Development of a potency assay for CD34+ cell-based therapy – Scientific Reports

  • Perl, L., Feickert, S. & D’Amario, D. Editorial: Advances and challenges in remote monitoring of patients with heart failure. Front. Cardiovasc. Med. 9, 33 (2022).

    Article  Google Scholar 

  • Prabhu, S. D. & Frangogiannis, N. G. The biological basis for cardiac repair after myocardial infarction: From inflammation to fibrosis. Circ. Res. 119, 91–112 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Pasquet, S. et al. Long-term benefit of intracardiac delivery of autologous granulocyte-colony-stimulating factor-mobilized blood CD34+ cells containing cardiac progenitors on regional heart structure and function after myocardial infarct. Cytotherapy 11, 1002–1015 (2009).

    Article  PubMed  Google Scholar 

  • Carbone, R. G., Monselise, A., Bottino, G., Negrini, S. & Puppo, F. Stem cells therapy in acute myocardial infarction: A new era?. Clin. Exp. Med. 21, 231–237 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Chien, K. R. et al. Regenerating the field of cardiovascular cell therapy. Nat. Biotechnol. 37, 232–237 (2019).

    Article  PubMed  Google Scholar 

  • Vagnozzi, R. J., Sargent, M. A. & Molkentin, J. D. Cardiac cell therapy rejuvenates the infarcted rodent heart via direct injection but not by vascular infusion. Circulation 141, 1037–1039 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Moghaddam, A. S. et al. Cardioprotective microRNAs: Lessons from stem cell-derived exosomal microRNAs to treat cardiovascular disease. Atherosclerosis 285, 1–9 (2019).

    Article  PubMed  Google Scholar 

  • Beer, L., Mildner, M., Gyöngyösi, M. & Ankersmit, H. J. Peripheral blood mononuclear cell secretome for tissue repair. Apoptosis 21, 1336–1353 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Mackie, A. R. et al. Sonic Hedgehog-modified human CD34+ cells preserve cardiac function after acute myocardial infarction. Circ. Res. 111, 312–321 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • Kawamoto, A. et al. Intramuscular transplantation of G-CSF-mobilized CD34(+) cells in patients with critical limb ischemia: A phase I/IIa, multicenter, single-blinded, dose-escalation clinical trial. Stem Cells 27, 2857–2864 (2009).

    Article  PubMed  Google Scholar 

  • Bautz, F., Rafii, S., Kanz, L. & Möhle, R. Expression and secretion of vascular endothelial growth factor-A by cytokine-stimulated hematopoietic progenitor cells. Possible role in the hematopoietic microenvironment. Exp. Hematol. 28, 700–706 (2000).

    Article  PubMed  Google Scholar 

  • Leung, D. W., Cachianes, G., Kuang, W. J., Goeddel, D. V. & Ferrara, N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246, 1306–1309 (1989).

    Article  ADS  PubMed  Google Scholar 

  • Byrne, A. M., Bouchier-Hayes, D. J. & Harmey, J. H. Angiogenic and cell survival functions of vascular endothelial growth factor (VEGF). J. Cell Mol. Med. 9, 777–794 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, B. et al. VEGF and PlGF promote adult vasculogenesis by enhancing EPC recruitment and vessel formation at the site of tumor neovascularization. FASEB J. 20, 1495–1497 (2006).

    Article  PubMed  Google Scholar 

  • Peplow, P. V. Influence of growth factors and cytokines on angiogenic function of endothelial progenitor cells: A review of in vitro human studies. Growth Factors 32, 83–116 (2014).

    Article  PubMed  Google Scholar 

  • Suárez, Y. & Sessa, W. C. MicroRNAs as novel regulators of angiogenesis. Circ. Res. 104, 442–454 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  • Sahoo, S. et al. Exosomes from human CD34+ stem cells mediate their proangiogenic paracrine activity. Circ. Res. 109, 724–728 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuan, T. & Krishnan, J. Non-coding RNAs in cardiac regeneration. Front. Physiol. 12, 650566 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Saucourt, C. et al. Design and validation of an automated process for the expansion of peripheral blood-derived CD34+ cells for clinical use after myocardial infarction. Stem Cells Transl. Med. 8, 822–832 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Hénon, P. et al. Industrialized GMP production of CD34+ cells (ProtheraCytes®) at clinical scale for treatment of ischemic cardiac diseases is feasible and safe. Stem Cell Rev. Rep. https://doi.org/10.1007/s12015-022-10373-5 (2022).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Coffin, E. et al. Extracellular vesicles from adipose stromal cells combined with a thermoresponsive hydrogel prevent esophageal stricture after extensive endoscopic submucosal dissection in a porcine model. Nanoscale 13, 14866–14878 (2021).

    Article  PubMed  Google Scholar 

  • Domingues, A. et al. Human CD34+ very small embryonic-like stem cells can give rise to endothelial colony-forming cells with a multistep differentiation strategy using UM171 and nicotinamide acid. Leukemia https://doi.org/10.1038/s41375-022-01517-0 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Mathiyalagan, P. et al. Angiogenic mechanisms of human CD34+ stem cell exosomes in the repair of ischemic hindlimb. Circ. Res. 120, 1466–1476 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Templin, C. et al. Increased proangiogenic activity of mobilized CD34 + progenitor cells of patients with acute ST-segment-elevation myocardial infarction: Role of differential microRNA-378 expression. Arterioscler. Thromb. Vasc. Biol. 37, 341–349 (2017).

    Article  PubMed  Google Scholar 

  • McNeill, B., Ostojic, A., Rayner, K. J., Ruel, M. & Suuronen, E. J. Collagen biomaterial stimulates the production of extracellular vesicles containing microRNA-21 and enhances the proangiogenic function of CD34+ cells. FASEB J 33, 4166–4177 (2019).

    Article  PubMed  Google Scholar 

  • Li, Y. et al. Injectable hydrogel with MSNs/microRNA-21-5p delivery enables both immunomodification and enhanced angiogenesis for myocardial infarction therapy in pigs. Sci. Adv. 7, eabd6740 (2021).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Chang, W.-T. et al. Deletion of microRNA-21 impairs neovascularization following limb ischemia: From bedside to bench. Front. Cardiovasc. Med. 9, 826478 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao, T., Li, J. & Chen, A. F. MicroRNA-34a induces endothelial progenitor cell senescence and impedes its angiogenesis via suppressing silent information regulator 1. Am. J. Physiol. Endocrinol. Metab. 299, E110-116 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  • Hossian, A. K. M. N., Mackenzie, G. G. & Mattheolabakis, G. Combination of miR-143 and miR-506 reduces lung and pancreatic cancer cell growth through the downregulation of cyclin-dependent kinases. Oncol. Rep. 45, 2 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang, W. et al. Combination of microRNA-21 and microRNA-146a attenuates cardiac dysfunction and apoptosis during acute myocardial infarction in mice. Mol. Ther. Nucleic Acids 5, e296 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu, S. & Lu, Y. MiR-26a inhibits myocardial cell apoptosis in rats with acute myocardial infarction through GSK-3β pathway. Eur. Rev. Med. Pharmacol. Sci. 24, 2659–2666 (2020).

    PubMed  Google Scholar 

  • Scărlătescu, A. I., Micheu, M. M., Popa-Fotea, N.-M. & Dorobanțu, M. MicroRNAs in acute ST elevation myocardial infarction—A new tool for diagnosis and prognosis: Therapeutic implications. Int. J. Mol. Sci. 22, 4799 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, J. & Martin, J. F. Macro advances in microRNAs and myocardial regeneration. Curr. Opin. Cardiol. 29, 207–213 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lesizza, P. et al. Single-dose intracardiac injection of pro-regenerative microRNAs improves cardiac function after myocardial infarction. Circ. Res. 120, 1298–1304 (2017).

    Article  PubMed  Google Scholar 

  • Zhang, Y. et al. miR-29b as a therapeutic agent for angiotensin II-induced cardiac fibrosis by targeting TGF-β/Smad3 signaling. Mol. Ther. 22, 974–985 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiao, Y., Zhao, J., Tuazon, J. P., Borlongan, C. V. & Yu, G. MicroRNA-133a and myocardial infarction. Cell Transplant 28, 831–838 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, G. et al. MicroRNA-132 attenuated cardiac fibrosis in myocardial infarction-induced heart failure rats. Biosci. Rep. 40, BSR20201696 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu, X., Hong, P., Wang, Z., Tang, Z. & Li, K. MicroRNAs in transforming growth factor-beta signaling pathway associated with fibrosis involving different systems of the human body. Front. Mol. Biosci. 8, 707461 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Bravery, C. et al. Potency assay development for cellular therapy products: An ISCT review of the requirements and experiences in the industry. Cytotherapy 15 (2013).

  • Schwarz, E. R. et al. Evaluation of the effects of intramyocardial injection of DNA expressing vascular endothelial growth factor (VEGF) in a myocardial infarction model in the rat—Angiogenesis and angioma formation. J. Am. Coll. Cardiol. 35, 1323–1330 (2000).

    Article  PubMed  Google Scholar 

  • Pearlman, J. D. et al. Magnetic resonance mapping demonstrates benefits of VEGF-induced myocardial angiogenesis. Nat. Med. 1, 1085–1089 (1995).

    Article  PubMed  Google Scholar 

  • Carlsson, L. et al. Biocompatible, purified VEGF-A mRNA improves cardiac function after intracardiac injection 1 week post-myocardial infarction in swine. Mol. Ther. Methods Clin. Dev. 9, 330–346 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, J. et al. Human CD34+ cells in experimental myocardial infarction: long-term survival, sustained functional improvement, and mechanism of action. Circ. Res. 106, 1904–1911 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  • Vale, P. R. et al. Randomized, single-blind, placebo-controlled pilot study of catheter-based myocardial gene transfer for therapeutic angiogenesis using left ventricular electromechanical mapping in patients with chronic myocardial ischemia. Circulation 103, 2138–2143 (2001).

    Article  PubMed  Google Scholar 

  • Zheng, D. et al. The role of exosomes and exosomal microRNA in cardiovascular disease. Front. Cell Dev. Biol. 8, 31 (2021).

    Article  ADS  Google Scholar 

  • Schwarzenbach, H. & Gahan, P. B. MicroRNA shuttle from cell-to-cell by exosomes and its impact in cancer. Noncoding RNA 5, 28 (2019).

    PubMed  PubMed Central  Google Scholar 

  • Zhang, J. et al. Exosome and exosomal microRNA: Trafficking, sorting, and function. Genom. Proteom. Bioinform. 13, 17–24 (2015).

    Article  Google Scholar 

  • Mathivanan, S., Ji, H. & Simpson, R. J. Exosomes: Extracellular organelles important in intercellular communication. J Proteom. 73, 1907–1920 (2010).

    Article  Google Scholar 

  • Karnas, E., Dudek, P. & Zuba-Surma, E. K. Stem cell-derived extracellular vesicles as new tools in regenerative medicine—Immunomodulatory role and future perspectives. Front. Immunol. 14, 1120175 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, K. et al. Enhanced cardioprotection by human endometrium mesenchymal stem cells driven by exosomal microRNA-21. Stem Cells Transl. Med. 6, 209–222 (2017).

    Article  PubMed  Google Scholar 

  • Luo, Q. et al. Exosomes from MiR-126-overexpressing Adscs are therapeutic in relieving acute myocardial ischaemic injury. Cell Physiol. Biochem. 44, 2105–2116 (2017).

    Article  PubMed  Google Scholar 

  • Chen, Y. & Gorski, D. H. Regulation of angiogenesis through a microRNA (miR-130a) that down-regulates antiangiogenic homeobox genes GAX and HOXA5. Blood 111, 1217–1226 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lahooti, B., Poudel, S., Mikelis, C. M. & Mattheolabakis, G. MiRNAs as anti-angiogenic adjuvant therapy in cancer: Synopsis and potential. Front. Oncol. 11, 705634 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Quiat, D. & Olson, E. N. MicroRNAs in cardiovascular disease: From pathogenesis to prevention and treatment. J. Clin. Invest. 123, 11–18 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • Olson, E. N. MicroRNAs as therapeutic targets and biomarkers of cardiovascular disease. Sci. Transl. Med. 6, 239ps3 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Moghiman, T. et al. Therapeutic angiogenesis with exosomal microRNAs: An effectual approach for the treatment of myocardial ischemia. Heart Fail. Rev/ 26, 205–213 (2021).

    Article  PubMed  Google Scholar 

  • Asahara, T. et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 275, 964–967 (1997).

    Article  PubMed  Google Scholar 

  • Hassanpour, M., Salybekov, A. A., Kobayashi, S. & Asahara, T. CD34 positive cells as endothelial progenitor cells in biology and medicine. Front. Cell Dev. Biol. 11, 1128134 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Sietsema, W. K., Kawamoto, A., Takagi, H. & Losordo, D. W. Autologous CD34+ cell therapy for ischemic tissue repair. Circ. J. 83, 1422–1430 (2019).

    Article  PubMed  Google Scholar 

  • Ohtake, T. et al. Repetitive administration of cultured human CD34+ cells improve adenine-induced kidney injury in mice. World J. Stem Cells 15, 268–280 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang, J. et al. CD34+ cells represent highly functional endothelial progenitor cells in murine bone marrow. PLoS One 6, e20219 (2011).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Aries, A., Zanetti, C., Hénon, P., Drénou, B. & Lahlil, R. Deciphering the cardiovascular potential of human CD34+ stem cells. Int. J. Mol. Sci. 24, 9551 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lehman, N. et al. Development of a surrogate angiogenic potency assay for clinical-grade stem cell production. Cytotherapy 14, 994–1004 (2012).

    Article  PubMed  Google Scholar 

  • Thej, C., Ramadasse, B., Walvekar, A., Majumdar, A. S. & Balasubramanian, S. Development of a surrogate potency assay to determine the angiogenic activity of Stempeucel®, a pooled, ex-vivo expanded, allogeneic human bone marrow mesenchymal stromal cell product. Stem Cell Res. Ther. 8, 47 (2017).

    Article  PubMed  PubMed Central  Google Scholar