Search
Close this search box.

Development of a three-dimensional organoid model to explore early retinal phenotypes associated with Alzheimer’s disease – Scientific Reports

  • Gaugler, J. et al. Alzheimer’s disease facts and figures. Alzheimers Dement. 18, 700–789. https://doi.org/10.1002/alz.12638 (2022).

    Article  Google Scholar 

  • Blennow, K., de Leon, M. J. & Zetterberg, H. Alzheimer’s disease. Lancet 368, 387–403. https://doi.org/10.1016/s0140-6736(06)69113-7 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Braak, H., de Vos, R. A., Jansen, E. N., Bratzke, H. & Braak, E. Neuropathological hallmarks of Alzheimer’s and Parkinson’s diseases. Prog .Brain Res. 117, 267–285. https://doi.org/10.1016/s0079-6123(08)64021-2 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Selkoe, D. J. Cell biology of protein misfolding: The examples of Alzheimer’s and Parkinson’s diseases. Nat. Cell Biol. 6, 1054–1061. https://doi.org/10.1038/ncb1104-1054 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Neuner, S. M., Tcw, J. & Goate, A. M. Genetic architecture of Alzheimer’s disease. Neurobiol. Dis. 143, 104976. https://doi.org/10.1016/j.nbd.2020.104976 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pimenova, A. A., Raj, T. & Goate, A. M. Untangling genetic risk for Alzheimer’s disease. Biol. Psychiatr. 83, 300–310. https://doi.org/10.1016/j.biopsych.2017.05.014 (2018).

    Article  CAS  Google Scholar 

  • Cummings, J., Ritter, A. & Zhong, K. Clinical trials for disease-modifying therapies in Alzheimer’s disease: A primer, lessons learned, and a blueprint for the future. J. Alzheimers Dis. 64, S3-s22. https://doi.org/10.3233/jad-179901 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosenberger, A. F. N. et al. Altered distribution of the EphA4 kinase in hippocampal brain tissue of patients with Alzheimer’s disease correlates with pathology. Acta Neuropathol. Commun. 2, 79. https://doi.org/10.1186/s40478-014-0079-9 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Frisoni, G. B. et al. Strategic roadmap for an early diagnosis of Alzheimer’s disease based on biomarkers. Lancet Neurol. 16, 661–676. https://doi.org/10.1016/S1474-4422(17)30159-X (2017).

    Article  PubMed  Google Scholar 

  • Rasmussen, J. & Langerman, H. Alzheimer’s disease—why we need early diagnosis. Degener. Neurol. Neuromuscul. Dis. 9, 123–130. https://doi.org/10.2147/dnnd.S228939 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Dehabadi, M. H., Davis, B. M., Wong, T. K. & Cordeiro, M. F. Retinal manifestations of Alzheimer’s disease. Neurodegener. Dis. Manag. 4, 241–252. https://doi.org/10.2217/nmt.14.19 (2014).

    Article  PubMed  Google Scholar 

  • Krantic, S. & Torriglia, A. Retina: Source of the earliest biomarkers for Alzheimer’s disease?. J. Alzheimers Dis. 40, 237–243. https://doi.org/10.3233/jad-132105 (2014).

    Article  PubMed  Google Scholar 

  • London, A., Benhar, I. & Schwartz, M. The retina as a window to the brain-from eye research to CNS disorders. Nat. Rev. Neurol. 9, 44–53. https://doi.org/10.1038/nrneurol.2012.227 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Hinton, D. R., Sadun, A. A., Blanks, J. C. & Miller, C. A. Optic-nerve degeneration in Alzheimer’s disease. N. Engl. J. Med. 315, 485–487. https://doi.org/10.1056/nejm198608213150804 (1986).

    Article  CAS  PubMed  Google Scholar 

  • Blanks, J. C., Hinton, D. R., Sadun, A. A. & Miller, C. A. Retinal ganglion cell degeneration in Alzheimer’s disease. Brain Res. 501, 364–372. https://doi.org/10.1016/0006-8993(89)90653-7 (1989).

    Article  CAS  PubMed  Google Scholar 

  • Hedges, T. R. 3rd. et al. Retinal nerve fiber layer abnormalities in Alzheimer’s disease. Acta Ophthalmol. Scand. 74, 271–275. https://doi.org/10.1111/j.1600-0420.1996.tb00090.x (1996).

    Article  PubMed  Google Scholar 

  • Sadun, A. A. & Bassi, C. J. Optic nerve damage in Alzheimer’s disease. Ophthalmology 97, 9–17. https://doi.org/10.1016/s0161-6420(90)32621-0 (1990).

    Article  CAS  PubMed  Google Scholar 

  • Ikram, M. K., Cheung, C. Y., Wong, T. Y. & Chen, C. P. L. H. Retinal pathology as biomarker for cognitive impairment and Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatr. 83, 917–922. https://doi.org/10.1136/jnnp-2011-301628 (2012).

    Article  Google Scholar 

  • Bissig, D., Zhou, C. G., Le, V. & Bernard, J. T. Optical coherence tomography reveals light-dependent retinal responses in Alzheimer’s disease. Neuroimage 219, 117022. https://doi.org/10.1016/j.neuroimage.2020.117022 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Valenti, D. A. Neuroimaging of retinal nerve fiber layer in AD using optical coherence tomography. Neurology 69, 1060–1060. https://doi.org/10.1212/01.wnl.0000280584.64363.83 (2007).

    Article  PubMed  Google Scholar 

  • Chiu, K. et al. Neurodegeneration of the retina in mouse models of Alzheimer’s disease: What can we learn from the retina?. Age 34, 633–649 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Chiquita, S. et al. The retina as a window or mirror of the brain changes detected in Alzheimer’s disease: Critical aspects to unravel. Mol. Neurobiol. 56, 5416–5435 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Mungenast, A. E., Siegert, S. & Tsai, L. H. Modeling Alzheimer’s disease with human induced pluripotent stem (iPS) cells. Mol. Cell Neurosci. 73, 13–31. https://doi.org/10.1016/j.mcn.2015.11.010 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Fligor, C. M. et al. Three-dimensional retinal organoids facilitate the investigation of retinal ganglion cell development, organization and neurite outgrowth from human pluripotent stem cells. Sci. Rep. 8, 1–14 (2018).

    Article  CAS  Google Scholar 

  • Capowski, E. E. et al. Reproducibility and staging of 3D human retinal organoids across multiple pluripotent stem cell lines. Development https://doi.org/10.1242/dev.171686 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Wahlin, K. J. et al. CRISPR generated SIX6 and POU4F2 reporters allow identification of brain and optic transcriptional differences in human psc-derived organoids. Front. Cell Dev. Biol. 9, 764725. https://doi.org/10.3389/fcell.2021.764725 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Mullin, N. K. et al. Patient derived stem cells for discovery and validation of novel pathogenic variants in inherited retinal disease. Prog. Retin. Eye Res. 83, 100918. https://doi.org/10.1016/j.preteyeres.2020.100918 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Meyer, J. S. et al. Optic vesicle-like structures derived from human pluripotent stem cells facilitate a customized approach to retinal disease treatment. Stem Cells 29, 1206–1218. https://doi.org/10.1002/stem.674 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Eldred, K. C. et al. Thyroid hormone signaling specifies cone subtypes in human retinal organoids. Science https://doi.org/10.1126/science.aau6348 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Sridhar, A., Ohlemacher, S. K., Langer, K. B. & Meyer, J. S. Robust differentiation of mRNA-reprogrammed human induced pluripotent stem cells toward a retinal lineage. Stem Cells Transl. Med. 5, 417–426. https://doi.org/10.5966/sctm.2015-0093 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Israel, M. A. et al. Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells. Nature 482, 216–220. https://doi.org/10.1038/nature10821 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Fligor, C. M., Huang, K.-C., Lavekar, S. S., VanderWall, K. B. & Meyer, J. S. in Methods in Cell Biology Vol. 159 279–302 (Elsevier, 2020).

  • Gomes, C. et al. Astrocytes modulate neurodegenerative phenotypes associated with glaucoma in OPTN(E50K) human stem cell-derived retinal ganglion cells. Stem Cell Rep. 17, 1636–1649. https://doi.org/10.1016/j.stemcr.2022.05.006 (2022).

    Article  CAS  Google Scholar 

  • Meyer, J. S. et al. Modeling early retinal development with human embryonic and induced pluripotent stem cells. Proc. Natl. Acad. Sci. 106, 16698–16703 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohlemacher, S. K., Iglesias, C. L., Sridhar, A., Gamm, D. M. & Meyer, J. S. Generation of highly enriched populations of optic vesicle-like retinal cells from human pluripotent stem cells. Curr. Protoc. Stem Cell Bio. https://doi.org/10.1002/9780470151808.sc01h08s32 (2015).

    Article  Google Scholar 

  • Ohlemacher, S. K. et al. Stepwise differentiation of retinal ganglion cells from human pluripotent stem cells enables analysis of glaucomatous neurodegeneration. Stem Cells 34, 1553–1562. https://doi.org/10.1002/stem.2356 (2016).

    Article  CAS  PubMed  Google Scholar 

  • VanderWall, K. B. et al. Retinal ganglion cells with a glaucoma OPTN(E50K) mutation exhibit neurodegenerative phenotypes when derived from three-dimensional retinal organoids. Stem Cell Rep. 15, 52–66. https://doi.org/10.1016/j.stemcr.2020.05.009 (2020).

    Article  CAS  Google Scholar 

  • VanderWall, K. B. et al. Astrocytes regulate the development and maturation of retinal ganglion cells derived from human pluripotent stem cells. Stem Cell Rep. 12, 201–212. https://doi.org/10.1016/j.stemcr.2018.12.010 (2019).

    Article  CAS  Google Scholar 

  • Grimaldi, A. et al. Inflammation, neurodegeneration and protein aggregation in the retina as ocular biomarkers for Alzheimer’s disease in the 3xTg-AD mouse model. Cell Death Dis. 9, 685. https://doi.org/10.1038/s41419-018-0740-5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grimaldi, A. et al. Neuroinflammatory processes, A1 astrocyte activation and protein aggregation in the retina of Alzheimer’s disease patients, possible biomarkers for early diagnosis. Front. Neurosci. 13, 925 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, Q. et al. Effect of potent γ-secretase modulator in human neurons derived from multiple presenilin 1-induced pluripotent stem cell mutant carriers. JAMA Neurol. 71, 1481–1489. https://doi.org/10.1001/jamaneurol.2014.2482 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • van der Kant, R. et al. Cholesterol metabolism is a druggable axis that independently regulates tau and amyloid-β in iPSC-derived Alzheimer’s disease neurons. Cell Stem Cell 24, 363-375.e369. https://doi.org/10.1016/j.stem.2018.12.013 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koronyo, Y. et al. Retinal amyloid pathology and proof-of-concept imaging trial in Alzheimer’s disease. JCI Insight https://doi.org/10.1172/jci.insight.93621 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • London, A., Benhar, I. & Schwartz, M. The retina as a window to the brain—from eye research to CNS disorders. Nat. Rev. Neurol. 9, 44–53. https://doi.org/10.1038/nrneurol.2012.227 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Asanad, S. et al. Retinal nerve fiber layer thickness predicts CSF amyloid/tau before cognitive decline. PLoS ONE 15, e0232785. https://doi.org/10.1371/journal.pone.0232785 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiasseu, M. et al. Tau accumulation in the retina promotes early neuronal dysfunction and precedes brain pathology in a mouse model of Alzheimer’s disease. Mol. Neurodegener. 12, 58. https://doi.org/10.1186/s13024-017-0199-3 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loeffler, K. U., Edward, D. P. & Tso, M. O. Tau-2 immunoreactivity of corpora amylacea in the human retina and optic nerve. Invest Ophthalmol. Vis. Sci. 34, 2600–2603 (1993).

    CAS  PubMed  Google Scholar 

  • Aboelnour, A., Van der Spuy, J., Powner, M. & Jeffery, G. Primate retinal cones express phosphorylated tau associated with neuronal degeneration yet survive in old age. Exp. Eye Res. 165, 105–108. https://doi.org/10.1016/j.exer.2017.09.013 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamazaki, A. et al. Microtubule-associated protein tau in bovine retinal photoreceptor rod outer segments: Comparison with brain tau. Biochim. Biophys. Acta 1549–1559, 2013. https://doi.org/10.1016/j.bbadis.2013.05.021 (1832).

    Article  CAS  Google Scholar 

  • Lin, Y. T. et al. APOE4 causes widespread molecular and cellular alterations associated with Alzheimer’s disease phenotypes in human iPSC-derived brain cell types. Neuron 98, 1141-1154.e1147. https://doi.org/10.1016/j.neuron.2018.05.008 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puntambekar, S. S. et al. CX3CR1 deficiency aggravates amyloid driven neuronal pathology and cognitive decline in Alzheimer’s disease. Mol. Neurodegener. 17, 47. https://doi.org/10.1186/s13024-022-00545-9 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krance, S. H., Cogo-Moreira, H., Rabin, J. S., Black, S. E. & Swardfager, W. Reciprocal predictive relationships between amyloid and tau biomarkers in Alzheimer’s disease progression: An empirical model. J. Neurosci. 39, 7428–7437. https://doi.org/10.1523/jneurosci.1056-19.2019 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaretsky, D. V., Zaretskaia, M. V. & Molkov, Y. I. Patients with Alzheimer’s disease have an increased removal rate of soluble beta-amyloid-42. PLoS ONE 17, e0276933. https://doi.org/10.1371/journal.pone.0276933 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lacor, P. N. et al. Aβ oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. J. Neurosci. 27, 796–807. https://doi.org/10.1523/jneurosci.3501-06.2007 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira, J. B. et al. Untangling the association of amyloid-β and tau with synaptic and axonal loss in Alzheimer’s disease. Brain 144, 310–324. https://doi.org/10.1093/brain/awaa395 (2020).

    Article  PubMed Central  Google Scholar 

  • Meftah, S. & Gan, J. Alzheimer’s disease as a synaptopathy: Evidence for dysfunction of synapses during disease progression. Front. Synaptic. Neurosci. 15, 1129036. https://doi.org/10.3389/fnsyn.2023.1129036 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Jimenez, F. J., Ureña-Peralta, J., Jendelova, P. & Erceg, S. Alzheimer’s disease and synapse Loss: What can we learn from induced pluripotent stem cells?. J. Adv. Res. https://doi.org/10.1016/j.jare.2023.01.006 (2023).

    Article  PubMed  Google Scholar 

  • Samudra, N., Ranasinghe, K., Kirsch, H., Rankin, K. & Miller, B. Etiology and clinical significance of network hyperexcitability in Alzheimer’s disease: Unanswered questions and next steps. J. Alzheimers Dis. 92, 13–27. https://doi.org/10.3233/jad-220983 (2023).

    Article  PubMed  Google Scholar 

  • Younes, L. et al. Identifying changepoints in biomarkers during the preclinical phase of Alzheimer’s disease. Front. Aging Neurosci. https://doi.org/10.3389/fnagi.2019.00074 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Claes, C. et al. The P522R protective variant of PLCG2 promotes the expression of antigen presentation genes by human microglia in an Alzheimer’s disease mouse model. Alzheimers Dement. 18, 1765–1778. https://doi.org/10.1002/alz.12577 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai, A. P. et al. PLCG2 is associated with the inflammatory response and is induced by amyloid plaques in Alzheimer’s disease. Genome Med. 14, 17. https://doi.org/10.1186/s13073-022-01022-0 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fung, S. et al. Early-onset familial Alzheimer disease variant PSEN2 N141I heterozygosity is associated with altered microglia phenotype. J. Alzheimers Dis. 77, 675–688 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moutinho, M. et al. The niacin receptor HCAR2 modulates microglial response and limits disease progression in a mouse model of Alzheimer’s disease. Sci. Transl. Med. 14, eabl7634. https://doi.org/10.1126/scitranslmed.abl7634 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McQuade, A. et al. Development and validation of a simplified method to generate human microglia from pluripotent stem cells. Mol. Neurodegener. 13, 67. https://doi.org/10.1186/s13024-018-0297-x (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abud, E. M. et al. iPSC-derived human microglia-like cells to study neurological diseases. Neuron 94, 278-293.e279. https://doi.org/10.1016/j.neuron.2017.03.042 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Claes, C. et al. Plaque-associated human microglia accumulate lipid droplets in a chimeric model of Alzheimer’s disease. Mol. Neurodegener. 16, 50. https://doi.org/10.1186/s13024-021-00473-0 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kreitzer, F. R. et al. A robust method to derive functional neural crest cells from human pluripotent stem cells. Am. J. Stem Cells 2, 119–131 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147. https://doi.org/10.1126/science.282.5391.1145 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Sridhar, A., Steward, M. M. & Meyer, J. S. Nonxenogeneic growth and retinal differentiation of human induced pluripotent stem cells. Stem Cells Transl. Med. 2, 255–264. https://doi.org/10.5966/sctm.2012-0101 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuleshov, M. V. et al. Enrichr: A comprehensive gene set enrichment analysis web server 2016 update. Nucl. Acids Res. 44, W90-97. https://doi.org/10.1093/nar/gkw377 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar