Search
Close this search box.

Development of a local controlled release system for therapeutic proteins in the treatment of skeletal muscle injuries and diseases – Cell Death & Disease

  • Cohen S, Nathan JA, Goldberg AL. Muscle wasting in disease: molecular mechanisms and promising therapies. Nat Rev Drug Discov. 2015;14:58–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qazi TH, Duda GN, Ort MJ, Perka C, Geissler S, Winkler T. Cell therapy to improve regeneration of skeletal muscle injuries. J Cachexia Sarcopeni. 2019;10:501–16.

    Article 

    Google Scholar
     

  • Frontera WR, Ochala J. Skeletal Muscle: A Brief Review of Structure and Function. Calcif Tissue Int. 2015;96:183–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tedesco FS, Dellavalle A, Diaz-Manera J, Messina G, Cossu G. Repairing skeletal muscle: regenerative potential of skeletal muscle stem cells. J Clin Invest. 2010;120:11–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Corona BT, Wenke JC, Ward CL. Pathophysiology of Volumetric Muscle Loss Injury. Cells Tissues Organs. 2015;202:180–8.

    Article 

    Google Scholar
     

  • Bonaldo P, Sandri M. Cellular and molecular mechanisms of muscle atrophy. Dis Model Mech. 2013;6:25–39.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maffulli N, Del Buono A, Oliva F, Giai Via A, Frizziero A, Barazzuol M, et al. Muscle Injuries: A Brief Guide to Classification and Management. Transl Med UniSa. 2015;12:14–8.

    PubMed 

    Google Scholar
     

  • Mackey AL, Mikkelsen UR, Magnusson SP, Kjaer M. Rehabilitation of muscle after injury – the role of anti-inflammatory drugs. Scand J Med Sci Spor. 2012;22:E8–E14.

    Article 
    CAS 

    Google Scholar
     

  • Bushby K, Finkel R, Birnkrant DJ, Case LE, Clemens PR, Cripe L, et al. Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and pharmacological and psychosocial management. Lancet Neurol. 2010;9:77–93.

    Article 
    PubMed 

    Google Scholar
     

  • Leung DG, Wagner KR. Therapeutic Advances in Muscular Dystrophy. Ann Neurol. 2013;74:404–11.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shimizu-Motohashi Y, Miyatake S, Komaki H, Takeda S, Aoki Y. Recent advances in innovative therapeutic approaches for Duchenne muscular dystrophy: from discovery to clinical trials. Am J Transl Res. 2016;8:2471–89.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guiraud S, Chen HJ, Burns DT, Davies KE. Advances in genetic therapeutic strategies for Duchenne muscular dystrophy. Exp Physiol. 2015;100:1458–67.

    Article 
    PubMed 

    Google Scholar
     

  • Aggarwal SR. What’s fueling the biotech engine-2012 to 2013. Nat Biotechnol. 2014;32:32–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dimitrov DS. Therapeutic proteins. Methods Mol Biol. 2012;899:1–26.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rooney JE, Gurpur PB, Burkin DJ. Laminin-111 protein therapy prevents muscle disease in the mdx mouse model for Duchenne muscular dystrophy. P Natl Acad Sci USA. 2009;106:7991–6.

    Article 
    CAS 

    Google Scholar
     

  • Van Ry PM, Wuebbles RD, Key M, Burkin DJ. Galectin-1 Protein Therapy Prevents Pathology and Improves Muscle Function in the mdx Mouse Model of Duchenne Muscular Dystrophy. Mol Ther. 2015;23:1285–97.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fairclough RJ, Wood MJ, Davies KE. Therapy for Duchenne muscular dystrophy: renewed optimism from genetic approaches. Nat Rev Genet. 2013;14:373–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guiraud S, Roblin D, Kay DE. The potential of utrophin modulators for the treatment of Duchenne muscular dystrophy. Expert Opin Orphan D. 2018;6:179–92.

    Article 
    CAS 

    Google Scholar
     

  • Rybalko VY, Pham CB, Hsieh PL, Hammers DW, Merscham-Banda M, Suggs LJ, et al. Controlled delivery of SDF-1 alpha and IGF-1: CXCR4(+) cell recruitment and functional skeletal muscle recovery. Biomater Sci-Uk. 2015;3:1475–86.

    Article 
    CAS 

    Google Scholar
     

  • Xu DQ, Zhao L, Li SJ, Huang XF, Li CJ, Sun LX, et al. Catalpol counteracts the pathology in a mouse model of Duchenne muscular dystrophy by inhibiting the TGF-beta1/TAK1 signaling pathway. Acta Pharm Sin. 2021;42:1080–9.

    Article 
    CAS 

    Google Scholar
     

  • Estrellas KM, Chung L, Cheug LA, Sadtler K, Majumdar S, Mula J, et al. Biological scaffold-mediated delivery of myostatin inhibitor promotes a regenerative immune response in an animal model of Duchenne muscular dystrophy. J Biol Chem. 2018;293:15594–605.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yaden BC, Croy JE, Wang Y, Wilson JM, Datta-Mannan A, Shetler P, et al. Follistatin: a novel therapeutic for the improvement of muscle regeneration. J Pharm Exp Ther. 2014;349:355–71.

    Article 

    Google Scholar
     

  • Burks TN, Cohn RD. Role of TGF-beta signaling in inherited and acquired myopathies. Skelet Muscle. 2011;1:19.

  • Guardiola O, Lafuste P, Brunelli S, Iaconis S, Touvier T, Mourikis P, et al. Cripto regulates skeletal muscle regeneration and modulates satellite cell determination by antagonizing myostatin. Proc Natl Acad Sci USA. 2012;109:E3231–40.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nielsen TL, Vissing J, Krag TO. Antimyostatin Treatment in Health and Disease: The Story of Great Expectations and Limited Success. Cells. 2021;10:533.

  • Amthor H, Hoogaars WM. Interference with myostatin/ActRIIB signaling as a therapeutic strategy for Duchenne muscular dystrophy. Curr Gene Ther. 2012;12:245–59.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan YT, Liu JJ, Luo Y, Chaosu E, Haltiwanger RS, Abate-Shen C, et al. Dual roles of Cripto as a ligand and coreceptor in the nodal signaling pathway. Mol Cell Biol. 2002;22:4439–49.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Minchiotti G, Parisi S, Liguori GL, D’Andrea D, Persico MG. Role of the EGF-CFC gene cripto in cell differentiation and embryo development. Gene. 2002;287:33–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fiorenzano A, Pascale E, D’Aniello C, Acampora D, Bassalert C, Russo F, et al. Cripto is essential to capture mouse epiblast stem cell and human embryonic stem cell pluripotency. Nat Commun. 2016;7:12589.

  • Yun S, Yun CW, Lee JH, Kim S, Lee SH. Cripto Enhances Proliferation and Survival of Mesenchymal Stem Cells by Up-Regulating JAK2/STAT3 Pathway in a GRP78-Dependent Manner. Biomol Ther (Seoul). 2018;26:464–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Strizzi L, Bianco C, Normanno N, Salomon D. Cripto-1: a multifunctional modulator during embryogenesis and oncogenesis. Oncogene. 2005;24:5731–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shen MM, Schier AF. The EGF-CFC gene family in vertebrate development. Trends Genet. 2000;16:303–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee SJ, Lehar A, Liu Y, Ly CH, Pham QM, Michaud M, et al. Functional redundancy of type I and type II receptors in the regulation of skeletal muscle growth by myostatin and activin A. Proc Natl Acad Sci USA. 2020;117:30907–17.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bianco C, Salomon DS. Targeting the embryonic gene Cripto-1 in cancer and beyond. Expert Opin Ther Pat. 2010;20:1739–49.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prezioso C, Iaconis S, Andolfi G, Zentilin L, Iavarone F, Guardiola O, et al. Conditional Cripto overexpression in satellite cells promotes myogenic commitment and enhances early regeneration. Front Cell Dev Biol. 2015;3:31.

  • Angrisano T, Varrone F, Ragozzino E, Fico A, Minchiotti G, Brancaccio M. Cripto Is Targeted by miR-1a-3p in a Mouse Model of Heart Development. International Journal of Molecular Sciences. 2023;24:12251.

  • Iavarone F, Guardiola O, Scagliola A, Andolfi G, Esposito F, Serrano A, et al. Cripto shapes macrophage plasticity and restricts EndMT in injured and diseased skeletal muscle. Embo Rep. 2020;21:e49075.

  • Guardiola O, Iavarone F, Nicoletti C, Ventre M, Rodriguez C, Pisapia L, et al. CRIPTO-based micro-heterogeneity of mouse muscle satellite cells enables adaptive response to regenerative microenvironment. Dev Cell. 2023;58:2896–913 e6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chirino AJ, Ary ML, Marshall SA. Minimizing the immunogenicity of protein therapeutics. Drug Discov Today. 2004;9:82–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vermonden T, Censi R, Hennink WE. Hydrogels for protein delivery. Chem Rev. 2012;112:2853–88.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Censi R, Di Martino P, Vermonden T, Hennink WE. Hydrogels for protein delivery in tissue engineering. J Control Release. 2012;161:680–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lev R, Seliktar D Hydrogel biomaterials and their therapeutic potential for muscle injuries and muscular dystrophies. J R Soc Interface. 2018;15.

  • Seliktar D. Designing Cell-Compatible Hydrogels for Biomedical Applications. Science. 2012;336:1124–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yanev P, van Tilborg GAF, Boere KWM, Stowe AM, van der Toorn A, Viergever MA, et al. Thermosensitive Biodegradable Hydrogels for Local and Controlled Cerebral Delivery of Proteins: MRI-Based Monitoring of In Vitro and In Vivo Protein Release. ACS Biomater Sci Eng. 2023;9:760–72.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Censi R, Vermonden T, van Steenbergen MJ, Deschout H, Braeckmans K, De Smedt SC, et al. Photopolymerized thermosensitive hydrogels for tailorable diffusion-controlled protein delivery. J Control Release. 2009;140:230–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hiemstra C, Zhong Z, Van Tomme SR, van Steenbergen MJ, Jacobs JJ, Otter WD, et al. In vitro and in vivo protein delivery from in situ forming poly(ethylene glycol)-poly(lactide) hydrogels. J Control Release. 2007;119:320–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solaro R, Chiellini F, Battisti A. Targeted Delivery of Protein Drugs by Nanocarriers. Materials. 2010;3:1928–80.

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Lev R, Bar-Am O, Lati Y, Guardiola O, Minchiotti G, Seliktar D Biomanufacturing Recombinantly Expressed Cripto-1 Protein in Anchorage-Dependent Mammalian Cells Growing in Suspension Bioreactors within a Three-Dimensional Hydrogel Microcarrier. Gels-Basel. 2023;9.

  • Almany L, Seliktar D. Biosynthetic hydrogel scaffolds made from fibrinogen and polyethylene glycol for 3D cell cultures. Biomaterials. 2005;26:2467–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ben-David D, Srouji S, Shapira-Schweitzer K, Kossover O, Ivanir E, Kuhn G, et al. Low dose BMP-2 treatment for bone repair using a PEGylated fibrinogen hydrogel matrix. Biomaterials. 2013;34:2902–10.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Berdichevski A, Yameen HS, Dafni H, Neeman M, Seliktar D. Using bimodal MRI/fluorescence imaging to identify host angiogenic response to implants. P Natl Acad Sci USA. 2015;112:5147–52.

    Article 
    CAS 

    Google Scholar
     

  • Cohen T, Kossover O, Peled E, Bick T, Hasanov L, Chun TT, et al. A combined cell and growth factor delivery for the repair of a critical size tibia defect using biodegradable hydrogel implants. J Tissue Eng Regen M. 2022;16:380–95.

    Article 
    CAS 

    Google Scholar
     

  • Kossover O, Cohen N, Lewis JA, Berkovitch Y, Peled E, Seliktar D. Growth Factor Delivery for the Repair of a Critical Size Tibia Defect Using an Acellular, Biodegradable Polyethylene Glycol-Albumin Hydrogel Implant. Acs Biomater Sci Eng. 2020;6:100–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cohen SA, Simaan-Yameen H, Fuoco C, Gargioli C, Seliktar D Injectable hydrogel microspheres for sustained gene delivery of antisense oligonucleotides to restore the expression of dystrophin protein in duchenne muscular dystrophy. Eur Polym J. 2022;166.

  • Gonen-Wadmany M, Goldshmid R, Seliktar D. Biological and mechanical implications of PEGylating proteins into hydrogel biomaterials. Biomaterials. 2011;32:6025–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schreiner MM, Raudner M, Szomolanyi P, Ohel K, Ben-Zur L, Juras V, et al. Chondral and Osteochondral Femoral Cartilage Lesions Treated with GelrinC: Significant Improvement of Radiological Outcome Over Time and Zonal Variation of the Repair Tissue Based on T Mapping at 24 Months. Cartilage. 2021;13:604s–16s.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Trattnig S, Ohel K, Mlynarik V, Juras V, Zbyn S, Korner A. Morphological and compositional monitoring of a new cell-free cartilage repair hydrogel technology – GelrinC by MR using semi-quantitative MOCART scoring and quantitative T2 index and new zonal T2 index calculation. Osteoarthr Cartil. 2015;23:2224–32.

    Article 
    CAS 

    Google Scholar
     

  • Ravi S, Peh KK, Darwis Y, Murthy BK, Singh TRR, Mallikarjun C. Development and Characterization of Polymeric Microspheres for Controlled Release Protein Loaded Drug Delivery System. Indian J Pharm Sci. 2008;70:303–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pradhan S, Clary JM, Seliktar D, Lipke EA. A three-dimensional spheroidal cancer model based on PEG-fibrinogen hydrogel microspheres. Biomaterials. 2017;115:141–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dikovsky D, Bianco-Peled H, Seliktar D. The effect of structural alterations of PEG-fibrinogen hydrogel scaffolds on 3-D cellular morphology and cellular migration. Biomaterials. 2006;27:1496–506.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Simaan-Yameen H, Bar-Am O, Saar G, Seliktar D. Methacrylated fibrinogen hydrogels for 3D cell culture and delivery. Acta Biomater. 2023;164:94–110.

  • Minchiotti G, Parisi S, Liguori G, Signore M, Lania G, Adamson ED, et al. Membrane-anchorage of Cripto protein by glycosylphosphatidylinositol and its distribution during early mouse development. Mech Dev. 2000;90:133–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Franco CL, Price J, West JL. Development and optimization of a dual-photoinitiator, emulsion-based technique for rapid generation of cell-laden hydrogel microspheres. Acta Biomaterialia. 2011;7:3267–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dikovsky D, Bianco-Peled H, Seliktar D. Defining the role of matrix compliance and proteolysis in three-dimensional cell spreading and remodeling. Biophys J. 2008;94:2914–25.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mironi-Harpaz I, Hazanov L, Engel G, Yelin D, Seliktar D. In-situ architectures designed in 3D cell-laden hydrogels using microscopic laser photolithography. Adv Mater. 2015;27:1933–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cohen SA, Bar-Am O, Fuoco C, Saar G, Gargioli C, Seliktar D. In vivo restoration of dystrophin expression in mdx mice using intra-muscular and intra-arterial injections of hydrogel microsphere carriers of exon skipping antisense oligonucleotides. Cell Death Dis. 2022;13:779.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berdichevski A, Shachaf Y, Wechsler R, Seliktar D. Protein composition alters in vivo resorption of PEG-based hydrogels as monitored by contrast-enhanced MRI. Biomaterials. 2015;42:1–10.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Riederer I, Negroni E, Bencze M, Wolff A, Aamiri A, Di Santo JP, et al. Slowing Down Differentiation of Engrafted Human Myoblasts Into Immunodeficient Mice Correlates With Increased Proliferation and Migration. Mol Ther. 2012;20:146–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Birman T, Seliktar D. Injectability of Biosynthetic Hydrogels: Consideration for Minimally Invasive Surgical Procedures and 3D Bioprinting. Adv Funct Mater. 2021;31:2100628.

  • Cohen N, Toister E, Lati Y, Girshengorn M, Levin L, Silberstein L, et al. Cell encapsulation utilizing PEG-fibrinogen hydrogel supports viability and enhances productivity under stress conditions. Cytotechnology. 2018;70:1075–83.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cohen N, Vagima Y, Mouhadeb O, Toister E, Gutman H, Lazar S, et al. PEG-fibrinogen hydrogel microspheres as a scaffold for therapeutic delivery of immune cells. Front Bioeng Biotechnol. 2022;10:905557.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Skuk D, Goulet M, Roy B, Piette V, Cote CH, Chapdelaine P, et al. First test of a “high-density injection” protocol for myogenic cell transplantation throughout large volumes of muscles in a Duchenne muscular dystrophy patient: eighteen months follow-up. Neuromuscul Disord. 2007;17:38–46.

    Article 
    PubMed 

    Google Scholar
     

  • Hamami R, Simaan-Yameen H, Gargioli C, Seliktar D. Comparison of Four Different Preparation Methods for Making Injectable Microgels for Tissue Engineering and Cell Therapy. Regen Eng Transl Med. 2022;8:615–29.

    Article 
    CAS 

    Google Scholar
     

  • Feng Q, Li DG, Li QT, Cao XD, Dong H. Microgel assembly: Fabrication, characteristics and application in tissue engineering and regenerative medicine. Bioact Mater. 2022;9:105–19.

    CAS 
    PubMed 

    Google Scholar
     

  • Sivashanmugam A, Kumar RA, Priya MV, Nair SV, Jayakumar R. An overview of injectable polymeric hydrogels for tissue engineering. Eur Polym J. 2015;72:543–65.

    Article 
    CAS 

    Google Scholar
     

  • Panyam, Dali MA J, Sahoo SK, Ma WX, Chakravarthi SS, Amidon GL, et al. Polymer degradation and in vitro release of a model protein from poly(D,L-lactide-co-glycolide) nano- and microparticles. J Control Release. 2003;92:173–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sah HK, Toddywala R, Chien YW. The Influence of Biodegradable Microcapsule Formulations on the Controlled-Release of a Protein. J Control Release. 1994;30:201–11.

    Article 
    CAS 

    Google Scholar
     

  • Igartua M, Hernandez RM, Esquisabel A, Gascon AR, Calvo MB, Pedraz JL. Influence of formulation variables on the in-vitro release of albumin from biodegradable microparticulate systems. J Microencapsul. 1997;14:349–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oss-Ronen L, Seliktar D. Polymer-conjugated albumin and fibrinogen composite hydrogels as cell scaffolds designed for affinity-based drug delivery. Acta Biomaterialia. 2011;7:163–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kopac T, Abrami M, Grassi M, Rucigaj A, Krajnc M. Polysaccharide-based hydrogels crosslink density equation: A rheological and LF-NMR study of polymer-polymer interactions. Carbohyd Polym. 2022;277:118895.

  • Yom-Tov O, Neufeld L, Seliktar D, Bianco-Peled H. A novel design of injectable porous hydrogels with in situ pore formation. Acta Biomater. 2014;10:4236–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rufaihah AJ, Vaibavi SR, Plotkin M, Shen J, Nithya V, Wang J, et al. Enhanced infarct stabilization and neovascularization mediated by VEGF-loaded PEGylated fibrinogen hydrogel in a rodent myocardial infarction model. Biomaterials. 2013;34:8195–202.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van de Wetering P, Metters AT, Schoenmakers RG, Hubbell JA. Poly(ethylene glycol) hydrogels formed by conjugate addition with controllable swelling, degradation, and release of pharmaceutically active proteins. J Control Release. 2005;102:619–27.

    Article 
    PubMed 

    Google Scholar
     

  • Cruise GM, Scharp DS, Hubbell JA. Characterization of permeability and network structure of interfacially photopolymerized poly(ethylene glycol) diacrylate hydrogels. Biomaterials. 1998;19:1287–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peppas NA, Khare AR. Preparation, Structure and Diffusional Behavior of Hydrogels in Controlled-Release. Adv Drug Deliv Rev. 1993;11:1–35.

    Article 
    CAS 

    Google Scholar
     

  • Li JY, Mooney DJ. Designing hydrogels for controlled drug delivery. Nat Rev Mater. 2016;1:16071.

  • Dikovsky D, Bianco-Peled H, Seliktar D. Proteolytically Degradable Photo-Polymerized Hydrogels Made From PEG-Fibrinogen Adducts. Adv Eng Mater. 2010;12:B200–B9.

    Article 

    Google Scholar
     

  • Peled E, Boss J, Bejar J, Zinman C, Seliktar D. A novel poly(ethylene glycol)-fibrinogen hydrogel for tibial segmental defect repair in a rat model. J Biomed Mater Res A. 2007;80:874–84.

    Article 
    PubMed 

    Google Scholar
     

  • Wang HX, Lau SY, Huang SJ, Kwan CY, Wong TM. Cobra venom cardiotoxin induces perturbations of cytosolic calcium homeostasis and hypercontracture in adult rat ventricular myocytes. J Mol Cell Cardiol. 1997;29:2759–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ownby CL, Fletcher JE, Colberg TR. Cardiotoxin 1 from cobra (Naja naja atra) venom causes necrosis of skeletal muscle in vivo. Toxicon. 1993;31:697–709.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen XM, Astary GW, Sepulveda H, Mareci TH, Sarntinoranont M. Quantitative assessment of macromolecular concentration during direct infusion into an agarose hydrogel phantom using contrast-enhanced MRI. Magn Reson Imaging. 2008;26:1433–41.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krauze MT, Forsayeth J, Park JW, Bankiewicz KS. Real-time imaging and quantification of brain delivery of liposomes. Pharm Res. 2006;23:2493–504.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hawke TJ, Garry DJ. Myogenic satellite cells: physiology to molecular biology. J Appl Physiol (1985). 2001;91:534–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Warhol MJ, Siegel AJ, Evans WJ, Silverman LM. Skeletal muscle injury and repair in marathon runners after competition. Am J Pathol. 1985;118:331–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Whalen RG, Harris JB, Butlerbrowne GS, Sesodia S. Expression of Myosin Isoforms during Notexin-Induced Regeneration of Rat Soleus Muscles. Dev Biol. 1990;141:24–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoshimoto Y, Ikemoto-Uezumi M, Hitachi K, Fukada S, Uezumi A. Methods for Accurate Assessment of Myofiber Maturity During Skeletal Muscle Regeneration. Front Cell Dev Biol. 2020;8:267.

  • Olguin HC, Pisconti A. Marking the tempo for myogenesis: Pax7 and the regulation of muscle stem cell fate decisions. J Cell Mol Med. 2012;16:1013–25.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yin H, Price F, Rudnicki MA. Satellite Cells and the Muscle Stem Cell Niche. Physiol Rev. 2013;93:23–67.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Soglia F, Bordini M, Mazzoni M, Zappaterra M, Di Nunzio M, Clavenzani P, et al. The evolution of vimentin and desmin in Pectoralis major muscles of broiler chickens supports their essential role in muscle regeneration. Front Physiol. 2022;13:13380.

  • Wang Y, Lu J, Liu Y. Skeletal Muscle Regeneration in Cardiotoxin-Induced Muscle Injury Models. Int J Mol Sci. 2022;23:13380.

  • Sicari BM, Agrawal V, Siu BF, Medberry CJ, Dearth CL, Turner NJ, et al. A murine model of volumetric muscle loss and a regenerative medicine approach for tissue replacement. Tissue Eng Part A. 2012;18:1941–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Latest Intelligence