Early resistance rehabilitation improves functional regeneration following segmental bone defect injury

  • Calori, G. M., Mazza, E., Colombo, M., Ripamonti, C. & Tagliabue, L. Treatment of long bone non-unions with polytherapy: Indications and clinical results. Injury 42, 587–590 (2011).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Keating, J. F., Simpson, A. H. R. W. & Robinson, C. M. The management of fractures with bone loss. J. Bone Jt. Surg. Br. 87-B, 142–150 (2005).

    Article 

    Google Scholar
     

  • Hoit, G., Bonyun, M. & Nauth, A. Hardware considerations in infection and nonunion management. OTA Int 3, e055 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Houben, I. B., Raaben, M., Van Basten Batenburg, M. & Blokhuis, T. J. Delay in weight bearing in surgically treated tibial shaft fractures is associated with impaired healing: a cohort analysis of 166 tibial fractures. Eur. J. Orthop. Surg. Traumatol. 28, 1429–1436 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Hurkmans, H. L. et al. The difference between actual and prescribed weight bearing of total hip patients with a trochanteric osteotomy: long-term vertical force measurements inside and outside the hospital. Arch. Phys. Med. Rehabilitation 88, 200–206 (2007).

    Article 

    Google Scholar
     

  • Hoyt, B. W., Pavey, G. J., Pasquina, P. F. & Potter, B. K. Rehabilitation of lower extremity trauma: a review of principles and military perspective on future directions. Curr. Trauma Rep. 1, 50–60 (2015).

    Article 

    Google Scholar
     

  • Giangregorio, L. & Blimkie, C. J. R. Skeletal adaptations to alterations in weight-bearing activity. Sports Med. 32, 459–476 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Vandenborne, K. et al. Longitudinal study of skeletal muscle adaptations during immobilization and rehabilitation. Muscle Nerve 21, 1006–1012 (1998).

    <a data-track="click_references" rel="nofollow noopener" data-track-label="10.1002/(SICI)1097-4598(199808)21:83.0.CO;2-C” data-track-item_id=”10.1002/(SICI)1097-4598(199808)21:83.0.CO;2-C” data-track-value=”article reference” data-track-action=”article reference” href=”https://doi.org/10.1002%2F%28SICI%291097-4598%28199808%2921%3A8%3C1006%3A%3AAID-MUS4%3E3.0.CO%3B2-C” aria-label=”Article reference 8″ data-doi=”10.1002/(SICI)1097-4598(199808)21:83.0.CO;2-C”>Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yoshiko, A. et al. Effects of post-fracture non-weight-bearing immobilization on muscle atrophy, intramuscular and intermuscular adipose tissues in the thigh and calf. Skelet. Radio. 47, 1541–1549 (2018).

    Article 

    Google Scholar
     

  • Herrador Colmenero, L. et al. Effectiveness of mirror therapy, motor imagery, and virtual feedback on phantom limb pain following amputation: A systematic review. Prosthet. Orthot. Int 42, 288–298 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Argentati, C. et al. Insight into mechanobiology: how stem cells feel mechanical forces and orchestrate biological functions. Int. J. Mol. Sci. 20, 5337 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Cowin, S. C. Wolff’s law of trabecular architecture at remodeling equilibrium. J. Biomech. Eng. 108, 83–88 (1986).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wolff, J. Das gesetz der transformation der knochen. A Hirshwald 1, 1–152 (1892).


    Google Scholar
     

  • Glatt, V., Tepic, S. & Evans, C. Reverse dynamization: a novel approach to bone healing. J. Am. Acad. Orthop. Surg. 24, e60–e61 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Klosterhoff, B. S. et al. Effects of osteogenic ambulatory mechanical stimulation on early stages of BMP-2 mediated bone repair. Connect Tissue Res. https://doi.org/10.1080/03008207.2021.1897582 (2021).

  • Boerckel, J. D., Uhrig, B. A., Willett, N. J., Huebsch, N. & Guldberg, R. E. Mechanical regulation of vascular growth and tissue regeneration in vivo. Proc. Natl Acad. Sci. 108, E674–E680 (2011).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Barcik, J. & Epari, D. R. Can optimizing the mechanical environment deliver a clinically significant reduction in fracture healing time? Biomedicines 9, 691 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duda, G. N. et al. The decisive early phase of bone regeneration. Nat. Rev. Rheumatol. 19, 78–95 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Thompson, W. R., Scott, A., Loghmani, M. T., Ward, S. R. & Warden, S. J. Understanding mechanobiology: physical therapists as a force in mechanotherapy and musculoskeletal regenerative rehabilitation. Phys. Ther. 96, 560–569 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Bartnikowski, N. et al. Modulation of fixation stiffness from flexible to stiff in a rat model of bone healing. Acta Orthopaedica 88, 217–222 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Claes, L. et al. Late dynamization by reduced fixation stiffness enhances fracture healing in a rat femoral osteotomy model. J. Orthop. Trauma 25, 169 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Claes, L., Wilke, H.-J., Augat, P., Rübenacker, S. & Margevicius, K. Effect of dynamization on gap healing of diaphyseal fractures under external fixation. Clin. Biomech. 10, 227–234 (1995).

    Article 
    CAS 

    Google Scholar
     

  • Epari, D. R., Schell, H., Bail, H. J. & Duda, G. N. Instability prolongs the chondral phase during bone healing in sheep. Bone 38, 864–870 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Glatt, V., Samchukov, M., Cherkashin, A. & Iobst, C. Reverse dynamization accelerates bone-healing in a large-animal osteotomy model. JBJS 103, 257–263 (2021).

    Article 

    Google Scholar
     

  • Klosterhoff, B. S. et al. Wireless sensor enables longitudinal monitoring of regenerative niche mechanics during rehabilitation that enhance bone repair. Bone 135, 115311 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Claes, L. et al. Early dynamization by reduced fixation stiffness does not improve fracture healing in a rat femoral osteotomy model. J. Orthop. Res. 27, 22–27 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Fu, R., Feng, Y., Liu, Y., Willie, B. M. & Yang, H. The combined effects of dynamization time and degree on bone healing. J. Orthop. Res. 40, 634–643 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Boerckel, J. D. et al. Effects of in vivo mechanical loading on large bone defect regeneration. J. Orthop. Res. 30, 1067–1075 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Boerckel, J. D., Dupont, K. M., Kolambkar, Y. M., Lin, A. S. P. & Guldberg, R. E. In vivo model for evaluating the effects of mechanical stimulation on tissue-engineered bone repair. J. Biomech. Eng. 131, 084502-1–084502-5 (2009).

  • Epari, D. R., Wehner, T., Ignatius, A., Schuetz, M. A. & Claes, L. E. A case for optimising fracture healing through inverse dynamization. Med. Hypotheses 81, 225–227 (2013).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Tufekci, P. et al. Early mechanical stimulation only permits timely bone healing in sheep. J. Orthop. Res. 36, 1790–1796 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Schmidt, I., Albert, J., Ritthaler, M., Papastavrou, A. & Steinmann, P. Bone fracture healing within a continuum bone remodelling framework. Computer Methods Biomech. Biomed. Eng. 25, 1040–1050 (2022).

    Article 

    Google Scholar
     

  • Schultz, B. J., Koval, K., Salehi, P. P., Gardner, M. J. & Cerynik, D. L. Controversies in fracture healing: early versus late dynamization. Orthopedics 43, e125–e133 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Verrier, S. et al. Tissue engineering and regenerative approaches to improving the healing of large bone defects. Eur. Cells Mater. 32, 87–110 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Windolf, M. et al. A Biofeedback System for Continuous Monitoring of Bone Healing. in Proceedings of the International Joint Conference on Biomedical Engineering Systems and Technologies – Volume 1 243–248 (SCITEPRESS – Science and Technology Publications, Lda, Setubal, PRT, 2014). https://doi.org/10.5220/0004913002430248.

  • Windolf, M. et al. Continuous rod load monitoring to assess spinal fusion status–pilot in vivo data in sheep. Medicina 58, 899 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barcik, J. et al. Short-term bone healing response to mechanical stimulation—a case series conducted on sheep. Biomedicines 9, 988 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hettiaratchi, M. H. et al. Heparin-mediated delivery of bone morphogenetic protein-2 improves spatial localization of bone regeneration. Sci. Adv. 6, eaay1240 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Miyamoto, S., Yoshikawa, H. & Nakata, K. Axial mechanical loading to ex vivo mouse long bone regulates endochondral ossification and endosteal mineralization through activation of the BMP-Smad pathway during postnatal growth. Bone Rep. 15, 101088 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Carroll, S. F., Buckley, C. T. & Kelly, D. J. Cyclic tensile strain can play a role in directing both intramembranous and endochondral ossification of mesenchymal stem cells. Front. Bioeng. Biotechnol. 5, (2017).

  • Carter, D. R. & Wong, M. Mechanical stresses and endochondral ossification in the chondroepiphysis. J. Orthop. Res. 6, 148–154 (1988).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Klosterhoff, B. S. et al. Wireless implantable sensor for noninvasive, longitudinal quantification of axial strain across rodent long bone defects. J. Biomech. Eng. 139, 111004 (2017).

    Article 

    Google Scholar
     

  • Augat, P. et al. Early, full weightbearing with flexible fixation delays fracture healing. Clin. Orthop. Relat. Res. https://doi.org/10.1097/00003086-199607000-00031 (1996).

  • Yang, C., Liu, Y., Wang, Z., Lin, M. & Liu, C. Controlled mechanical loading improves bone regeneration by regulating type H vessels in a S1Pr1-dependent manner. FASEB J. 36, e22530 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • He, S. et al. Low-frequency vibration treatment of bone marrow stromal cells induces bone repair in vivo. Iran. J. Basic Med Sci. 20, 23–28 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hadjiargyrou, M., McLeod, K., Ryaby, J. P. & Rubin, C. Enhancement of fracture healing by low intensity ultrasound. Clin. Orthop. Relat. Res. https://doi.org/10.1097/00003086-199810001-00022 (1998).

  • Duarte, L. R. The stimulation of bone growth by ultrasound. Arch. Orthop. Trauma Surg. (1978) 101, 153–159 (1983).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ng, J. L., Kersh, M. E., Kilbreath, S. & Knothe Tate, M. Establishing the basis for mechanobiology-based physical therapy protocols to potentiate cellular healing and tissue regeneration. Front. Physiol. 8, (2017).

  • Chow, C. H. T. et al. Risk and protective factors in predicting pediatric acute postsurgical pain: A systematic review and meta-analysis. Health Psychol. 42, 723–734 (2023).

    PubMed 

    Google Scholar
     

  • McKay, A. K. A., McCormick, R., Tee, N. & Peeling, P. Exercise and heat stress: inflammation and the iron regulatory response. Int. J. Sport Nutr. Exerc. Metab. 31, 460–465 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Frost, H. M. A 2003 Update of Bone Physiology and Wolff’s Law for Clinicians. Angle Orthod. 74, 3–15 (2004).

    PubMed 

    Google Scholar
     

  • Goodship, A. & Kenwright, J. The influence of induced micromovement upon the healing of experimental tibial fractures. J. Bone Jt. Surg. Br. ume 67-B, 650–655 (1985).

    Article 

    Google Scholar
     

  • Goodship, A. E., Cunningham, J. L. & Kenwright, J. Strain rate and timing of stimulation in mechanical modulation of fracture healing. Clin. Orthop. Relat. Res.® 355, S105 (1998).

    Article 

    Google Scholar
     

  • Kenwright, J. & Goodship, A. E. Controlled mechanical stimulation in the treatment of tibial fractures. Clin. Orthop. Relat. Res. 36, 47 (1989).


    Google Scholar
     

  • Ruehle, M. A. et al. Extracellular matrix compression temporally regulates microvascular angiogenesis. Sci. Adv. 6, eabb6351 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Glatt, V. et al. Improved healing of large segmental defects in the rat femur by reverse dynamization in the presence of bone morphogenetic protein-2. J. Bone Jt. Surg. Am. 94, 2063–2073 (2012).

    Article 

    Google Scholar
     

  • Kolambkar, Y. M. et al. An alginate-based hybrid system for growth factor delivery in the functional repair of large bone defects. Biomaterials 32, 65–74 (2011).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Tsuji, K. et al. BMP2 activity, although dispensable for bone formation, is required for the initiation of fracture healing. Nat. Genet 38, 1424–1429 (2006).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Boerckel, J. D. et al. Effects of protein dose and delivery system on BMP-mediated bone regeneration. Biomaterials 32, 5241–5251 (2011).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Krishnan, L. et al. Delivery vehicle effects on bone regeneration and heterotopic ossification induced by high dose BMP-2. Acta Biomaterialia 49, 101–112 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kenwright, J. & Gardner, T. Mechanical influences on tibial fracture healing. Clin. Orthop. Relat. Res. (1976-2007) 355, S179 (1998).

    Article 

    Google Scholar
     

  • Claes, L. E. et al. Effects of mechanical factors on the fracture healing process. Clin. Orthop. Relat. Res.® 355, S132 (1998).

    Article 

    Google Scholar
     

  • Duan, Z. & Lu, H. Effect of mechanical strain on cells involved in fracture healing. Orthop. Surg. 13, 369–375 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Egol, K. A., Kubiak, E. N., Fulkerson, E., Kummer, F. J. & Koval, K. J. Biomechanics of locked plates and screws. J. Orthop. Trauma 18, 488–493 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Perren, S. M. Physical and biological aspects of fracture healing with special reference to internal fixation. Clin. Orthop. Relat. Res. 175–196 (1979).

  • Aro, H. T. & Chao, E. Y. Biomechanics and biology of fracture repair under external fixation. Hand Clin. 9, 531–542 (1993).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kenwright, J. et al. Effect of controlled axial micromovement on healing of tibial fractures. Lancet 2, 1185–1187 (1986).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Carlier, A., Geris, L., Lammens, J. & Oosterwyck, H. V. Bringing computational models of bone regeneration to the clinic. WIREs Syst. Biol. Med. 7, 183–194 (2015).

    Article 

    Google Scholar
     

  • Carlier, A., Lammens, J., Van Oosterwyck, H. & Geris, L. Computational modeling of bone fracture non-unions: four clinically relevant case studies. silico cell tissue sci. 2, 1 (2015).

    Article 

    Google Scholar
     

  • Smith, B. L. et al. Behavioral and physiological consequences of enrichment loss in rats. Psychoneuroendocrinology 77, 37–46 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Haffner-Luntzer, M. et al. Chronic psychosocial stress compromises the immune response and endochondral ossification during bone fracture healing via β-AR signaling. Proc. Natl Acad. Sci. 116, 8615–8622 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Beleza, J. et al. Self-paced free-running wheel mimics high-intensity interval training impact on rats’ functional, physiological, biochemical, and morphological features. Front Physiol. 10, 593 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Greenwood, B. N. et al. Long-term voluntary wheel running is rewarding and produces plasticity in the mesolimbic reward pathway. Behav. Brain Res 217, 354–362 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Nims, R. J. & Ateshian, G. A. Reactive constrained mixtures for modeling the solid matrix of biological tissues. J. Elast. 129, 69–105 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huiskes, R. et al. Adaptive bone-remodeling theory applied to prosthetic-design analysis. J. Biomech. 20, 1135–1150 (1987).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kloefkorn, H. E. et al. Automated gait analysis through hues and areas (AGATHA): a method to characterize the spatiotemporal pattern of rat gait. Ann. Biomed. Eng. 45, 711–725 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Jacobs, B. Y. et al. The open source GAITOR suite for rodent Gait analysis. Sci. Rep. 8, 9797 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maas, S. A., Ellis, B. J., Ateshian, G. A. & Weiss, J. A. FEBio: Finite elements for biomechanics. J. Biomech. Eng. 134, (2012).

  • Mehboob, A., Mehboob, H., Chang, S.-H. & Tarlochan, F. Effect of composite intramedullary nails (IM) on healing of long bone fractures by means of reamed and unreamed methods. Composite Struct. 167, 76–87 (2017).

    Article 

    Google Scholar
     

  • Wehner, T. et al. Internal forces and moments in the femur of the rat during gait. J. Biomech. 43, 2473–2479 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Lacroix, D., Prendergast, P. J., Li, G. & Marsh, D. Biomechanical model to simulate tissue differentiation and bone regeneration: Application to fracture healing. Med. Biol. Eng. Comput. 40, 14–21 (2002).

    Article 
    PubMed 
    CAS 

    Google Scholar