning, P. Clinical assessment of balance: Normative data, and gender and age effects. Int. J. Audiol. 47, 67–75. https://doi.org/10.1080/14992020701689688 (2008).
Gagnon, D. & Kenny, G. P. Sex modulates whole-body sudomotor thermosensitivity during exercise. J. Physiol. 589, 6205–6217. https://doi.org/10.1113/jphysiol.2011.219220 (2011).
Song, S. et al. Deep reinforcement learning for modeling human locomotion control in neuromechanical simulation. J. Neuroeng. Rehabil. 18, 126. https://doi.org/10.1186/s12984-021-00919-y (2021).
Crowninshield, R. D., Johnston, R. C., Andrews, J. G. & Brand, R. A. A biomechanical investigation of the human hip. J. Biomech. 11, 75–85. https://doi.org/10.1016/0021-9290(78)90045-3 (1978).
John, C. T., Seth, A., Schwartz, M. H. & Delp, S. L. Contributions of muscles to mediolateral ground reaction force over a range of walking speeds. J. Biomech. 45, 2438–2443. https://doi.org/10.1016/j.jbiomech.2012.06.037 (2012).
Neptune, R. R., Clark, D. J. & Kautz, S. A. Modular control of human walking: A simulation study. J. Biomech. 42, 1282–1287. https://doi.org/10.1016/j.jbiomech.2009.03.009 (2009).
de Jonge, X. A. K. J. Effects of the menstrual cycle on exercise performance. Sports Med. 33, 833–851. https://doi.org/10.2165/00007256-200333110-00004 (2003).
Chien, H. L. & Lu, T. W. Effects of shoe heel height on the end-point and joint kinematics of the locomotor system when crossing obstacles of different heights. Ergonomics https://doi.org/10.1080/00140139.2016.1175672 (2017).
Yao, S. et al. Increased asymmetry of lower limbs and leading joint angles during crossing obstacles in healthy male with cold exposure. Appl. Bionics. Biomech. https://doi.org/10.1155/2022/6421611 (2022).
Muller, A., Pontonnier, C., Puchaud, P. & Dumont, G. CusToM: A Matlab toolbox for musculoskeletal simulation. J. Open Source. Softw. 4, 1–3. https://doi.org/10.1016/0021-9290(78)90045-3 (2019).
Muller, A., Pontonnier, C. & Dumont, G. The MusIC method: A fast and quasi-optimal solution to the muscle forces estimation problem. Comput Methods Biomech. Biomed. Eng. 21, 149–160. https://doi.org/10.1080/10255842.2018.1429596 (2018).
Hopkins, W. G., Marshall, S. W., Batterham, A. M. & Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 41, 3–13. https://doi.org/10.1249/MSS.0b013e31818cb278 (2009).
Yoo, S., Dedova, I. & Pather, N. An appraisal of the short lateral rotators of the hip joint. Clin. Anat. 28, 800–812. https://doi.org/10.1002/ca.22568 (2015).
Giphart, J. E., Stull, J. D., LaPrade, R. F., Wahoff, M. S. & Philippon, M. J. Recruitment and activity of the pectineus and piriformis muscles during hip rehabilitation exercises: An electromyography study. Am. J. Sports Med. 40, 1654–1663. https://doi.org/10.1177/0363546512443812 (2012).
Konrath, J. M. et al. Muscle contributions to medial tibiofemoral compartment contact loading following ACL reconstruction using semitendinosus and gracilis tendon grafts. PLoS One 12, e0176016. https://doi.org/10.1371/journal.pone.0176016 (2017).
Mendes, B. et al. Effects of knee flexor submaximal isometric contraction until exhaustion on semitendinosus and biceps femoris long head shear modulus in healthy individuals. Sci. Rep. 10, 16433. https://doi.org/10.1038/s41598-020-73433-1 (2020).
Hamstra-Wright, K. L. & Bliven, K. H. Effective exercises for targeting the gluteus medius. J. Sport Rehabil. 21, 296–300. https://doi.org/10.1123/jsr.21.3.296 (2012).
Lai, P. P. K., Leung, A. K. L., Li, A. N. M. & Zhang, M. Three-dimensional gait analysis of obese adults. Clin. Biomech. 23, S2–S6. https://doi.org/10.1016/j.clinbiomech.2008.02.004 (2008).
Buckthorpe, M., Stride, M. & Villa, F. D. Assessing and treating gluteus maximus weakness: A clinical commentary. Int. J. Sports Phys. Ther. 14, 655–669 (2019).
Anderson, F. C. & Pandy, M. G. Individual muscle contributions to support in normal walking. Gait Posture 17, 159–169. https://doi.org/10.1016/S0966-6362(02)00073-5 (2003).
Yerasimides, J. G. & Matta, J. M. Primary total hip arthroplasty with a minimally invasive anterior approach. Semin. Arthroplasty 16, 186–190. https://doi.org/10.1053/j.sart.2005.10.004 (2005).
Moosabhoy, M. A. & Gard, S. A. Methodology for determining the sensitivity of swing leg toe clearance and leg length to swing leg joint angles during gait. Gait Posture 24, 493–501. https://doi.org/10.1016/j.gaitpost.2005.12.004 (2006).
Lu, T. W., Chen, H. L. & Chen, S. C. Comparisons of the lower limb kinematics between young and older adults when crossing obstacles of different heights. Gait Posture 23, 471–479. https://doi.org/10.1016/j.gaitpost.2005.06.005 (2006).
Tanaka, C., Ide, M. R. & Junior, A. J. R. Anatomical contribution to the surgical construction of the sartorius muscle flap. Surg. Radiol. Anat. 28, 277–283. https://doi.org/10.1007/s00276-006-0088-x (2006).
Barrett, R. S., Besier, T. F. & Lloyd, D. G. Individual muscle contributions to the swing phase of gait: An EMG-based forward dynamics modelling approach. Simul. Model Pract. Theory 15, 1146–1155. https://doi.org/10.1016/j.simpat.2007.07.005 (2007).
Neumann, D. A. Kinesiology of the hip: A focus on muscular actions. J. Orthop. Sports Phys. Ther. 40, 82–94. https://doi.org/10.2519/jospt.2010.3025 (2010).
Anders, C., Patenge, S., Sander, K., Layher, F. & Kinne, R. W. Systematic differences of gluteal muscle activation during overground and treadmill walking in healthy older adults. J. Electromyogr. Kinesiol. 44, 56–63. https://doi.org/10.1016/j.jelekin.2018.11.013 (2019).
Pandy, M. G., Lin, Y.-C. & Kim, H. J. Muscle coordination of mediolateral balance in normal walking. J. Biomech. 43, 2055–2064. https://doi.org/10.1016/j.jbiomech.2010.04.010 (2010).
Thompson, J. A., Chaudhari, A. M., Schmitt, L. C., Best, T. M. & Siston, R. A. Gluteus maximus and soleus compensate for simulated quadriceps atrophy and activation failure during walking. J. Biomech. 46, 2165–2172. https://doi.org/10.1016/j.jbiomech.2013.06.033 (2013).
Lim, C., Jones, N., Spurgeon, S. K. & Scott, J. Modelling of knee joint muscles during the swing phase of gait––A forward dynamics approach using MATLAB/Simulink. Simul. Model Pract. Theory 11, 91–107. https://doi.org/10.1016/S1569-190X(02)00133-8 (2003).
Li, L., Landin, D., Grodesky, J. & Myers, J. The function of gastrocnemius as a knee flexor at selected knee and ankle angles. J. Appl. Physiol. 12, 385–390. https://doi.org/10.1016/S1050-6411(02)00049-4 (2002).
Wang, I. L. et al. Whole-body passive heating at moderate hyperthermic state impairs static and dynamic balance in healthy females. Gait Posture 107, 199–206 (2024).
Sujatha, B., Rayna, A. & George, A. S. Effect of active and passive warm-up on heart rate and oral temperature in healthy female subjects. Res. J. Pharm. Technol. 12, 1507–1509 (2019).
Amano, T., Koga, S., Inoue, Y., Nishiyasu, T. & Kondo, N. Characteristics of sweating responses and peripheral sweat gland function during passive heating in sprinters. Eur. J. Appl. Physiol. 113, 2067–2075 (2013).
- SEO Powered Content & PR Distribution. Get Amplified Today.
- PlatoData.Network Vertical Generative Ai. Empower Yourself. Access Here.
- PlatoAiStream. Web3 Intelligence. Knowledge Amplified. Access Here.
- PlatoESG. Carbon, CleanTech, Energy, Environment, Solar, Waste Management. Access Here.
- PlatoHealth. Biotech and Clinical Trials Intelligence. Access Here.
- Source: https://www.nature.com/articles/s41598-024-61536-y