Perl, L., Feickert, S. & D’Amario, D. Editorial: Advances and challenges in remote monitoring of patients with heart failure. Front. Cardiovasc. Med. 9, 33 (2022).
Prabhu, S. D. & Frangogiannis, N. G. The biological basis for cardiac repair after myocardial infarction: From inflammation to fibrosis. Circ. Res. 119, 91–112 (2016).
Pasquet, S. et al. Long-term benefit of intracardiac delivery of autologous granulocyte-colony-stimulating factor-mobilized blood CD34+ cells containing cardiac progenitors on regional heart structure and function after myocardial infarct. Cytotherapy 11, 1002–1015 (2009).
Carbone, R. G., Monselise, A., Bottino, G., Negrini, S. & Puppo, F. Stem cells therapy in acute myocardial infarction: A new era?. Clin. Exp. Med. 21, 231–237 (2021).
Chien, K. R. et al. Regenerating the field of cardiovascular cell therapy. Nat. Biotechnol. 37, 232–237 (2019).
Vagnozzi, R. J., Sargent, M. A. & Molkentin, J. D. Cardiac cell therapy rejuvenates the infarcted rodent heart via direct injection but not by vascular infusion. Circulation 141, 1037–1039 (2020).
Moghaddam, A. S. et al. Cardioprotective microRNAs: Lessons from stem cell-derived exosomal microRNAs to treat cardiovascular disease. Atherosclerosis 285, 1–9 (2019).
Beer, L., Mildner, M., Gyöngyösi, M. & Ankersmit, H. J. Peripheral blood mononuclear cell secretome for tissue repair. Apoptosis 21, 1336–1353 (2016).
Mackie, A. R. et al. Sonic Hedgehog-modified human CD34+ cells preserve cardiac function after acute myocardial infarction. Circ. Res. 111, 312–321 (2012).
Kawamoto, A. et al. Intramuscular transplantation of G-CSF-mobilized CD34(+) cells in patients with critical limb ischemia: A phase I/IIa, multicenter, single-blinded, dose-escalation clinical trial. Stem Cells 27, 2857–2864 (2009).
Bautz, F., Rafii, S., Kanz, L. & Möhle, R. Expression and secretion of vascular endothelial growth factor-A by cytokine-stimulated hematopoietic progenitor cells. Possible role in the hematopoietic microenvironment. Exp. Hematol. 28, 700–706 (2000).
Leung, D. W., Cachianes, G., Kuang, W. J., Goeddel, D. V. & Ferrara, N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246, 1306–1309 (1989).
Byrne, A. M., Bouchier-Hayes, D. J. & Harmey, J. H. Angiogenic and cell survival functions of vascular endothelial growth factor (VEGF). J. Cell Mol. Med. 9, 777–794 (2005).
Li, B. et al. VEGF and PlGF promote adult vasculogenesis by enhancing EPC recruitment and vessel formation at the site of tumor neovascularization. FASEB J. 20, 1495–1497 (2006).
Peplow, P. V. Influence of growth factors and cytokines on angiogenic function of endothelial progenitor cells: A review of in vitro human studies. Growth Factors 32, 83–116 (2014).
Suárez, Y. & Sessa, W. C. MicroRNAs as novel regulators of angiogenesis. Circ. Res. 104, 442–454 (2009).
Sahoo, S. et al. Exosomes from human CD34+ stem cells mediate their proangiogenic paracrine activity. Circ. Res. 109, 724–728 (2011).
Yuan, T. & Krishnan, J. Non-coding RNAs in cardiac regeneration. Front. Physiol. 12, 650566 (2021).
Saucourt, C. et al. Design and validation of an automated process for the expansion of peripheral blood-derived CD34+ cells for clinical use after myocardial infarction. Stem Cells Transl. Med. 8, 822–832 (2019).
Hénon, P. et al. Industrialized GMP production of CD34+ cells (ProtheraCytes®) at clinical scale for treatment of ischemic cardiac diseases is feasible and safe. Stem Cell Rev. Rep. https://doi.org/10.1007/s12015-022-10373-5 (2022).
Coffin, E. et al. Extracellular vesicles from adipose stromal cells combined with a thermoresponsive hydrogel prevent esophageal stricture after extensive endoscopic submucosal dissection in a porcine model. Nanoscale 13, 14866–14878 (2021).
Domingues, A. et al. Human CD34+ very small embryonic-like stem cells can give rise to endothelial colony-forming cells with a multistep differentiation strategy using UM171 and nicotinamide acid. Leukemia https://doi.org/10.1038/s41375-022-01517-0 (2022).
Mathiyalagan, P. et al. Angiogenic mechanisms of human CD34+ stem cell exosomes in the repair of ischemic hindlimb. Circ. Res. 120, 1466–1476 (2017).
Templin, C. et al. Increased proangiogenic activity of mobilized CD34 + progenitor cells of patients with acute ST-segment-elevation myocardial infarction: Role of differential microRNA-378 expression. Arterioscler. Thromb. Vasc. Biol. 37, 341–349 (2017).
McNeill, B., Ostojic, A., Rayner, K. J., Ruel, M. & Suuronen, E. J. Collagen biomaterial stimulates the production of extracellular vesicles containing microRNA-21 and enhances the proangiogenic function of CD34+ cells. FASEB J 33, 4166–4177 (2019).
Li, Y. et al. Injectable hydrogel with MSNs/microRNA-21-5p delivery enables both immunomodification and enhanced angiogenesis for myocardial infarction therapy in pigs. Sci. Adv. 7, eabd6740 (2021).
Chang, W.-T. et al. Deletion of microRNA-21 impairs neovascularization following limb ischemia: From bedside to bench. Front. Cardiovasc. Med. 9, 826478 (2022).
Zhao, T., Li, J. & Chen, A. F. MicroRNA-34a induces endothelial progenitor cell senescence and impedes its angiogenesis via suppressing silent information regulator 1. Am. J. Physiol. Endocrinol. Metab. 299, E110-116 (2010).
Hossian, A. K. M. N., Mackenzie, G. G. & Mattheolabakis, G. Combination of miR-143 and miR-506 reduces lung and pancreatic cancer cell growth through the downregulation of cyclin-dependent kinases. Oncol. Rep. 45, 2 (2021).
Huang, W. et al. Combination of microRNA-21 and microRNA-146a attenuates cardiac dysfunction and apoptosis during acute myocardial infarction in mice. Mol. Ther. Nucleic Acids 5, e296 (2016).
Lu, S. & Lu, Y. MiR-26a inhibits myocardial cell apoptosis in rats with acute myocardial infarction through GSK-3β pathway. Eur. Rev. Med. Pharmacol. Sci. 24, 2659–2666 (2020).
Scărlătescu, A. I., Micheu, M. M., Popa-Fotea, N.-M. & Dorobanțu, M. MicroRNAs in acute ST elevation myocardial infarction—A new tool for diagnosis and prognosis: Therapeutic implications. Int. J. Mol. Sci. 22, 4799 (2021).
Wang, J. & Martin, J. F. Macro advances in microRNAs and myocardial regeneration. Curr. Opin. Cardiol. 29, 207–213 (2014).
Lesizza, P. et al. Single-dose intracardiac injection of pro-regenerative microRNAs improves cardiac function after myocardial infarction. Circ. Res. 120, 1298–1304 (2017).
Zhang, Y. et al. miR-29b as a therapeutic agent for angiotensin II-induced cardiac fibrosis by targeting TGF-β/Smad3 signaling. Mol. Ther. 22, 974–985 (2014).
Xiao, Y., Zhao, J., Tuazon, J. P., Borlongan, C. V. & Yu, G. MicroRNA-133a and myocardial infarction. Cell Transplant 28, 831–838 (2019).
Wang, G. et al. MicroRNA-132 attenuated cardiac fibrosis in myocardial infarction-induced heart failure rats. Biosci. Rep. 40, BSR20201696 (2020).
Xu, X., Hong, P., Wang, Z., Tang, Z. & Li, K. MicroRNAs in transforming growth factor-beta signaling pathway associated with fibrosis involving different systems of the human body. Front. Mol. Biosci. 8, 707461 (2021).
Bravery, C. et al. Potency assay development for cellular therapy products: An ISCT review of the requirements and experiences in the industry. Cytotherapy 15 (2013).
Schwarz, E. R. et al. Evaluation of the effects of intramyocardial injection of DNA expressing vascular endothelial growth factor (VEGF) in a myocardial infarction model in the rat—Angiogenesis and angioma formation. J. Am. Coll. Cardiol. 35, 1323–1330 (2000).
Pearlman, J. D. et al. Magnetic resonance mapping demonstrates benefits of VEGF-induced myocardial angiogenesis. Nat. Med. 1, 1085–1089 (1995).
Carlsson, L. et al. Biocompatible, purified VEGF-A mRNA improves cardiac function after intracardiac injection 1 week post-myocardial infarction in swine. Mol. Ther. Methods Clin. Dev. 9, 330–346 (2018).
Wang, J. et al. Human CD34+ cells in experimental myocardial infarction: long-term survival, sustained functional improvement, and mechanism of action. Circ. Res. 106, 1904–1911 (2010).
Vale, P. R. et al. Randomized, single-blind, placebo-controlled pilot study of catheter-based myocardial gene transfer for therapeutic angiogenesis using left ventricular electromechanical mapping in patients with chronic myocardial ischemia. Circulation 103, 2138–2143 (2001).
Zheng, D. et al. The role of exosomes and exosomal microRNA in cardiovascular disease. Front. Cell Dev. Biol. 8, 31 (2021).
Schwarzenbach, H. & Gahan, P. B. MicroRNA shuttle from cell-to-cell by exosomes and its impact in cancer. Noncoding RNA 5, 28 (2019).
Zhang, J. et al. Exosome and exosomal microRNA: Trafficking, sorting, and function. Genom. Proteom. Bioinform. 13, 17–24 (2015).
Mathivanan, S., Ji, H. & Simpson, R. J. Exosomes: Extracellular organelles important in intercellular communication. J Proteom. 73, 1907–1920 (2010).
Karnas, E., Dudek, P. & Zuba-Surma, E. K. Stem cell-derived extracellular vesicles as new tools in regenerative medicine—Immunomodulatory role and future perspectives. Front. Immunol. 14, 1120175 (2023).
Wang, K. et al. Enhanced cardioprotection by human endometrium mesenchymal stem cells driven by exosomal microRNA-21. Stem Cells Transl. Med. 6, 209–222 (2017).
Luo, Q. et al. Exosomes from MiR-126-overexpressing Adscs are therapeutic in relieving acute myocardial ischaemic injury. Cell Physiol. Biochem. 44, 2105–2116 (2017).
Chen, Y. & Gorski, D. H. Regulation of angiogenesis through a microRNA (miR-130a) that down-regulates antiangiogenic homeobox genes GAX and HOXA5. Blood 111, 1217–1226 (2008).
Lahooti, B., Poudel, S., Mikelis, C. M. & Mattheolabakis, G. MiRNAs as anti-angiogenic adjuvant therapy in cancer: Synopsis and potential. Front. Oncol. 11, 705634 (2021).
Quiat, D. & Olson, E. N. MicroRNAs in cardiovascular disease: From pathogenesis to prevention and treatment. J. Clin. Invest. 123, 11–18 (2013).
Olson, E. N. MicroRNAs as therapeutic targets and biomarkers of cardiovascular disease. Sci. Transl. Med. 6, 239ps3 (2014).
Moghiman, T. et al. Therapeutic angiogenesis with exosomal microRNAs: An effectual approach for the treatment of myocardial ischemia. Heart Fail. Rev/ 26, 205–213 (2021).
Asahara, T. et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 275, 964–967 (1997).
Hassanpour, M., Salybekov, A. A., Kobayashi, S. & Asahara, T. CD34 positive cells as endothelial progenitor cells in biology and medicine. Front. Cell Dev. Biol. 11, 1128134 (2023).
Sietsema, W. K., Kawamoto, A., Takagi, H. & Losordo, D. W. Autologous CD34+ cell therapy for ischemic tissue repair. Circ. J. 83, 1422–1430 (2019).
Ohtake, T. et al. Repetitive administration of cultured human CD34+ cells improve adenine-induced kidney injury in mice. World J. Stem Cells 15, 268–280 (2023).
Yang, J. et al. CD34+ cells represent highly functional endothelial progenitor cells in murine bone marrow. PLoS One 6, e20219 (2011).
Aries, A., Zanetti, C., Hénon, P., Drénou, B. & Lahlil, R. Deciphering the cardiovascular potential of human CD34+ stem cells. Int. J. Mol. Sci. 24, 9551 (2023).
Lehman, N. et al. Development of a surrogate angiogenic potency assay for clinical-grade stem cell production. Cytotherapy 14, 994–1004 (2012).
Thej, C., Ramadasse, B., Walvekar, A., Majumdar, A. S. & Balasubramanian, S. Development of a surrogate potency assay to determine the angiogenic activity of Stempeucel®, a pooled, ex-vivo expanded, allogeneic human bone marrow mesenchymal stromal cell product. Stem Cell Res. Ther. 8, 47 (2017).
- SEO Powered Content & PR Distribution. Get Amplified Today.
- PlatoData.Network Vertical Generative Ai. Empower Yourself. Access Here.
- PlatoAiStream. Web3 Intelligence. Knowledge Amplified. Access Here.
- PlatoESG. Carbon, CleanTech, Energy, Environment, Solar, Waste Management. Access Here.
- PlatoHealth. Biotech and Clinical Trials Intelligence. Access Here.
- Source: https://www.nature.com/articles/s41598-023-47079-8