Comer, C. & Conaghan, P. G. Tackling persistent low back pain in primary care. Practitioner. 253(1721), 32–43 (2009).
Risbud, M. & Shapiro, I. M. Role of cytokines in intervertebral disc degeneration: pain and disc content. Nat. Rev. Rheumatol. 10(1), 44–56 (2014).
Le Maitre, C., Hoyland, J. & Freemont, A. Catabolic cytokine expression in degenerate and herniated human intervertebral discs: IL-1beta and TNFalpha expression profile. Arthritis Res. Ther. 9(4), R77 (2007).
Van den Akker, G. G. et al. Novel immortal human cell lines reveal subpopulations in the nucleus pulposus. Arthritis Res. Ther. 16, 1–16 (2014).
Chelberg, M. K., Banks, G. M., Geiger, D. F. & Oegema, T. R. Jr. Identification of heterogeneous cell populations in normal human intervertebral disc. J. Anat. 186(Pt 1), 43 (1995).
Tekari, A. et al. Angiopoietin-1 receptor Tie2 distinguishes multipotent differentiation capability in bovine coccygeal nucleus pulposus cells. Stem Cell Res Ther 7(1), 75 (2016).
Nakazawa, K. R. et al. Accumulation and localization of macrophage phenotypes with human intervertebral disc degeneration. The Spine J. 18(2), 343–356 (2018).
Kawakubo, A. et al. Investigation of resident and recruited macrophages following disc injury in mice. J. Orthop. Res. 38(8), 1703–1709 (2020).
Stevens, J. W. et al. CD44 expression in the developing and growing rat intervertebral disc. Dev. Dyn. 219(3), 381–390 (2000).
Piras, M. et al. CD44 is highly expressed in stem/progenitor cells originating the intervertebral discs in the human notochord. Eur. Rev. Med. Pharmacol. Sci. 26(22), 8502–8507 (2022).
Cherif, H., et al., Single-cell RNA-Seq analysis of cells from degenerating and non-degenerating intervertebral discs from the same individual reveals new biomarkers for intervertebral disc degeneration. Int. J. Mol. Sci. 23(7) (2022).
Culty, M. et al. The hyaluronate receptor is a member of the CD44 (H-CAM) family of cell surface glycoproteins. J. Cell Biol. 111(6 Pt 1), 2765–2774 (1990).
Cui, G. H. et al. Exosomes derived from hypoxia-preconditioned mesenchymal stromal cells ameliorate cognitive decline by rescuing synaptic dysfunction and regulating inflammatory responses in APP/PS1 mice. Faseb J. 32(2), 654–668 (2018).
Mariggiò, M. A. et al. Enhancement of fibroblast proliferation, collagen biosynthesis and production of growth factors as a result of combining sodium hyaluronate and aminoacids. Int. J. Immunopathol. Pharmacol. 22(2), 485–492 (2009).
Fujimoto, T. et al. CD44 binds a chondroitin sulfate proteoglycan, aggrecan. Int. Immunol. 13(3), 359–366 (2001).
Levesque, M. C. & Haynes, B. F. Cytokine induction of the ability of human monocyte CD44 to bind hyaluronan is mediated primarily by TNF-alpha and is inhibited by IL-4 and IL-13. J. Immunol. 159(12), 6184–6194 (1997).
Teixeira, G.Q., et al., A degenerative/proinflammatory intervertebral disc organ culture: An ex vivo model for anti-inflammatory drug and cell therapy. Tissue Eng. Part C, Methods 22(1): 8–19 (2016).
Molinos, M., et al., Alterations of bovine nucleus pulposus cells with aging. Aging Cell e13873 (2023).
Caldeira, J. et al. Matrisome profiling during intervertebral disc development and ageing. Sci. Rep. 7(1), 11629–11629 (2017).
Calió, M., et al., The cellular composition of bovine coccygeal intervertebral discs: A comprehensive single-cell RNAseq analysis. Int. J. Mol. Sci. 22(9) (2021).
Elshamly, M. et al. Galectins-1 and -3 in human intervertebral disc degeneration: Non-uniform distribution profiles and activation of disease markers involving NF-κB by Galectin-1. J. Orthop. Res. 37(10), 2204–2216 (2019).
Cao, S. et al. Major ceRNA regulation and key metabolic signature analysis of intervertebral disc degeneration. BMC Musculoskelet. Disord. 22(1), 249 (2021).
Rajasekaran, S. et al. Can scoliotic discs be controls for molecular studies in intervertebral disc research? Insights From Proteomics. Global Spine J. 12(4), 598–609 (2022).
Joos, H. et al. IL-1beta regulates FHL2 and other cytoskeleton-related genes in human chondrocytes. Mol. Med. 14(3–4), 150–159 (2008).
Klaassen, C. D. & Boles, J. W. The importance of 3‘-phosphoadenosine 5‘-phosphosulfate (PAPS) in the regulation of sulfation. The FASEB J. 11(6), 404–418 (1997).
Paganini, C., Costantini, R. & Rossi, A. Analysis of proteoglycan synthesis and secretion in cell culture systems. Methods Mol. Biol. 1952, 71–80 (2019).
Silagi, E. S., Shapiro, I. M. & Risbud, M. V. Glycosaminoglycan synthesis in the nucleus pulposus: Dysregulation and the pathogenesis of disc degeneration. Matrix Biol. 71–72, 368–379 (2018).
Brown, R. G., Button, G. M. & Smith, J. T. Changes in collagen metabolism caused by feeding diets low in inorganic sulfur. J. Nutr. 87(2), 228–232 (1965).
Kobayashi, D., et al., The effect of pantothenic acid deficiency on keratinocyte proliferation and the synthesis of keratinocyte growth factor and collagen in fibroblasts. J. Pharmacol. Sci. advpub, 1101140493–1101140493 (2011).
Lakshmi, R., Lakshmi, A. V. & Bamji, M. S. Skin wound healing in riboflavin deficiency. Biochem. Med. Metab. Biol. 42(3), 185–191 (1989).
Herscovics, A., 3.02 – Glycosidases of the Asparagine-linked Oligosaccharide Processing Pathway, in Comprehensive Natural Products Chemistry, S.D. Barton, K. Nakanishi, and O. Meth-Cohn, Editors. 1999, Pergamon: Oxford. 13–35.
Wopereis, S. et al. Mechanisms in protein O-Glycan biosynthesis and clinical and molecular aspects of protein O-Glycan biosynthesis defects: A review. Clin. Chem 52(4), 574–600 (2006).
Lee, S. et al. Comparison of growth factor and cytokine expression in patients with degenerated disc disease and herniated nucleus pulposus. Clin. Biochem. 42(15), 1504–1511 (2009).
Peng, J. et al. Inhibition of telomere recombination by inactivation of KEOPS subunit Cgi121 promotes cell longevity. PLoS Gene. 11(3), e1005071–e1005071 (2015).
Zhang, Y., et al., Changes in Nucleus Pulposus Cell Pools in “Healer” Mice for the Repair of Intervertebral Disc Degeneration. Global Spine J. 5(1_suppl), s-0035–1554499-s-0035–1554499 (2015).
Vélez-Cruz, R. et al. RB localizes to DNA double-strand breaks and promotes DNA end resection and homologous recombination through the recruitment of BRG1. Genes Dev. 30(22), 2500–2512 (2016).
Harada, H. et al. Phosphorylation and inactivation of BAD by mitochondria-anchored protein kinase A. Mol. Cell 3(4), 413–422 (1999).
Mukai, J. et al. NADE, a p75NTR-associated Cell Death Executor, Is Involved in Signal Transduction Mediated by the Common Neurotrophin Receptor p75NTR*. J. Biol. Chem. 275(23), 17566–17570 (2000).
Paulson, J. R. Inactivation of Cdk1/Cyclin B in metaphase-arrested mouse FT210 cells induces exit from mitosis without chromosome segregation or cytokinesis and allows passage through another cell cycle. Chromosoma 116(2), 215–225 (2007).
Kritschil, R. et al. Effects of suppressing bioavailability of insulin-like growth factor on age-associated intervertebral disc degeneration. JOR SPINE 3(4), e1112 (2020).
Ouyang, Z.-H. et al. The PI3K/Akt pathway: a critical player in intervertebral disc degeneration. Oncotarget 8(34), 57870–57881 (2017).
Risbud, M.V., et al., Nucleus Pulposus Cells Upregulate PI3K/Akt and MEK/ERK signaling pathways under hypoxic conditions and resist apoptosis induced by serum withdrawal. Spine 30(8) (2005).
Zhou, Q. et al. Calcium phosphate cement causes nucleus pulposus cell degeneration through the ERK signaling pathway. Open Life Sci. 15(1), 209–216 (2020).
Guda, K. et al. Inactivating germ-line and somatic mutations in polypeptide <em>N</em>-acetylgalactosaminyltransferase 12 in human colon cancers. Proc. Natl. Acad. Sci. 106(31), 12921–12925 (2009).
Karamatic Crew, V. et al. New mutations in C1GALT1C1 in individuals with Tn positive phenotype. British J. Haematol. 142(4), 657–667 (2008).
Peluso, G. et al. Loss of the disease-associated glycosyltransferase Galnt3 alters Muc10 glycosylation and the composition of the oral microbiome. J. Biol. Chem. 295(5), 1411–1425 (2020).
Diaz-Romero, J. et al. Immunophenotypic changes of human articular chondrocytes during monolayer culture reflect bona fide dedifferentiation rather than amplification of progenitor cells. J. Cell Physiol. 214(1), 75–83 (2008).
Wang, H. et al. Distinguishing characteristics of stem cells derived from different anatomical regions of human degenerated intervertebral discs. Eur. Spine J. 25(9), 2691–2704 (2016).
Zhang, G. et al. CD44 clustering is involved in monocyte differentiation. Acta Biochim. Biophys. Sin. (Shanghai) 46(7), 540–547 (2014).
Wu, H. et al. Regenerative potential of human nucleus pulposus resident stem/progenitor cells declines with ageing and intervertebral disc degeneration. Int. J. Mol. Med. 42(4), 2193–2202 (2018).
Govindaraju, P. et al. CD44-dependent inflammation, fibrogenesis, and collagenolysis regulates extracellular matrix remodeling and tensile strength during cutaneous wound healing. Matrix Biol.: J. Int. Soc. Matrix Biol. 75–76, 314–330 (2019).
Mahlapuu, M. et al. The forkhead transcription factor Foxf1 is required for differentiation of extra-embryonic and lateral plate mesoderm. Development 128(2), 155–166 (2001).
Ren, X. et al. FOXF1 transcription factor is required for formation of embryonic vasculature by regulating VEGF signaling in endothelial cells. Circ. Res. 115(8), 709–720 (2014).
Fernandes, L.M., et al., Single-cell RNA-seq identifies unique transcriptional landscapes of human nucleus pulposus and annulus fibrosus cells. Sci. Rep. 10(1) (2020).
Richardson, S. M. et al. Notochordal and nucleus pulposus marker expression is maintained by sub-populations of adult human nucleus pulposus cells through aging and degeneration. Sci. Rep. 7(1), 1501 (2017).
Grant, M. P. et al. Human cartilaginous endplate degeneration is induced by calcium and the extracellular calcium-sensing receptor in the intervertebral disc. Eur. Cell Mater. 32, 137–151 (2016).
Roberts, S., Ayad, S. & Menage, P. J. Immunolocalisation of type VI collagen in the intervertebral disc. Ann. Rheum. Dis. 50(11), 787–791 (1991).
Nerlich, A. G. et al. Immunolocalization of major interstitial collagen types in human lumbar intervertebral discs of various ages. Virchows Archiv. 432(1), 67–76 (1998).
Chen, P. et al. Collagen VI regulates peripheral nerve regeneration by modulating macrophage recruitment and polarization. Acta Neuropathol. 129(1), 97–113 (2015).
Stoeckli, E.T., Understanding axon guidance: are we nearly there yet? Development 145(10) (2018).
Binch, A. L. A. et al. Nerves are more abundant than blood vessels in the degenerate human intervertebral disc. Arthr. Res. Ther. 17(1), 370 (2015).
Javanmard, D. et al. Investigation of CTNNB1 gene mutations and expression in hepatocellular carcinoma and cirrhosis in association with hepatitis B virus infection. Infect. Agents Cancer 15(1), 37 (2020).
van Neerven, S. M. et al. Apc-mutant cells act as supercompetitors in intestinal tumour initiation. Nature 594(7863), 436–441 (2021).
Pizzute, T. et al. Impact of Wnt signals on human intervertebral disc cell regeneration. J. Orthop. Res.: Off. Publ. Orthop. Res. Soc. 36(12), 3196–3207 (2018).
Holguin, N. & Silva, M. J. In-vivo nucleus pulposus-specific regulation of adult murine intervertebral disc degeneration via Wnt/Beta-catenin signaling. Sci. Rep. 8(1), 11191 (2018).
Aldiri, I. & Vetter, M. L. PRC2 during vertebrate organogenesis: a complex in transition. Dev. Biol. 367(2), 91–99 (2012).
Deimling, S.J., Olsen, J.B., Tropepe, V., The expanding role of the Ehmt2/G9a complex in neurodevelopment. Neurogenesis (Austin, Tex.) 4(1), e1316888-e1316888 (2017).
Ikuno, A. et al. Genome-wide analysis of DNA methylation profile identifies differentially methylated loci associated with human intervertebral disc degeneration. PloS one 14(9), e0222188–e0222188 (2019).
Konopka, A. et al. Cleavage of hyaluronan and CD44 adhesion molecule regulate astrocyte morphology via rac1 signalling. PLOS ONE 11(5), e0155053 (2016).
Foger, N., Marhaba, R. & Zoller, M. Involvement of CD44 in cytoskeleton rearrangement and raft reorganization in T cells. J. Cell Sci. 114(6), 1169–1178 (2001).
Roszkowska, M. et al. CD44: A novel synaptic cell adhesion molecule regulating structural and functional plasticity of dendritic spines. Mol. Biol. Cell 27(25), 4055–4066 (2016).
Hermiston, M. L., Xu, Z. & Weiss, A. CD45: A critical regulator of signaling thresholds in immune cells. Annu. Rev. Immunol. 21, 107–137 (2003).
Maleki, M. et al. Comparison of mesenchymal stem cell markers in multiple human adult stem cells. Int. J. Stem Cells 7(2), 118–126 (2014).
Zamoyska, R. Why is there so much CD45 on T cells?. Immunity 27(3), 421–423 (2007).
Huang, Y. et al. Src-family kinases activation in spinal microglia contributes to central sensitization and chronic pain after lumbar disc herniation. Mol. Pain 13, 1744806917733637 (2017).
Gao, G. et al. Periodic mechanical stress induces extracellular matrix expression and migration of rat nucleus pulposus cells through Src-GIT1-ERK1/2 signaling pathway. Cell Physiol. Biochem. 50(4), 1510–1521 (2018).
Rangaraju, S. et al. Differential phagocytic properties of CD45(low) microglia and CD45(high) brain mononuclear phagocytes-activation and age-related effects. Front. Immunol. 9, 405 (2018).
Jersmann, H. P. A. Time to abandon dogma: CD14 is expressed by non-myeloid lineage cells. Immunol. Cell Biol. 83(5), 462–467 (2005).
Miyagi, M. et al. Role of CD14-positive cells in inflammatory cytokine and pain-related molecule expression in human degenerated intervertebral discs. J. Orthop. Res. 39(8), 1755–1762 (2021).
Jones, P. et al. Intervertebral disc cells as competent phagocytes in vitro: Implications for cell death in disc degeneration. Arthr. Res. Ther. 10(4), R86 (2008).
Johnson, W. E., Stephan, S. & Roberts, S. The influence of serum, glucose and oxygen on intervertebral disc cell growth in vitro: implications for degenerative disc disease. Arthr. Res. Ther. 10(2), R46 (2008).
Tu, J. et al. Single-cell transcriptome profiling reveals multicellular ecosystem of nucleus pulposus during degeneration progression. Adv. Sci. (Weinh) 9(3), e2103631 (2022).
Gruber, H. E. et al. Human annulus signaling cues for nerve outgrowth: In vitro studies. J. Orthop. Res. 34(8), 1456–1465 (2016).
Menko, A. S. et al. Resident immune cells of the avascular lens: Mediators of the injury and fibrotic response of the lens. The FASEB J. 35(4), e21341 (2021).
- SEO Powered Content & PR Distribution. Get Amplified Today.
- PlatoData.Network Vertical Generative Ai. Empower Yourself. Access Here.
- PlatoAiStream. Web3 Intelligence. Knowledge Amplified. Access Here.
- PlatoESG. Carbon, CleanTech, Energy, Environment, Solar, Waste Management. Access Here.
- PlatoHealth. Biotech and Clinical Trials Intelligence. Access Here.
- Source: https://www.nature.com/articles/s41598-024-59504-7