
Calori, G. M., Mazza, E., Colombo, M., Ripamonti, C. & Tagliabue, L. Treatment of long bone non-unions with polytherapy: Indications and clinical results. Injury 42, 587–590 (2011).
Keating, J. F., Simpson, A. H. R. W. & Robinson, C. M. The management of fractures with bone loss. J. Bone Jt. Surg. Br. 87-B, 142–150 (2005).
Hoit, G., Bonyun, M. & Nauth, A. Hardware considerations in infection and nonunion management. OTA Int 3, e055 (2020).
Houben, I. B., Raaben, M., Van Basten Batenburg, M. & Blokhuis, T. J. Delay in weight bearing in surgically treated tibial shaft fractures is associated with impaired healing: a cohort analysis of 166 tibial fractures. Eur. J. Orthop. Surg. Traumatol. 28, 1429–1436 (2018).
Hurkmans, H. L. et al. The difference between actual and prescribed weight bearing of total hip patients with a trochanteric osteotomy: long-term vertical force measurements inside and outside the hospital. Arch. Phys. Med. Rehabilitation 88, 200–206 (2007).
Hoyt, B. W., Pavey, G. J., Pasquina, P. F. & Potter, B. K. Rehabilitation of lower extremity trauma: a review of principles and military perspective on future directions. Curr. Trauma Rep. 1, 50–60 (2015).
Giangregorio, L. & Blimkie, C. J. R. Skeletal adaptations to alterations in weight-bearing activity. Sports Med. 32, 459–476 (2002).
Vandenborne, K. et al. Longitudinal study of skeletal muscle adaptations during immobilization and rehabilitation. Muscle Nerve 21, 1006–1012 (1998).
<a data-track="click_references" rel="nofollow noopener" data-track-label="10.1002/(SICI)1097-4598(199808)21:83.0.CO;2-C” data-track-item_id=”10.1002/(SICI)1097-4598(199808)21:83.0.CO;2-C” data-track-value=”article reference” data-track-action=”article reference” href=”https://doi.org/10.1002%2F%28SICI%291097-4598%28199808%2921%3A8%3C1006%3A%3AAID-MUS4%3E3.0.CO%3B2-C” aria-label=”Article reference 8″ data-doi=”10.1002/(SICI)1097-4598(199808)21:83.0.CO;2-C”>Article
PubMed
CAS
Google Scholar
Yoshiko, A. et al. Effects of post-fracture non-weight-bearing immobilization on muscle atrophy, intramuscular and intermuscular adipose tissues in the thigh and calf. Skelet. Radio. 47, 1541–1549 (2018).
Herrador Colmenero, L. et al. Effectiveness of mirror therapy, motor imagery, and virtual feedback on phantom limb pain following amputation: A systematic review. Prosthet. Orthot. Int 42, 288–298 (2018).
Argentati, C. et al. Insight into mechanobiology: how stem cells feel mechanical forces and orchestrate biological functions. Int. J. Mol. Sci. 20, 5337 (2019).
Cowin, S. C. Wolff’s law of trabecular architecture at remodeling equilibrium. J. Biomech. Eng. 108, 83–88 (1986).
Wolff, J. Das gesetz der transformation der knochen. A Hirshwald 1, 1–152 (1892).
Glatt, V., Tepic, S. & Evans, C. Reverse dynamization: a novel approach to bone healing. J. Am. Acad. Orthop. Surg. 24, e60–e61 (2016).
Klosterhoff, B. S. et al. Effects of osteogenic ambulatory mechanical stimulation on early stages of BMP-2 mediated bone repair. Connect Tissue Res. https://doi.org/10.1080/03008207.2021.1897582 (2021).
Boerckel, J. D., Uhrig, B. A., Willett, N. J., Huebsch, N. & Guldberg, R. E. Mechanical regulation of vascular growth and tissue regeneration in vivo. Proc. Natl Acad. Sci. 108, E674–E680 (2011).
Barcik, J. & Epari, D. R. Can optimizing the mechanical environment deliver a clinically significant reduction in fracture healing time? Biomedicines 9, 691 (2021).
Duda, G. N. et al. The decisive early phase of bone regeneration. Nat. Rev. Rheumatol. 19, 78–95 (2023).
Thompson, W. R., Scott, A., Loghmani, M. T., Ward, S. R. & Warden, S. J. Understanding mechanobiology: physical therapists as a force in mechanotherapy and musculoskeletal regenerative rehabilitation. Phys. Ther. 96, 560–569 (2016).
Bartnikowski, N. et al. Modulation of fixation stiffness from flexible to stiff in a rat model of bone healing. Acta Orthopaedica 88, 217–222 (2017).
Claes, L. et al. Late dynamization by reduced fixation stiffness enhances fracture healing in a rat femoral osteotomy model. J. Orthop. Trauma 25, 169 (2011).
Claes, L., Wilke, H.-J., Augat, P., Rübenacker, S. & Margevicius, K. Effect of dynamization on gap healing of diaphyseal fractures under external fixation. Clin. Biomech. 10, 227–234 (1995).
Epari, D. R., Schell, H., Bail, H. J. & Duda, G. N. Instability prolongs the chondral phase during bone healing in sheep. Bone 38, 864–870 (2006).
Glatt, V., Samchukov, M., Cherkashin, A. & Iobst, C. Reverse dynamization accelerates bone-healing in a large-animal osteotomy model. JBJS 103, 257–263 (2021).
Klosterhoff, B. S. et al. Wireless sensor enables longitudinal monitoring of regenerative niche mechanics during rehabilitation that enhance bone repair. Bone 135, 115311 (2020).
Claes, L. et al. Early dynamization by reduced fixation stiffness does not improve fracture healing in a rat femoral osteotomy model. J. Orthop. Res. 27, 22–27 (2009).
Fu, R., Feng, Y., Liu, Y., Willie, B. M. & Yang, H. The combined effects of dynamization time and degree on bone healing. J. Orthop. Res. 40, 634–643 (2022).
Boerckel, J. D. et al. Effects of in vivo mechanical loading on large bone defect regeneration. J. Orthop. Res. 30, 1067–1075 (2012).
Boerckel, J. D., Dupont, K. M., Kolambkar, Y. M., Lin, A. S. P. & Guldberg, R. E. In vivo model for evaluating the effects of mechanical stimulation on tissue-engineered bone repair. J. Biomech. Eng. 131, 084502-1–084502-5 (2009).
Epari, D. R., Wehner, T., Ignatius, A., Schuetz, M. A. & Claes, L. E. A case for optimising fracture healing through inverse dynamization. Med. Hypotheses 81, 225–227 (2013).
Tufekci, P. et al. Early mechanical stimulation only permits timely bone healing in sheep. J. Orthop. Res. 36, 1790–1796 (2018).
Schmidt, I., Albert, J., Ritthaler, M., Papastavrou, A. & Steinmann, P. Bone fracture healing within a continuum bone remodelling framework. Computer Methods Biomech. Biomed. Eng. 25, 1040–1050 (2022).
Schultz, B. J., Koval, K., Salehi, P. P., Gardner, M. J. & Cerynik, D. L. Controversies in fracture healing: early versus late dynamization. Orthopedics 43, e125–e133 (2020).
Verrier, S. et al. Tissue engineering and regenerative approaches to improving the healing of large bone defects. Eur. Cells Mater. 32, 87–110 (2016).
Windolf, M. et al. A Biofeedback System for Continuous Monitoring of Bone Healing. in Proceedings of the International Joint Conference on Biomedical Engineering Systems and Technologies – Volume 1 243–248 (SCITEPRESS – Science and Technology Publications, Lda, Setubal, PRT, 2014). https://doi.org/10.5220/0004913002430248.
Windolf, M. et al. Continuous rod load monitoring to assess spinal fusion status–pilot in vivo data in sheep. Medicina 58, 899 (2022).
Barcik, J. et al. Short-term bone healing response to mechanical stimulation—a case series conducted on sheep. Biomedicines 9, 988 (2021).
Hettiaratchi, M. H. et al. Heparin-mediated delivery of bone morphogenetic protein-2 improves spatial localization of bone regeneration. Sci. Adv. 6, eaay1240 (2020).
Miyamoto, S., Yoshikawa, H. & Nakata, K. Axial mechanical loading to ex vivo mouse long bone regulates endochondral ossification and endosteal mineralization through activation of the BMP-Smad pathway during postnatal growth. Bone Rep. 15, 101088 (2021).
Carroll, S. F., Buckley, C. T. & Kelly, D. J. Cyclic tensile strain can play a role in directing both intramembranous and endochondral ossification of mesenchymal stem cells. Front. Bioeng. Biotechnol. 5, (2017).
Carter, D. R. & Wong, M. Mechanical stresses and endochondral ossification in the chondroepiphysis. J. Orthop. Res. 6, 148–154 (1988).
Klosterhoff, B. S. et al. Wireless implantable sensor for noninvasive, longitudinal quantification of axial strain across rodent long bone defects. J. Biomech. Eng. 139, 111004 (2017).
Augat, P. et al. Early, full weightbearing with flexible fixation delays fracture healing. Clin. Orthop. Relat. Res. https://doi.org/10.1097/00003086-199607000-00031 (1996).
Yang, C., Liu, Y., Wang, Z., Lin, M. & Liu, C. Controlled mechanical loading improves bone regeneration by regulating type H vessels in a S1Pr1-dependent manner. FASEB J. 36, e22530 (2022).
He, S. et al. Low-frequency vibration treatment of bone marrow stromal cells induces bone repair in vivo. Iran. J. Basic Med Sci. 20, 23–28 (2017).
Hadjiargyrou, M., McLeod, K., Ryaby, J. P. & Rubin, C. Enhancement of fracture healing by low intensity ultrasound. Clin. Orthop. Relat. Res. https://doi.org/10.1097/00003086-199810001-00022 (1998).
Duarte, L. R. The stimulation of bone growth by ultrasound. Arch. Orthop. Trauma Surg. (1978) 101, 153–159 (1983).
Ng, J. L., Kersh, M. E., Kilbreath, S. & Knothe Tate, M. Establishing the basis for mechanobiology-based physical therapy protocols to potentiate cellular healing and tissue regeneration. Front. Physiol. 8, (2017).
Chow, C. H. T. et al. Risk and protective factors in predicting pediatric acute postsurgical pain: A systematic review and meta-analysis. Health Psychol. 42, 723–734 (2023).
McKay, A. K. A., McCormick, R., Tee, N. & Peeling, P. Exercise and heat stress: inflammation and the iron regulatory response. Int. J. Sport Nutr. Exerc. Metab. 31, 460–465 (2021).
Frost, H. M. A 2003 Update of Bone Physiology and Wolff’s Law for Clinicians. Angle Orthod. 74, 3–15 (2004).
Goodship, A. & Kenwright, J. The influence of induced micromovement upon the healing of experimental tibial fractures. J. Bone Jt. Surg. Br. ume 67-B, 650–655 (1985).
Goodship, A. E., Cunningham, J. L. & Kenwright, J. Strain rate and timing of stimulation in mechanical modulation of fracture healing. Clin. Orthop. Relat. Res.® 355, S105 (1998).
Kenwright, J. & Goodship, A. E. Controlled mechanical stimulation in the treatment of tibial fractures. Clin. Orthop. Relat. Res. 36, 47 (1989).
Ruehle, M. A. et al. Extracellular matrix compression temporally regulates microvascular angiogenesis. Sci. Adv. 6, eabb6351 (2020).
Glatt, V. et al. Improved healing of large segmental defects in the rat femur by reverse dynamization in the presence of bone morphogenetic protein-2. J. Bone Jt. Surg. Am. 94, 2063–2073 (2012).
Kolambkar, Y. M. et al. An alginate-based hybrid system for growth factor delivery in the functional repair of large bone defects. Biomaterials 32, 65–74 (2011).
Tsuji, K. et al. BMP2 activity, although dispensable for bone formation, is required for the initiation of fracture healing. Nat. Genet 38, 1424–1429 (2006).
Boerckel, J. D. et al. Effects of protein dose and delivery system on BMP-mediated bone regeneration. Biomaterials 32, 5241–5251 (2011).
Krishnan, L. et al. Delivery vehicle effects on bone regeneration and heterotopic ossification induced by high dose BMP-2. Acta Biomaterialia 49, 101–112 (2017).
Kenwright, J. & Gardner, T. Mechanical influences on tibial fracture healing. Clin. Orthop. Relat. Res. (1976-2007) 355, S179 (1998).
Claes, L. E. et al. Effects of mechanical factors on the fracture healing process. Clin. Orthop. Relat. Res.® 355, S132 (1998).
Duan, Z. & Lu, H. Effect of mechanical strain on cells involved in fracture healing. Orthop. Surg. 13, 369–375 (2021).
Egol, K. A., Kubiak, E. N., Fulkerson, E., Kummer, F. J. & Koval, K. J. Biomechanics of locked plates and screws. J. Orthop. Trauma 18, 488–493 (2004).
Perren, S. M. Physical and biological aspects of fracture healing with special reference to internal fixation. Clin. Orthop. Relat. Res. 175–196 (1979).
Aro, H. T. & Chao, E. Y. Biomechanics and biology of fracture repair under external fixation. Hand Clin. 9, 531–542 (1993).
Kenwright, J. et al. Effect of controlled axial micromovement on healing of tibial fractures. Lancet 2, 1185–1187 (1986).
Carlier, A., Geris, L., Lammens, J. & Oosterwyck, H. V. Bringing computational models of bone regeneration to the clinic. WIREs Syst. Biol. Med. 7, 183–194 (2015).
Carlier, A., Lammens, J., Van Oosterwyck, H. & Geris, L. Computational modeling of bone fracture non-unions: four clinically relevant case studies. silico cell tissue sci. 2, 1 (2015).
Smith, B. L. et al. Behavioral and physiological consequences of enrichment loss in rats. Psychoneuroendocrinology 77, 37–46 (2017).
Haffner-Luntzer, M. et al. Chronic psychosocial stress compromises the immune response and endochondral ossification during bone fracture healing via β-AR signaling. Proc. Natl Acad. Sci. 116, 8615–8622 (2019).
Beleza, J. et al. Self-paced free-running wheel mimics high-intensity interval training impact on rats’ functional, physiological, biochemical, and morphological features. Front Physiol. 10, 593 (2019).
Greenwood, B. N. et al. Long-term voluntary wheel running is rewarding and produces plasticity in the mesolimbic reward pathway. Behav. Brain Res 217, 354–362 (2011).
Nims, R. J. & Ateshian, G. A. Reactive constrained mixtures for modeling the solid matrix of biological tissues. J. Elast. 129, 69–105 (2017).
Huiskes, R. et al. Adaptive bone-remodeling theory applied to prosthetic-design analysis. J. Biomech. 20, 1135–1150 (1987).
Kloefkorn, H. E. et al. Automated gait analysis through hues and areas (AGATHA): a method to characterize the spatiotemporal pattern of rat gait. Ann. Biomed. Eng. 45, 711–725 (2017).
Jacobs, B. Y. et al. The open source GAITOR suite for rodent Gait analysis. Sci. Rep. 8, 9797 (2018).
Maas, S. A., Ellis, B. J., Ateshian, G. A. & Weiss, J. A. FEBio: Finite elements for biomechanics. J. Biomech. Eng. 134, (2012).
Mehboob, A., Mehboob, H., Chang, S.-H. & Tarlochan, F. Effect of composite intramedullary nails (IM) on healing of long bone fractures by means of reamed and unreamed methods. Composite Struct. 167, 76–87 (2017).
Wehner, T. et al. Internal forces and moments in the femur of the rat during gait. J. Biomech. 43, 2473–2479 (2010).
Lacroix, D., Prendergast, P. J., Li, G. & Marsh, D. Biomechanical model to simulate tissue differentiation and bone regeneration: Application to fracture healing. Med. Biol. Eng. Comput. 40, 14–21 (2002).
- SEO Powered Content & PR Distribution. Get Amplified Today.
- PlatoData.Network Vertical Generative Ai. Empower Yourself. Access Here.
- PlatoAiStream. Web3 Intelligence. Knowledge Amplified. Access Here.
- PlatoESG. Carbon, CleanTech, Energy, Environment, Solar, Waste Management. Access Here.
- PlatoHealth. Biotech and Clinical Trials Intelligence. Access Here.
- Source: https://www.nature.com/articles/s41536-024-00377-9