Search
Close this search box.

Effect of hyperthermia on simulated muscle activation in female when crossing obstacle – Scientific Reports

  • Nybo, L. & Nielsen, B. Hyperthermia and central fatigue during prolonged exercise in humans. J. Appl. Physiol. 91, 1055–1060. https://doi.org/10.1152/jappl.2001.91.3.1055 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Périard, J. D., Christian, R. J., Knez, W. L. & Racinais, S. Voluntary muscle and motor cortical activation during progressive exercise and passively induced hyperthermia. Exp. Physiol. 99, 136–148. https://doi.org/10.1113/expphysiol.2013.074583 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Racinais, S., Gaoua, N. & Grantham, J. Hyperthermia impairs short-term memory and peripheral motor drive transmission. J. Physiol. 586, 4751–4762. https://doi.org/10.1113/jphysiol.2008.157420 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morrison, S., Sleivert, G. G. & Cheung, S. S. Passive hyperthermia reduces voluntary activation and isometric force production. Eur. J. Appl. Physiol. 91, 729–736. https://doi.org/10.1007/s00421-004-1063-z (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Mtibaa, K., Thomson, A., Nichols, D., Hautier, C. & Racinais, S. Hyperthermia-induced neural alterations impair proprioception and balance. Med. Sci. Sports Exerc. 50, 46–53. https://doi.org/10.1249/mss.0000000000001418 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Armand, M., Huissoon, J. P. & Patla, A. E. Stepping over obstacles during locomotion: insights from multiobjective optimization on set of input parameters. IEEE Trans. Rehabil. Eng. 6, 43–52. https://doi.org/10.1109/86.662619 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chou, L. S., Kaufman, K. R., Brey, R. H. & Draganich, L. F. Motion of the whole body’s center of mass when stepping over obstacles of different heights. Gait Posture 13, 17–26. https://doi.org/10.1109/86.662619 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vrieling, A. H. et al. Obstacle crossing in lower limb amputees. Gait Posture 26, 587–594. https://doi.org/10.1016/j.gaitpost.2006.12.007 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, S. & Lockhart, T. Lower limb control and mobility following exercise training. J. Neuroeng. Rehabil. 9, 15. https://doi.org/10.1186/1743-0003-9-15 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Antonopoulos, C. et al. The effect of fatigue on electromyographic characteristics during obstacle crossing of different heights in young adults. J Sports Sci. Med. 13, 724–730 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, I. L. et al. Whole-body passive heating at moderate hyperthermic state impairs static and dynamic balance in healthy females. Gait Posture 107, 199–206. https://doi.org/10.1016/j.gaitpost.2023.10.004 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Vereeck, L., Wuyts, F., Truijen, S. & Van de Heyning, P. Clinical assessment of balance: Normative data, and gender and age effects. Int. J. Audiol. 47, 67–75. https://doi.org/10.1080/14992020701689688 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Gagnon, D. & Kenny, G. P. Sex modulates whole-body sudomotor thermosensitivity during exercise. J. Physiol. 589, 6205–6217. https://doi.org/10.1113/jphysiol.2011.219220 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song, S. et al. Deep reinforcement learning for modeling human locomotion control in neuromechanical simulation. J. Neuroeng. Rehabil. 18, 126. https://doi.org/10.1186/s12984-021-00919-y (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crowninshield, R. D., Johnston, R. C., Andrews, J. G. & Brand, R. A. A biomechanical investigation of the human hip. J. Biomech. 11, 75–85. https://doi.org/10.1016/0021-9290(78)90045-3 (1978).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • John, C. T., Seth, A., Schwartz, M. H. & Delp, S. L. Contributions of muscles to mediolateral ground reaction force over a range of walking speeds. J. Biomech. 45, 2438–2443. https://doi.org/10.1016/j.jbiomech.2012.06.037 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Neptune, R. R., Clark, D. J. & Kautz, S. A. Modular control of human walking: A simulation study. J. Biomech. 42, 1282–1287. https://doi.org/10.1016/j.jbiomech.2009.03.009 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Jonge, X. A. K. J. Effects of the menstrual cycle on exercise performance. Sports Med. 33, 833–851. https://doi.org/10.2165/00007256-200333110-00004 (2003).

    Article 

    Google Scholar
     

  • Chien, H. L. & Lu, T. W. Effects of shoe heel height on the end-point and joint kinematics of the locomotor system when crossing obstacles of different heights. Ergonomics https://doi.org/10.1080/00140139.2016.1175672 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Yao, S. et al. Increased asymmetry of lower limbs and leading joint angles during crossing obstacles in healthy male with cold exposure. Appl. Bionics. Biomech. https://doi.org/10.1155/2022/6421611 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muller, A., Pontonnier, C., Puchaud, P. & Dumont, G. CusToM: A Matlab toolbox for musculoskeletal simulation. J. Open Source. Softw. 4, 1–3. https://doi.org/10.1016/0021-9290(78)90045-3 (2019).

    Article 

    Google Scholar
     

  • Muller, A., Pontonnier, C. & Dumont, G. The MusIC method: A fast and quasi-optimal solution to the muscle forces estimation problem. Comput Methods Biomech. Biomed. Eng. 21, 149–160. https://doi.org/10.1080/10255842.2018.1429596 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Hopkins, W. G., Marshall, S. W., Batterham, A. M. & Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 41, 3–13. https://doi.org/10.1249/MSS.0b013e31818cb278 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Yoo, S., Dedova, I. & Pather, N. An appraisal of the short lateral rotators of the hip joint. Clin. Anat. 28, 800–812. https://doi.org/10.1002/ca.22568 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Giphart, J. E., Stull, J. D., LaPrade, R. F., Wahoff, M. S. & Philippon, M. J. Recruitment and activity of the pectineus and piriformis muscles during hip rehabilitation exercises: An electromyography study. Am. J. Sports Med. 40, 1654–1663. https://doi.org/10.1177/0363546512443812 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Konrath, J. M. et al. Muscle contributions to medial tibiofemoral compartment contact loading following ACL reconstruction using semitendinosus and gracilis tendon grafts. PLoS One 12, e0176016. https://doi.org/10.1371/journal.pone.0176016 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mendes, B. et al. Effects of knee flexor submaximal isometric contraction until exhaustion on semitendinosus and biceps femoris long head shear modulus in healthy individuals. Sci. Rep. 10, 16433. https://doi.org/10.1038/s41598-020-73433-1 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hamstra-Wright, K. L. & Bliven, K. H. Effective exercises for targeting the gluteus medius. J. Sport Rehabil. 21, 296–300. https://doi.org/10.1123/jsr.21.3.296 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Lai, P. P. K., Leung, A. K. L., Li, A. N. M. & Zhang, M. Three-dimensional gait analysis of obese adults. Clin. Biomech. 23, S2–S6. https://doi.org/10.1016/j.clinbiomech.2008.02.004 (2008).

    Article 

    Google Scholar
     

  • Buckthorpe, M., Stride, M. & Villa, F. D. Assessing and treating gluteus maximus weakness: A clinical commentary. Int. J. Sports Phys. Ther. 14, 655–669 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anderson, F. C. & Pandy, M. G. Individual muscle contributions to support in normal walking. Gait Posture 17, 159–169. https://doi.org/10.1016/S0966-6362(02)00073-5 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Yerasimides, J. G. & Matta, J. M. Primary total hip arthroplasty with a minimally invasive anterior approach. Semin. Arthroplasty 16, 186–190. https://doi.org/10.1053/j.sart.2005.10.004 (2005).

    Article 

    Google Scholar
     

  • Moosabhoy, M. A. & Gard, S. A. Methodology for determining the sensitivity of swing leg toe clearance and leg length to swing leg joint angles during gait. Gait Posture 24, 493–501. https://doi.org/10.1016/j.gaitpost.2005.12.004 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Lu, T. W., Chen, H. L. & Chen, S. C. Comparisons of the lower limb kinematics between young and older adults when crossing obstacles of different heights. Gait Posture 23, 471–479. https://doi.org/10.1016/j.gaitpost.2005.06.005 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Tanaka, C., Ide, M. R. & Junior, A. J. R. Anatomical contribution to the surgical construction of the sartorius muscle flap. Surg. Radiol. Anat. 28, 277–283. https://doi.org/10.1007/s00276-006-0088-x (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Barrett, R. S., Besier, T. F. & Lloyd, D. G. Individual muscle contributions to the swing phase of gait: An EMG-based forward dynamics modelling approach. Simul. Model Pract. Theory 15, 1146–1155. https://doi.org/10.1016/j.simpat.2007.07.005 (2007).

    Article 

    Google Scholar
     

  • Neumann, D. A. Kinesiology of the hip: A focus on muscular actions. J. Orthop. Sports Phys. Ther. 40, 82–94. https://doi.org/10.2519/jospt.2010.3025 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Anders, C., Patenge, S., Sander, K., Layher, F. & Kinne, R. W. Systematic differences of gluteal muscle activation during overground and treadmill walking in healthy older adults. J. Electromyogr. Kinesiol. 44, 56–63. https://doi.org/10.1016/j.jelekin.2018.11.013 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Pandy, M. G., Lin, Y.-C. & Kim, H. J. Muscle coordination of mediolateral balance in normal walking. J. Biomech. 43, 2055–2064. https://doi.org/10.1016/j.jbiomech.2010.04.010 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Thompson, J. A., Chaudhari, A. M., Schmitt, L. C., Best, T. M. & Siston, R. A. Gluteus maximus and soleus compensate for simulated quadriceps atrophy and activation failure during walking. J. Biomech. 46, 2165–2172. https://doi.org/10.1016/j.jbiomech.2013.06.033 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Lim, C., Jones, N., Spurgeon, S. K. & Scott, J. Modelling of knee joint muscles during the swing phase of gait––A forward dynamics approach using MATLAB/Simulink. Simul. Model Pract. Theory 11, 91–107. https://doi.org/10.1016/S1569-190X(02)00133-8 (2003).

    Article 

    Google Scholar
     

  • Li, L., Landin, D., Grodesky, J. & Myers, J. The function of gastrocnemius as a knee flexor at selected knee and ankle angles. J. Appl. Physiol. 12, 385–390. https://doi.org/10.1016/S1050-6411(02)00049-4 (2002).

    Article 

    Google Scholar
     

  • Wang, I. L. et al. Whole-body passive heating at moderate hyperthermic state impairs static and dynamic balance in healthy females. Gait Posture 107, 199–206 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Sujatha, B., Rayna, A. & George, A. S. Effect of active and passive warm-up on heart rate and oral temperature in healthy female subjects. Res. J. Pharm. Technol. 12, 1507–1509 (2019).

    Article 

    Google Scholar
     

  • Amano, T., Koga, S., Inoue, Y., Nishiyasu, T. & Kondo, N. Characteristics of sweating responses and peripheral sweat gland function during passive heating in sprinters. Eur. J. Appl. Physiol. 113, 2067–2075 (2013).

    Article 
    PubMed 

    Google Scholar