Search
Close this search box.

Differential expression and global analysis of miR156/SQUAMOSA promoter binding-like proteins (SPL) module in oat – Scientific Reports

  • Yan, H. et al. Genome size variation in the genus Avena. Genome 59, 209–220 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Kamal, N. et al. The mosaic oat genome gives insights into a uniquely healthy cereal crop. Nature 606, 113–119 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Griffiths, S. et al. Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat. Nature 439, 749–752 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Alabdullah, A. K., Moore, G. & Martín, A. C. A Duplicated Copy of the Meiotic Gene ZIP4 Preserves up to 50% Pollen Viability and Grain Number in Polyploid Wheat. Biology (Basel) 10, (2021).

  • Rey, M. D. et al. Exploiting the ZIP4 homologue within the wheat Ph1 locus has identified two lines exhibiting homoeologous crossover in wheat-wild relative hybrids. Mol Breed 37, (2017).

  • Liu, L., White, M. J. & MacRae, T. H. Transcription factors and their genes in higher plants functional domains, evolution and regulation. Eur. J. Biochem. 262, 247–257 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, Y. & Jack, T. Defining subdomains of the K domain important for protein-protein interactions of plant MADS proteins. Plant Mol. Biol. 55, 45–59 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Birkenbihl, R. P., Jach, G., Saedler, H. & Huijser, P. Functional dissection of the plant-specific SBP-domain: Overlap of the DNA-binding and nuclear localization domains. J. Mol. Biol. 352, 585–596 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cardon, G. et al. Molecular characterisation of the Arabidopsis SBP-box genes. Gene 237, 91–104 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yamasaki, K. et al. Structures and evolutionary origins of plant-specific transcription factor DNA-binding domains. Plant Physiol. Biochem. 46, 394–401 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo, F., Lu, Q. & Cang, J. Genome-wide identification and expression profiling of the SPL family genes in wheat. Botany 99, 185–198 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Xie, K., Wu, C. & Xiong, L. Genomic organization, differential expression, and interaction of SQUAMOSA promoter-binding-like transcription factors and microRNA156 in rice. Plant Physiol. 142, 280–293 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tripathi, R. K., Bregitzer, P. & Singh, J. Genome-wide analysis of the SPL/miR156 module and its interaction with the AP2/miR172 unit in barley. Sci. Rep. 8, 1–13 (2018).

    Article 

    Google Scholar
     

  • Tripathi, R. K., Overbeek, W. & Singh, J. Global analysis of SBP gene family in Brachypodium distachyon reveals its association with spike development. Sci. Rep. 10, 1–15 (2020).

    Article 

    Google Scholar
     

  • Hu, J. et al. The Elite Alleles of OsSPL4 Regulate Grain Size and Increase Grain Yield in Rice. Rice 14, 1 (2021).

  • Jung, J. H., Seo, P. J., Kang, S. K. & Park, C. M. miR172 signals are incorporated into the miR156 signaling pathway at the SPL3/4/5 genes in Arabidopsis developmental transitions. Plant Mol. Biol. 76, 35–45 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Unte, U. S. et al. SPL8, an SBP-box gene that affects pollen sac development in Arabidopsis. Plant Cell 15, 1009–1019 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xing, S., Salinas, M., Höhmann, S., Berndtgen, R. & Huijser, P. miR156-targeted and nontargeted SBP-box transcription factors act in concert to secure male fertility in Arabidopsis. Plant Cell 22, 3935–3950 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y., Schwarz, S., Saedler, H. & Huijser, P. SPL8, a local regulator in a subset of gibberellin-mediated developmental processes in Arabidopsis. Plant Mol. Biol. 63, 429–439 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gandikota, M. et al. The miRNA156/157 recognition element in the 3’ UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings. Plant J. 49, 683–693 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yamasaki, H., Hayashi, M., Fukazawa, M., Kobayashi, Y. & Shikanai, T. SQUAMOSA promoter binding protein-like 7 is a central regulator for copper homeostasis in Arabidopsis. Plant Cell 21, 347–361 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kadoll, S. K. et al. Interplay of starch debranching enzyme and its inhibitor is mediated by Redox-Activated SPL transcription factor. Comput. Struct. Biotechnol. J. 20, 5342–5349 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, R. C., Feinbaum, R. L. & Ambros, V. T. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, H. & Wang, H. The miR156/SPL module, a regulatory hub and versatile toolbox, gears up crops for enhanced agronomic traits. Mol. Plant 8, 677–688 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bartel, D. P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, J. W. et al. miRNA control of vegetative phase change in trees. PLoS Genet 7, (2011).

  • Wang, Y., Wu, F., Bai, J. & He, Y. BrpSPL9 (Brassica rapa ssp. pekinensis SPL9) controls the earliness of heading time in Chinese cabbage. Plant Biotechnol. J. 12, 312–321 (2014).

  • Bergonzi, S. et al. Mechanisms of age-dependent response to winter temperature in perennial flowering of Arabis alpina. Science 340, 1094–1097 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, C. M. et al. Molecular basis of age-dependent vernalization in Cardamine flexuosa. Science 340, 1097–1100 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Thakur, V. et al. Characterization of statistical features for plant microRNA prediction. BMC Genomics 12, (2011).

  • Guo, A. Y. et al. Genome-wide identification and evolutionary analysis of the plant specific SBP-box transcription factor family. Gene 418, 1–8 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, T. et al. Genome-wide identification, phylogeny and expression analysis of the SPL gene family in wheat. BMC Plant Biol. 20, 1–14 (2020).

    CAS 

    Google Scholar
     

  • Mao, H. D. et al. Genome-wide analysis of the SPL family transcription factors and their responses to abiotic stresses in maize. Plant Gene 6, 1–12 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Tripathi, R. K., Goel, R., Kumari, S. & Dahuja, A. Genomic organization, phylogenetic comparison, and expression profiles of the SPL family genes and their regulation in soybean. Dev Genes Evol. 227, 101–119 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lai, D. et al. Genome-wide identification and characterization of the SPL gene family and its expression in the various developmental stages and stress conditions in foxtail millet (Setaria italica). BMC Genomics 23, 1–20 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, Z. et al. Comparative study of SBP-box gene family in Arabidopsis and rice. Gene 407, 1–11 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Walther, D., Brunnemann, R. & Selbig, J. The regulatory code for transcriptional response diversity and its relation to genome structural properties in A. thaliana. PLoS Genet 3, 0216–0229 (2007).

  • Arshad, M., Feyissa, B. A., Amyot, L., Aung, B. & Hannoufa, A. MicroRNA156 improves drought stress tolerance in alfalfa (Medicago sativa) by silencing SPL13. Plant Sci. 258, 122–136 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Phukan, U. J., Jeena, G. S. & Shukla, R. K. WRKY transcription factors: Molecular regulation and stress responses in plants. Front. Plant Sci. 7, 760 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tripathi, R. K., Aguirre, J. A. & Singh, J. Genome-wide analysis of wall associated kinase (WAK) gene family in barley. Genomics 113, 523–530 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ye, B. Bin et al. AP2/ERF transcription factors integrate age and wound signals for root regeneration. Plant Cell 32, 226–241 (2020).

  • Chuck, G. S. et al. Overexpression of the maize Corngrass1 microRNA prevents flowering, improves digestibility, and increases starch content of switchgrass. Proc. Natl. Acad. Sci. U S A 108, 17550–17555 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, X. et al. Over-expression of sly-miR156a in tomato results in multiple vegetative and reproductive trait alterations and partial phenocopy of the sft mutant. FEBS Lett. 585, 435–439 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, J. W., Czech, B. & Weigel, D. miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell 138, 738–749 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tanzer, A. & Stadler, P. F. Molecular evolution of a microRNA cluster. J. Mol. Biol. 339, 327–335 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Salvador-Guirao, R., Hsing, Y. I. & San Segundo, B. The Polycistronic miR166k-166h positively regulates rice immunity via post-transcriptional control of EIN2. Front. Plant. Sci. 9, 1 (2018).

  • Li, L. et al. Conservation and Divergence of squamosa-promoter binding protein-like (SPL) gene family between wheat and rice. Int. J. Mol. Sci. 23, 1 (2022).

    ADS 

    Google Scholar
     

  • Peng, X., Wang, Q., Zhao, Y., Li, X. & Ma, Q. Comparative genome analysis of the spl gene family reveals novel evolutionary features in maize. Genet. Mol. Biol. 42, 380–394 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Y. et al. MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 40, (2012).

  • Wang, Y. et al. shinyCircos-V2.0: Leveraging the creation of Circos plot with enhanced usability and advanced features. iMeta e109 (2023). https://doi.org/10.1002/IMT2.109.

  • Singh, J. & Nagaraju, J. In silico prediction and characterization of microRNAs from red flour beetle (Tribolium castaneum). 17, 427–436 (2008).

    CAS 

    Google Scholar
     

  • Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, Y. & Yang, X. Computational Identification of Novel MicroRNAs and Their Targets in Vigna unguiculata. Comp. Funct. Genomics 2010, (2010).

  • Lescot, M. et al. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 30, 325–327 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heberle, H., Meirelles, V. G., da Silva, F. R., Telles, G. P. & Minghim, R. InteractiVenn: A web-based tool for the analysis of sets through Venn diagrams. BMC Bioinf. 16, 1–7 (2015).

    Article 

    Google Scholar
     

  • Vennapusa, A. R., Somayanda, I. M., Doherty, C. J. & Jagadish, S. V. K. A universal method for high-quality RNA extraction from plant tissues rich in starch, proteins and fiber. Sci. Rep. 10, 1 (2020).

    Article 

    Google Scholar
     

  • Mahmoud, M. et al. Toward the development of Ac/Ds transposon-mediated gene tagging system for functional genomics in oat (Avena sativa L.) Funct. Integr. Genomics. 22(4), 669–681 (2022)

  • Yang, Z., Wang, K., Aziz, U., Zhao, C. & Zhang, M. Evaluation of duplicated reference genes for quantitative real-time PCR analysis in genome unknown hexaploid oat (Avena sativa L.). Plant Methods 16, 1–14 (2020).

  • Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402–408 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar