James, S. L. et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 Diseases and Injuries for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 392(10159), 1789–1858 (2018).
Zhang, W., Ouyang, H., Dass, C. R. & Xu, J. Current research on pharmacologic and regenerative therapies for osteoarthritis. Bone Res. 4(October 2015), 15040 (2016).
Yamanaka, S. Pluripotent stem cell-based cell therapy—Promise and challenges. Cell Stem Cell 27(4), 523–531 (2020).
Jevotovsky, D. S., Alfonso, A. R., Einhorn, T. A. & Chiu, E. S. Osteoarthritis and stem cell therapy in humans: A systematic review. Osteoarthr. Cartil. 26(6), 711–729 (2018).
Craft, A. M. et al. Generation of articular chondrocytes from human pluripotent stem cells. Nat. Biotechnol. 33(6), 638–645 (2015).
Smith, C. A. et al. Directed differentiation of hPSCs through a simplified lateral plate mesoderm protocol for generation of articular cartilage progenitors. PLoS One 18(1), e0280024 (2023).
Loh, K. M. M. et al. Mapping the pairwise choices leading from pluripotency to human bone, heart, and other mesoderm cell types. Cell 166(2), 451–467 (2016).
Chijimatsu, R. & Saito, T. Mechanisms of synovial joint and articular cartilage development. Cell. Mol. Life Sci. 76(20), 3939–3952 (2019).
Humphreys, P. A. et al. Developmental principles informing human pluripotent stem cell differentiation to cartilage and bone. Semin. Cell Dev. Biol. 127(July 2021), 17–36 (2022).
Sumi, T., Tsuneyoshi, N., Nakatsuji, N. & Suemori, H. Defining early lineage specification of human embryonic stem cells by the orchestrated balance canonical Wnt/β-catenin, activin/Nodal and BMP signaling. Development 135(17), 2969–2979 (2008).
Row, R. H. et al. BMP and FGF signaling interact to pattern mesoderm by controlling basic helix-loop-helix transcription factor activity. Elife 7, 1–27 (2018).
Pignatti, E., Zeller, R. & Zuniga, A. To BMP or not to BMP during vertebrate limb bud development. Semin. Cell Dev. Biol. 32, 119–127 (2014).
Ray, A., Singh, P. N. P., Sohaskey, M. L., Harland, R. M. & Bandyopadhyay, A. Precise spatial restriction of BMP signaling is essential for articular cartilage differentiation. Development 142(6), 1169–1179 (2015).
Kobayashi, T., Lyons, K. M., McMahon, A. P. & Kronenberg, H. M. BMP signaling stimulates cellular differentiation at multiple steps during cartilage development. Proc. Natl. Acad. Sci. U. S. A. 102(50), 18023–18027 (2005).
Yoon, B. S. & Lyons, K. M. Multiple functions of BMPs in chondrogenesis. J. Cell. Biochem. 93(1), 93–103 (2004).
Oldershaw, R. A. et al. Directed differentiation of human embryonic stem cells toward chondrocytes. Nat. Biotechnol. 28(11), 1187–1194 (2010).
Wang, T. et al. Enhanced chondrogenesis from human embryonic stem cells. Stem Cell Res. 39(May), 101497 (2019).
Diederichs, S., Klampfleuthner, F. A. M., Moradi, B. & Richter, W. Chondral differentiation of induced pluripotent stem cells without progression into the endochondral pathway. Front. Cell Dev. Biol. 7(November), 1–10 (2019).
Kawata, M. et al. Simple and robust differentiation of human pluripotent stem cells toward chondrocytes by two small-molecule compounds. Stem Cell Rep. 13(3), 530–544 (2019).
Weston, A. D., Chandraratna, R. A. S., Torchia, J. & Underhill, T. M. Requirement for RAR-mediated gene repression in skeletal progenitor differentiation. J. Cell Biol. 158(1), 39–51 (2002).
Pacifici, M., Cossu, G., Molinaro, M. & Tato, F. Vitamin A inhibits chondrogenesis but not myogenesis. Exp. Cell Res. 129(2), 469–474 (1980).
Hoffman, L. M. et al. BMP action in skeletogenesis involves attenuation of retinoid signaling. J. Cell Biol. 174(1), 101–113 (2006).
Langston, A. W. & Gudas, L. J. Retinoic acid and homeobox gene regulation. Curr. Opin. Genet. Dev. 4(4), 550–555 (1994).
Boncinelli, E., Simeone, A., Acampora, D. & Mavilio, F. HOX gene activation by retinoic acid. Trends Genet. 7(10), 329–334 (1991).
Bel-Vialar, S., Itasaki, N. & Krumlauf, R. Initiating Hox gene expression: In the early chick neural tube differential sensitivity to FGF and RA signaling subdivides the HoxB genes in two distinct groups. Development 129(22), 5103–5115 (2002).
Shen, P. et al. Rapid induction and long-term self-renewal of neural crest-derived ectodermal chondrogenic cells from hPSCs. npj Regen. Med. 7(1), 1–15 (2022).
Xu, S. C., Harris, M. A., Rubenstein, J. L. R., Mundy, G. R. & Harris, S. E. Bone morphogenetic protein-2 (BMP-2) signaling to the Col2α1 gene in chondroblasts requires the homeobox gene Dlx-2. DNA Cell Biol. 20(6), 359–365 (2001).
Lafont, J. E., Poujade, F. A., Pasdeloup, M., Neyret, P. & Mallein-Gerin, F. Hypoxia potentiates the BMP-2 driven COL2A1 stimulation in human articular chondrocytes via p38 MAPK. Osteoarthr. Cartil. 24(5), 856–867 (2016).
Fernández-Lloris, R. et al. Induction of the Sry-related factor SOX6 contributes to bone morphogenetic protein-2- induced chondroblastic differentiation of C3H10T1/2 cells. Mol. Endocrinol. 17(7), 1332–1343 (2003).
Kim, H. S., Neugebauer, J., Mcknite, A., Tilak, A. & Christian, J. L. BMP7 functions predominantly as a heterodimer with BMP2 or BMP4 during mammalian embryogenesis. 1–22 (2019).
James, R. G. & Schultheiss, T. M. Bmp signaling promotes intermediate mesoderm gene expression in a dose-dependent, cell-autonomous and translation-dependent manner. Dev. Biol. 288(1), 113–125 (2005).
Huang, D., Li, J., Hu, F., Xia, C., Weng, Q., Wang, T. et al. Lateral plate mesoderm cell-based organoid system for NK cell regeneration from human pluripotent stem cells. Cell Discov. 8(1) (2022).
Xi, H. et al. In vivo human somitogenesis guides somite development from hPSCs. Cell Rep. 18(6), 1573–1585 (2017).
Wu, C. L. et al. Single cell transcriptomic analysis of human pluripotent stem cell chondrogenesis. Nat. Commun. 12(1), 362 (2021).
Umeda, K. et al. Human chondrogenic paraxial mesoderm, directed specification and prospective isolation from pluripotent stem cells. Sci. Rep. 2(455), 1–11 (2012).
Araoka, T., Mae, S. I., Kurose, Y., Uesugi, M., Ohta, A., Yamanaka, S. et al. Efficient and rapid induction of human iPSCs/ESCs into nephrogenic intermediate mesoderm using small molecule-based differentiation methods. PLoS One, 9(1), epub (1–14) (2014).
Zhang, P. et al. Short-term BMP-4 treatment initiates mesoderm induction in human embryonic stem cells. Blood 111(4), 1933–1941 (2008).
Winnier, G., Blessing, M., Labosky, P. A. & Hogan, B. L. M. Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev. 9(17), 2105–2116 (1995).
Chalamalasetty, R. B. et al. Mesogenin 1 is a master regulator of paraxial presomitic mesoderm differentiation. Development 141(22), 4285–4297 (2014).
Chapman, D. L., Agulnik, I., Hancock, S., Silver, L. M. & Papaioannou, V. E. Tbx6, a mouse T-box gene implicated in paraxial mesoderm formation at gastrulation. Dev. Biol. 180(2), 534–542 (1996).
Kashyap, V. & Gudas, L. J. Epigenetic regulatory mechanisms distinguish retinoic acid-mediated transcriptional responses in stem cells and fibroblasts. J. Biol. Chem. 285(19), 14534–14548 (2010).
Cheng, A. et al. Cartilage repair using human embryonic stem cell-derived chondroprogenitors. Stem Cells Transl. Med. 3(11), 1287–1294 (2014).
Wang, L. et al. Activin/Smad2-induced histone H3 Lys-27 trimethylation (H3K27me3) reduction is crucial to initiate mesendoderm differentiation of human embryonic stem cells. J. Biol. Chem. 292(4), 1339–1350 (2017).
Fowler, D. A. & Larsson, H. C. E. The tissues and regulatory pattern of limb chondrogenesis. Dev. Biol. 463(2), 124–134 (2020).
Waxman, J. S., Keegan, B. R., Roberts, R. W., Poss, K. D. & Yelon, D. Hoxb5b acts downstream of retinoic acid signaling in the forelimb field to restrict heart field potential in zebrafish. Dev. Cell 15(6), 923–934 (2008).
Feneck, E. & Logan, M. The role of retinoic acid in establishing the early limb bud. Biomolecules 10(2) (2020).
Cunningham, T. J. & Duester, G. Mechanisms of retinoic acid signalling and its roles in organ and limb development. Nat. Rev. Mol. Cell Biol. 16(2), 110–123 (2015).
Nishimoto, S., Wilde, S. M., Wood, S. & Logan, M. P. O. RA acts in a coherent feed-forward mechanism with Tbx5 to control limb bud induction and initiation. Cell Rep. 12(5), 879–891 (2015).
Jepsen, K. et al. Combinatorial roles of the nuclear receptor corepressor in transcription and development. Cell 102(6), 753–763 (2000).
Simeone, A., Acampora, D., Arcioni, L., Andrews, P. W., Boncinelli, E. & Mavilio, F. Sequential activation of HOX2 homeobox genes by retinoic acid in human embryonal carcinoma cells. Nat. 1990 3466286, 346(6286), 763–766 (1990).
Kmita, M. & Duboule, D. Organizing axes in time and space; 25 years of colinear tinkering. Science (80-.) 301(5631), 331–333 (2003).
Papalopulu, N., Lovel-badage, R. & Krumlauf, R. The expression of murine Hox-2 genes is dependent on the differentiation pathway and displays a collinear sensitivity to retinoic acid in F9 cells and Xenopus embryos. Nucleic Acids Res. 19(20), 5497 (1991).
De, K. B. et al. Analysis of dynamic changes in retinoid-induced transcription and epigenetic profiles of murine Hox clusters in ES cells. Genome Res. 25(8), 1229–1243 (2015).
Mori, S. et al. Self-organized formation of developing appendages from murine pluripotent stem cells. Nat. Commun. 10(1), 1–13 (2019).
Sheth, R. et al. Decoupling the function of Hox and Shh in developing limb reveals multiple inputs of Hox genes on limb growth. Development 140(10), 2130–2138 (2013).
Yamada, D. et al. Induction and expansion of human PRRX1+ limb-bud-like mesenchymal cells from pluripotent stem cells. Nat. Biomed. Eng. 5(8), 926–940 (2021).
Rosselot, C. et al. Non-cell-autonomous retinoid signaling is crucial for renal development. Development 137(2), 283–292 (2010).
Jacobs, S. et al. Retinoic acid is required early during adult neurogenesis in the dentate gyrus. Proc. Natl. Acad. Sci. U. S. A. 103(10), 3902–3907 (2006).
Wiesinger, A., Boink, G. J. J., Christoffels, V. M. & Devalla, H. D. Retinoic acid signaling in heart development: Application in the differentiation of cardiovascular lineages from human pluripotent stem cells. Stem Cell Rep. 16(11), 2589–2606 (2021).
Lorberbaum, D. S., Kishore, S., Rosselot, C., Sarbaugh, D., Brooks, E. P., Aragon, E. et al. Retinoic acid signaling within pancreatic endocrine progenitors regulates mouse and human β cell specification. Development 147(12) (2020).
Fernandes-Silva, H., Araújo-Silva, H., Correia-Pinto, J. & Moura, R. S. Retinoic acid: A key regulator of lung development. Biomolecules 10(1), 1–18 (2020).
Das, M. & Pethe, P. Differential expression of retinoic acid alpha and beta receptors in neuronal progenitors generated from human embryonic stem cells in response to TTNPB (a retinoic acid mimetic). Differentiation 121, 13–24 (2021).
Duong, T. B., Holowiecki, A. & Waxman, J. S. Retinoic acid signaling restricts the size of the first heart field within the anterior lateral plate mesoderm. Dev. Biol. 473, 119–129 (2021).
Sumitani, Y. et al. Inhibitory effect of retinoic acid receptor agonists on in vitro chondrogenic differentiation. Anat. Sci. Int. 95(2), 202–208 (2020).
Cho, S. H., Oh, C. D., Kim, S. J., Kim, I. C. & Chun, J. S. Retinoic acid inhibits chondrogenesis of mesenchymal cells by sustaining expression of N-cadherin and its associated proteins. J. Cell. Biochem. 89(4), 837–847 (2003).
He, N., Brysk, H., Tyring, S. K., Ohkubo, I. & Brysk, M. M. Transcriptional suppression of Sox9 expression in chondrocytes by retinoic acid. J. Cell. Biochem. 81(SUPPL. 36), 71–78 (2001).
Pacifici, M. Retinoid roles and action in skeletal development and growth provide the rationale for an ongoing heterotopic ossification prevention trial. Bone 109, 267–275 (2018).
Niederreither, K., Subbarayan, V., Dollé, P. & Chambon, P. Embryonic retinoic acid synthesis is essential for early mouse post-implantation development. Nat. Genet. 21(4), 444–448 (1999).
Niederreither, K., Vermot, J., Schuhbaur, B., Chambon, P. & Dollé, P. Embryonic retinoic acid synthesis is required for forelimb growth and anteroposterior patterning in the mouse. Development 129(15), 3563–3574 (2002).
Riedl, M., Witzmann, C., Koch, M., Lang, S., Kerschbaum, M., Baumann, F. et al. Attenuation of hypertrophy in human mscs via treatment with a retinoic acid receptor inverse agonist. Int. J. Mol. Sci. 21(4) (2020).
Cohen, A. J., Lassová, L., Golden, E. B., Niu, Z. & Adams, S. L. Retinoids directly activate the collagen X promoter in prehypertrophic chondrocytes through a distal retinoic acid response element. J. Cell. Biochem. 99(1), 269–278 (2006).
Zhang, W., Chen, J., Zhang, S. & Ouyang, H. W. Inhibitory function of parathyroid hormone-related protein on chondrocyte hypertrophy: The implication for articular cartilage repair. Arthritis Res. Ther. 14(4), 1–10 (2012).
Oh, C. D. et al. SOX9 regulates multiple genes in chondrocytes, including genes encoding ECM proteins, ECM modification enzymes, receptors, and transporters. PLoS One 9(9), 107577 (2014).
Timur, U. T., Caron, M., Akker van den, G., Windt van der, A., Visser, J., Rhijn van, L. et al. Increased TGF-β and BMP levels and improved chondrocyte-specific marker expression in vitro under cartilage-specific physiological osmolarity. Int. J. Mol. Sci. 20(4) (2019).
Shu, B. et al. BMP2, but not BMP4, is crucial for chondrocyte proliferation and maturation during endochondral bone development. J. Cell Sci. 124(20), 3428–3440 (2011).
Kramer, J. et al. Embryonic stem cell-derived chondrogenic differentiation in vitro: Activation by BMP-2 and BMP-4. Mech. Dev. 92(2), 193–205 (2000).
Murphy, M. K., Huey, D. J., Hu, J. C. & Athanasiou, K. A. TGF-β1, GDF-5, and BMP-2 stimulation induces chondrogenesis in expanded human articular chondrocytes and marrow-derived stromal cells. Stem Cells 33(3), 762–773 (2015).
Davidson, E. N. B. et al. Elevated extracellular matrix production and degradation upon bone morphogenetic protein-2 (BMP-2) stimulation point toward a role for BMP-2 in cartilage repair and remodeling. Arthritis Res. Ther. 9(5), 1–11 (2007).
Gründer, T. et al. Bone morphogenetic protein (BMP)-2 enhances the expression of type II collagen and aggrecan in chondrocytes embedded in alginate beads. Osteoarthr. Cartil. 12(7), 559–567 (2004).
Liao, J., Hu, N., Zhou, N., Zhao, C., Liang, X., Chen, H., et al. Sox9 potentiates BMP2-induced chondrogenic differentiation and inhibits BMP2-induced osteogenic differentiation. Regen. Med. Plast. Surg. 263–280 (2019).
Phimphilai, M., Zhao, Z., Boules, H., Roca, H. & Franceschi, R. T. BMP signaling is required for RUNX2-dependent induction of the osteoblast phenotype. J. Bone Miner. Res. 21(4), 637–646 (2006).
Zhou, G. et al. Dominance of SOX9 function over RUNX2 during skeletogenesis. Proc. Natl. Acad. Sci. U. S. A. 103(50), 19004–19009 (2006).
Haseeb, A. et al. SOX9 keeps growth plates and articular cartilage healthy by inhibiting chondrocyte dedifferentiation/ osteoblastic redifferentiation. Proc. Natl. Acad. Sci. U. S. A. 118(8), 1–11 (2021).
Kirimoto, A., Takagi, Y., Ohya, K. & Shimokawa, H. Effects of retinoic acid on the differentiation of chondrogenic progenitor cells, ATDC5. J. Med. Dent. Sci. 52(3), 153–162 (2005).
Pacifici, M., Golden, E. B., Iwamoto, M. & Adams, S. L. Retinoic acid treatment induces type X collagen gene expression in cultured chick chondrocytes. Exp. Cell Res. 195(1), 38–46 (1991).
Richard, D. et al. Lineage-specific differences and regulatory networks governing human chondrocyte development. Elife 12, 79925 (2023).
Ye, J. et al. High quality clinical grade human embryonic stem cell lines derived from fresh discarded embryos. Stem Cell Res. Ther. 8(1), 1–13 (2017).
Woods, S. et al. Generation of human-induced pluripotent stem cells from anterior cruciate ligament. J. Orthop. Res. 38(1), 92–104 (2020).
Streeter I., Harrison P. W., Faulconbridge A., Consortium T. H. S., Flicek P., Parkinson H., et al. The human-induced pluripotent stem cell initiative—Data resources for cellular genetics. Nucleic Acids Res. 45 (D1), D691–D697 (2017).
Ye, J. et al. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 13, 134 (2012).
Xie, Z. et al. Gene set knowledge discovery with enrichr. Curr. Protoc. 1(3), e90 (2021).
Kuleshov, M. V. et al. Enrichr: A comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44(May), 90–97 (2016).
Chen, E. et al. Enrichr: Interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinform. 14(128), 1–14 (2013).
Goedhart J. & Luijsterburg M.S. VolcaNoseR is a web app for creating, exploring, labeling and sharing volcano plots. Sci. Rep. 2020 101, 10(1), 1–5 (2020).
Eisen, M. B., Spellman, P. T., Brown, P. O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. U. S. A. 95(25), 14863–14868 (1998).
Humphreys, P. A. et al. Optogenetic control of the BMP signaling pathway. ACS Synth. Biol. 9(11), 3067–3078 (2020).
- SEO Powered Content & PR Distribution. Get Amplified Today.
- PlatoData.Network Vertical Generative Ai. Empower Yourself. Access Here.
- PlatoAiStream. Web3 Intelligence. Knowledge Amplified. Access Here.
- PlatoESG. Carbon, CleanTech, Energy, Environment, Solar, Waste Management. Access Here.
- PlatoHealth. Biotech and Clinical Trials Intelligence. Access Here.
- Source: https://www.nature.com/articles/s41598-024-52362-3