Search
Close this search box.

Development of an iPSC-derived tissue-resident macrophage-based platform for the in vitro immunocompatibility assessment of human tissue engineered matrices – Scientific Reports

  • Coffey, S., Cairns, B. J. & Iung, B. The modern epidemiology of heart valve disease. Heart 102, 75. https://doi.org/10.1136/heartjnl-2014-307020 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Poulis, N. et al. Tissue engineered heart valves for transcatheter aortic valve implantation: Current state, challenges, and future developments. Expert Rev. Cardiovasc. Ther. 18, 681–696 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Motta, S. E., Lintas, V., Fioretta, E. S., Hoerstrup, S. P. & Emmert, M. Y. Off-the-shelf tissue engineered heart valves for in situ regeneration: Current state, challenges and future directions. Expert Rev. Med. Devices 15, 35–45. https://doi.org/10.1080/17434440.2018.1419865 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fioretta, E. S. et al. Next-generation tissue-engineered heart valves with repair, remodelling and regeneration capacity. Nat. Rev. Cardiol. 18, 92–116. https://doi.org/10.1038/s41569-020-0422-8 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Weber, B., Emmert, M. Y. & Hoerstrup, S. P. Stem cells for heart valve regeneration. Swiss Med. Wkly. 142, w13622. https://pubmed.ncbi.nlm.nih.gov/22802212/ (2012).

  • Motta, S. E. et al. Human cell-derived tissue-engineered heart valve with integrated Valsalva sinuses: Towards native-like transcatheter pulmonary valve replacements. NPJ Regen. Med. 4, 14 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Motta, S. E. et al. Development of an off-the-shelf tissue-engineered sinus valve for transcatheter pulmonary valve replacement: A proof-of-concept study. J. Cardiovasc. Transl. Res. 11, 182–191 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Lintas, V. et al. Development of a novel human cell-derived tissue-engineered heart valve for transcatheter aortic valve replacement: An in vitro and in vivo feasibility study. J. Cardiovasc. Transl. Res. 11, 470–482 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Poulis, N. et al. Multiscale analysis of human tissue engineered matrices for heart valve tissue engineering applications. Acta Biomater. 158, 43. https://doi.org/10.1016/j.actbio.2023.01.007 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Emmert, M. Y. et al. Computational modeling guides tissue-engineered heart valve design for long-term in vivo performance in a translational sheep model. Sci. Transl. Med. 10, 4587 (2018).

    Article 

    Google Scholar
     

  • Wissing, T. B., Bonito, V., Bouten, C. V. C. & Smits, A. I. P. M. Biomaterial-driven in situ cardiovascular tissue engineering—A multi-disciplinary perspective. NPJ Regen. Med. 2, 1–19. https://doi.org/10.1038/s41536-017-0023-2 (2017).

    Article 

    Google Scholar
     

  • Lyadova, I., Gerasimova, T. & Nenasheva, T. Macrophages derived from human induced pluripotent stem cells: The diversity of protocols, future prospects, and outstanding questions. Front. Cell Dev. Biol. 9, 924. https://doi.org/10.3389/fcell.2021.640703 (2021).

    Article 

    Google Scholar
     

  • Reinke, J. M. & Sorg, H. Wound repair and regeneration. Eur. Surg. Res. 49, 35–43. https://doi.org/10.1159/000339613 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sanders, B., Driessen-Mol, A., Bouten, C. V. C. & Baaijens, F. P. T. The effects of scaffold remnants in decellularized tissue-engineered cardiovascular constructs on the recruitment of blood cells. Tissue Eng. A 23, 0503 (2017).

    Article 

    Google Scholar
     

  • Bonito, V., de Kort, B. J., Bouten, C. V. C. & Smits, A. I. P. M. Cyclic strain affects macrophage cytokine secretion and extracellular matrix turnover in electrospun scaffolds. Tissue Eng. A 25, 1310–1325 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Smits, A. I. P. M., Ballotta, V., Driessen-Mol, A., Bouten, C. V. C. & Baaijens, F. P. T. Shear flow affects selective monocyte recruitment into MCP-1-loaded scaffolds. J. Cell. Mol. Med. 18, 2176 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bonito, V. et al. Modulation of macrophage phenotype and protein secretion via heparin-IL-4 functionalized supramolecular elastomers. Acta Biomater. 71, 247–260 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Battiston, K. G., Labow, R. S., Simmons, C. A. & Santerre, J. P. Immunomodulatory polymeric scaffold enhances extracellular matrix production in cell co-cultures under dynamic mechanical stimulation. Acta Biomater. 24, 74–86 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ballotta, V., Smits, A. I. P. M., Driessen-Mol, A., Bouten, C. V. C. & Baaijens, F. P. T. Synergistic protein secretion by mesenchymal stromal cells seeded in 3D scaffolds and circulating leukocytes in physiological flow. Biomaterials 35, 9100–9113 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shrestha, S., McFadden, M. J., Gramolini, A. O. & Santerre, J. P. Proteome analysis of secretions from human monocyte-derived macrophages post-exposure to biomaterials and the effect of secretions on cardiac fibroblast fibrotic character. Acta Biomater. 111, 80–90 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Koch, S. E. et al. Donor heterogeneity in the human macrophage response to a biomaterial under hyperglycemia in vitro. Tissue Eng. C Methods 28, 440–456 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Hoeffel, G. & Ginhoux, F. Fetal monocytes and the origins of tissue-resident macrophages. Cell Immunol. 330, 5–15 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • King, I. L. et al. Alveolar macrophages in the resolution of inflammation, tissue repair, and tolerance to infection. Immunology 9, 1777 (2018).


    Google Scholar
     

  • van de Laar, L. et al. Yolk sac macrophages, fetal liver, and adult monocytes can colonize an empty niche and develop into functional tissue-resident macrophages. Immunity 44, 755–768 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Davies, L. C., Jenkins, S. J., Allen, J. E. & Taylor, P. R. Tissue-resident macrophages. Nat. Immunol. 14, 986–995 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sheng, J., Ruedl, C. & Karjalainen, K. Most tissue-resident macrophages except microglia are derived from fetal hematopoietic stem cells. Immunity 43, 382–393 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Honold, L. & Nahrendorf, M. Resident and monocyte-derived macrophages in cardiovascular disease. Circ. Res. 122, 113 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tasnim, F. et al. Generation of mature kupffer cells from human induced pluripotent stem cells. Biomaterials 192, 377–391 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ackermann, M. et al. Continuous human iPSC-macrophage mass production by suspension culture in stirred tank bioreactors. Nat. Protoc. 17(2), 513–539. https://doi.org/10.1038/s41596-021-00654-7 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buchrieser, J., James, W. & Moore, M. D. Human induced pluripotent stem cell-derived macrophages share ontogeny with MYB-independent tissue-resident macrophages. Stem Cell Rep. 8, 334–345 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Gutbier, S. et al. Large-scale production of human IPSC-derived macrophages for drug screening. Int. J. Mol. Sci. 21, 1–23 (2020).

    Article 

    Google Scholar
     

  • Monkley, S. et al. Optimised generation of iPSC-derived macrophages and dendritic cells that are functionally and transcriptionally similar to their primary counterparts. PLoS ONE 15(12), e0243807. https://doi.org/10.1371/journal.pone.0243807 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miyaoka, Y. et al. Isolation of single-base genome-edited human iPS cells without antibiotic selection. Nat. Methods 11, 291–293 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Okita, K. et al. A more efficient method to generate integration-free human iPS cells. Nat. Methods 8, 409–412 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mol, A. et al. Fibrin as a cell carrier in cardiovascular tissue engineering applications. Biomaterials 26, 3113–3121 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dijkman, P. E., Driessen-Mol, A., Frese, L., Hoerstrup, S. P. & Baaijens, F. P. T. T. Decellularized homologous tissue-engineered heart valves as off-the-shelf alternatives to xeno- and homografts. Biomaterials 33, 4545–4554 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Smyth, G. K. Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3, 1 (2004).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Ginhoux, F. & Guilliams, M. Tissue-resident macrophage ontogeny and homeostasis. Immunity 44, 439–449 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Syedain, Z. et al. 6-Month aortic valve implantation of an off-the-shelf tissue-engineered valve in sheep. Biomaterials 73, 175–184 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reimer, J. M., Syedain, Z. H., Haynie, B. H. T. & Tranquillo, R. T. Pediatric tubular pulmonary heart valve from decellularized engineered tissue tubes. Biomaterials 62, 88–94 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mol, A. et al. Tissue engineering of human heart valve leaflets: A novel bioreactor for a strain-based conditioning approach. Ann. Biomed. Eng. 33, 1778–1788 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Reimer, J. et al. Implantation of a tissue-engineered tubular heart valve in growing lambs. Ann. Biomed. Eng. 45, 439–451 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Crapo, P. M., Gilbert, T. W. & Badylak, S. F. An overview of tissue and whole organ decellularization processes. Biomaterials 32, 3233–3243 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, C. Z. W., Kozaki, T. & Ginhoux, F. Studying tissue macrophages in vitro: Are iPSC-derived cells the answer?. Nat. Rev. Immunol. 18, 716–725. https://doi.org/10.1038/s41577-018-0054-y (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, H. et al. Functional analysis and transcriptomic profiling of iPSC-derived macrophages and their application in modeling Mendelian disease. Circ. Res. 117, 17–28 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mucci, A. et al. iPSC-derived macrophages effectively treat pulmonary alveolar proteinosis in Csf2rb-deficient mice. Stem Cell Rep. 11, 696–710 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Revelo, X. S. et al. Cardiac resident macrophages prevent fibrosis and stimulate angiogenesis. Circ. Res. 129, 1086–1101 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lyadova, I. & Vasiliev, A. Macrophages derived from pluripotent stem cells: Prospective applications and research gaps. Cell Biosci. 12, 4. https://doi.org/10.1186/s13578-022-00824-4 (2022).

    Article 

    Google Scholar
     

  • Poulis, N., Martin, M., Hoerstrup, S. P., Emmert, M. Y. & Fioretta, E. S. Macrophage-extracellular matrix interactions: Perspectives for tissue engineered heart valve remodeling. Front. Cardiovasc. Med. 9, 2474 (2022).

    Article 

    Google Scholar
     

  • Makita, N., Hizukuri, Y., Yamashiro, K., Murakawa, M. & Hayashi, Y. IL-10 enhances the phenotype of M2 macrophages induced by IL-4 and confers the ability to increase eosinophil migration. Int. Immunol. 27, 131–141 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Flynn, C. M. et al. Activation of toll-like receptor 2 (TLR2) induces interleukin-6 trans-signaling. Sci. Rep. 9, 7306 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cohen, P. The TLR and IL-1 signalling network at a glance. J. Cell Sci. 127, 2383–2390 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johnson, B. Z., Stevenson, A. W., Prêle, C. M., Fear, M. W. & Wood, F. M. The role of IL-6 in skin fibrosis and cutaneous wound healing. Biomedicines 8, 101 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, W. et al. Necrotic myocardial cells release damage-associated molecular patterns that provoke fibroblast activation in vitro and trigger myocardial inflammation and fibrosis in vivo. J. Am. Heart Assoc. 4, e001993 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morris, A. H., Stamer, D. K. & Kyriakides, T. R. The host response to naturally-derived extracellular matrix biomaterials. Semin. Immunol. 29, 72–91 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zaytseva, P. et al. Xenogeneic serum-free human cell-derived tissue engineered matrices for the development of clinical-grade biomimetic cardiovascular devices. Adv. Ther. 6, 2300041 (2023).

    Article 
    CAS 

    Google Scholar