Designing drug delivery systems for cell therapy – Nature Reviews Bioengineering

  • Martino, M. et al. CART-cell therapy: recent advances and new evidence in multiple myeloma. Cancers 13, 2639 (2021).

    Article 

    Google Scholar
     

  • Sivandzade, F. & Cucullo, L. Regenerative stem cell therapy for neurodegenerative diseases: an overview. Int. J. Mol. Sci. 22, 2153 (2021).

    Article 

    Google Scholar
     

  • Kitada, T., DiAndreth, B., Teague, B. & Weiss, R. Programming gene and engineered-cell therapies with synthetic biology. Science 359, eaad1067 (2018).

    Article 

    Google Scholar
     

  • Weber, E. W., Maus, M. V. & Mackall, C. L. The emerging landscape of immune cell therapies. Cell 181, 46–62 (2020). This perspective provides an overview of current developments in immune cell therapies for cancer, infectious diseases and autoimmunity, and highlights cellular engineering advances addressing key challenges.

    Article 

    Google Scholar
     

  • Fischbach, M. A., Bluestone, J. A. & Lim, W. A. Cell-based therapeutics: the next pillar of medicine. Sci. Transl. Med. 5, 179ps7 (2013).

    Article 

    Google Scholar
     

  • Zhao, Z., Ukidve, A., Kim, J. & Mitragotri, S. Targeting strategies for tissue-specific drug delivery. Cell 181, 151–167 (2020).

    Article 

    Google Scholar
     

  • Mount, N. M., Ward, S. J., Kefalas, P. & Hyllner, J. Cell-based therapy technology classifications and translational challenges. Philos. Trans. R. Soc. B: Biol. Sci. 370, 20150017 (2015).

    Article 

    Google Scholar
     

  • Wang, L. L. W. et al. Cell therapies in the clinic. Bioeng. Transl. Med. 6, e10214 (2021). This review highlights the diversity and advantages of cell therapies, discusses 28 globally approved products and their clinical uses, analyses more than 1,700 active clinical trials and addresses the major biological, manufacturing and regulatory challenges in their clinical translation.

    Article 
    MathSciNet 

    Google Scholar
     

  • Vargason, A. M., Anselmo, A. C. & Mitragotri, S. The evolution of commercial drug delivery technologies. Nat. Biomed. Eng. 5, 951–967 (2021).

    Article 

    Google Scholar
     

  • Wang, H. & Mooney, D. J. Biomaterial-assisted targeted modulation of immune cells in cancer treatment. Nat. Mater. 17, 761–772 (2018).

    Article 

    Google Scholar
     

  • Li, Z. et al. Cell‐based delivery systems: emerging carriers for immunotherapy. Adv. Funct. Mater. 31, 2100088 (2021).

    Article 

    Google Scholar
     

  • Yang, L., Yang, Y., Chen, Y., Xu, Y. & Peng, J. Cell-based drug delivery systems and their in vivo fate. Adv. Drug Deliv. Rev. 187, 114394 (2022).

    Article 

    Google Scholar
     

  • Li, J. et al. Implantable and injectable biomaterial scaffolds for cancer immunotherapy. Front. Bioeng. Biotechnol. 8, 612950 (2020).

    Article 

    Google Scholar
     

  • Adeyemi, S. A. & Choonara, Y. E. Current advances in cell therapeutics: a biomacromolecules application perspective. Expert. Opin. Drug. Deliv. 19, 521–538 (2022).

    Article 

    Google Scholar
     

  • Cappell, K. M. & Kochenderfer, J. N. Long-term outcomes following CAR T cell therapy: what we know so far. Nat. Rev. Clin. Oncol. 20, 359–371 (2023).

    Article 

    Google Scholar
     

  • Sterner, R. C. & Sterner, R. M. CAR-T cell therapy: current limitations and potential strategies. Blood cancer J. 11, 69 (2021).

    Article 
    MathSciNet 

    Google Scholar
     

  • Arjomandnejad, M., Kopec, A. L. & Keeler, A. M. CAR-T regulatory (CAR-Treg) cells: engineering and applications. Biomedicines 10, 287 (2022).

    Article 

    Google Scholar
     

  • Romano, M., Fanelli, G., Albany, C. J., Giganti, G. & Lombardi, G. Past, present, and future of regulatory T cell therapy in transplantation and autoimmunity. Front. Immunol. 10, 43 (2019).

    Article 

    Google Scholar
     

  • Zhang, L., Meng, Y., Feng, X. & Han, Z. CAR-NK cells for cancer immunotherapy: from bench to bedside. Biomarker Res. 10, 1–19 (2022).

    Article 

    Google Scholar
     

  • Bald, T., Krummel, M. F., Smyth, M. J. & Barry, K. C. The NK cell–cancer cycle: advances and new challenges in NK cell-based immunotherapies. Nat. Immunol. 21, 835–847 (2020).

    Article 

    Google Scholar
     

  • Na, Y. R., Kim, S. W. & Seok, S. H. A new era of macrophage-based cell therapy. Exp. Mol. Med. 55, 1945–1954 (2023).

    Article 

    Google Scholar
     

  • Lee, S., Kivimäe, S., Dolor, A. & Szoka, F. C. Macrophage-based cell therapies: the long and winding road. J. Control. Rel. 240, 527–540 (2016).

    Article 

    Google Scholar
     

  • Hoang, D. M. et al. Stem cell-based therapy for human diseases. Signal. Transduct. Target. Ther. 7, 272 (2022).

    Article 

    Google Scholar
     

  • Zakrzewski, W., Dobrzyński, M., Szymonowicz, M. & Rybak, Z. Stem cells: past, present, and future. Stem Cell Res. Ther. 10, 1–22 (2019).

    Article 

    Google Scholar
     

  • Basile, G. et al. Emerging diabetes therapies: bringing back the β-cells. Mol. Metab. 60, 101477 (2022).

    Article 

    Google Scholar
     

  • Yu, H., Yang, Z., Li, F., Xu, L. & Sun, Y. Cell-mediated targeting drugs delivery systems. Drug. Deliv. 27, 1425–1437 (2020).

    Article 

    Google Scholar
     

  • Yousefpour, P., Ni, K. & Irvine, D. J. Targeted modulation of immune cells and tissues using engineered biomaterials. Nat. Rev. Bioeng. 1, 107–124 (2023).

    Article 

    Google Scholar
     

  • Li, R., Chen, Z., Li, J., Dai, Z. & Yu, Y. Nano-drug delivery systems for T cell-based immunotherapy. Nano Today 46, 101621 (2022).

    Article 

    Google Scholar
     

  • Ahn, Y. H. et al. A three-dimensional hyaluronic acid-based niche enhances the therapeutic efficacy of human natural killer cell-based cancer immunotherapy. Biomaterials 247, 119960 (2020).

    Article 

    Google Scholar
     

  • Prakash, S. et al. Polymer micropatches as natural killer cell engagers for tumor therapy. ACS Nano 17, 15918–15930 (2023).

    Article 

    Google Scholar
     

  • Sung, S., Steele, L. A., Risser, G. E. & Spiller, K. L. Biomaterial-assisted macrophage cell therapy for regenerative medicine. Adv. Drug Deliv. Rev. 199, 114979 (2023).

    Article 

    Google Scholar
     

  • Liang, T. et al. Recent advances in macrophage-mediated drug delivery systems. Int. J. Nanomed. 16, 2703 (2021).

    Article 

    Google Scholar
     

  • Li, Y. et al. Clinical progress and advanced research of red blood cells based drug delivery system. Biomaterials 279, 121202 (2021).

    Article 

    Google Scholar
     

  • Kharbikar, B. N., Mohindra, P. & Desai, T. A. Biomaterials to enhance stem cell transplantation. Cell Stem Cell 29, 692–721 (2022).

    Article 

    Google Scholar
     

  • Quizon, M. J. & García, A. J. Engineering β cell replacement therapies for type 1 diabetes: biomaterial advances and considerations for macroscale constructs. Annu. Rev. Pathol. Mech. Dis. 17, 485–513 (2022).

    Article 

    Google Scholar
     

  • Adebowale, K. et al. Materials for cell surface engineering. Adv. Mater. https://doi.org/10.1002/adma.202210059 (2023). This review summarizes recent advances in decorating cell surfaces with nanoparticles, microparticles and polymeric coatings, focusing on enhancing carrier cells and their therapeutic effects.

  • Stephan, M. T., Moon, J. J., Um, S. H., Bershteyn, A. & Irvine, D. J. Therapeutic cell engineering with surface-conjugated synthetic nanoparticles. Nat. Med. 16, 1035–1041 (2010).

    Article 

    Google Scholar
     

  • Tang, L. et al. Enhancing T cell therapy through TCR-signaling-responsive nanoparticle drug delivery. Nat. Biotechnol. 36, 707–716 (2018).

    Article 

    Google Scholar
     

  • Scott, M. D., Murad, K. L., Koumpouras, F., Talbot, M. & Eaton, J. W. Chemical camouflage of antigenic determinants: stealth erythrocytes. Proc. Natl Acad. Sci. USA 94, 7566–7571 (1997).

    Article 

    Google Scholar
     

  • Pan, C. et al. Polymerization‐mediated multifunctionalization of living cells for enhanced cell‐based therapy. Adv. Mater. 33, 2007379 (2021).

    Article 

    Google Scholar
     

  • Shields, C. W. et al. Cellular backpacks for macrophage immunotherapy. Sci. Adv. 6, eaaz6579 (2020).

    Article 

    Google Scholar
     

  • Kapate, N. et al. Backpack-mediated anti-inflammatory macrophage cell therapy for the treatment of traumatic brain injury. PNAS Nexus 3, pgad434 (2024).

    Article 

    Google Scholar
     

  • Kapate, N. et al. Polymer backpack‐loaded tissue infiltrating monocytes for treating cancer. Adv. Healthc. Mater. 2304144 https://doi.org/10.1002/adhm.202304144 (2024).

  • Farina, M., Alexander, J. F., Thekkedath, U., Ferrari, M. & Grattoni, A. Cell encapsulation: overcoming barriers in cell transplantation in diabetes and beyond. Adv. Drug Deliv. Rev. 139, 92–115 (2019). This review summarizes encapsulation strategies from academic and industrial research, including technologies in advanced preclinical and clinical phases, and highlights stimulus-responsive systems for improved therapeutic delivery in cell transplantation.

    Article 

    Google Scholar
     

  • Sun, L. et al. Induced cardiomyocytes-integrated conductive microneedle patch for treating myocardial infarction. Chem. Eng. J. 414, 128723 (2021).

    Article 

    Google Scholar
     

  • Lathuiliere, A. et al. A subcutaneous cellular implant for passive immunization against amyloid-β reduces brain amyloid and tau pathologies. Brain 139, 1587–1604 (2016).

    Article 

    Google Scholar
     

  • Yang, L. et al. A biodegradable hybrid inorganic nanoscaffold for advanced stem cell therapy. Nat. Commun. 9, 3147 (2018).

    Article 

    Google Scholar
     

  • Ye, Y. et al. Microneedles integrated with pancreatic cells and synthetic glucose‐signal amplifiers for smart insulin delivery. Adv. Mater. 28, 3115–3121 (2016).

    Article 

    Google Scholar
     

  • Xue, D., Hsu, E., Fu, Y.-X. & Peng, H. Next-generation cytokines for cancer immunotherapy. Antib. Ther. 4, 123–133 (2021).


    Google Scholar
     

  • Jones, R. B. et al. Antigen recognition-triggered drug delivery mediated by nanocapsule-functionalized cytotoxic T-cells. Biomaterials 117, 44–53 (2017).

    Article 

    Google Scholar
     

  • Xie, Y.-Q. et al. Redox-responsive interleukin-2 nanogel specifically and safely promotes the proliferation and memory precursor differentiation of tumor-reactive T-cells. Biomater. Sci. 7, 1345–1357 (2019).

    Article 

    Google Scholar
     

  • Eskandari, S. K. et al. Regulatory T cells engineered with TCR signaling-responsive IL-2 nanogels suppress alloimmunity in sites of antigen encounter. Sci. Transl. Med. 12, eaaw4744 (2020).

    Article 

    Google Scholar
     

  • Liu, Y. et al. Cytokine conjugation to enhance T cell therapy. Proc. Natl Acad. Sci. USA 120, e2213222120 (2023).

    Article 

    Google Scholar
     

  • Hou, X. et al. Vitamin lipid nanoparticles enable adoptive macrophage transfer for the treatment of multidrug-resistant bacterial sepsis. Nat. Nanotechnol. 15, 41–46 (2020).

    Article 

    Google Scholar
     

  • Stephan, M. T., Stephan, S. B., Bak, P., Chen, J. & Irvine, D. J. Synapse-directed delivery of immunomodulators using T-cell-conjugated nanoparticles. Biomaterials 33, 5776–5787 (2012).

    Article 

    Google Scholar
     

  • Hao, M. et al. Combination of metabolic intervention and T cell therapy enhances solid tumor immunotherapy. Sci. Transl. Med. 12, eaaz6667 (2020).

    Article 

    Google Scholar
     

  • Trowbridge, J. J., Xenocostas, A., Moon, R. T. & Bhatia, M. Glycogen synthase kinase-3 is an in vivo regulator of hematopoietic stem cell repopulation. Nat. Med. 12, 89–98 (2006).

    Article 

    Google Scholar
     

  • Loukogeorgakis, S. P. et al. Donor cell engineering with GSK3 inhibitor-loaded nanoparticles enhances engraftment after in utero transplantation. Blood 134, 1983–1995 (2019).

    Article 

    Google Scholar
     

  • Yu, D. et al. Hydrogen‐bonded organic framework (HOF)‐based single‐neural stem cell encapsulation and transplantation to remodel impaired neural networks. Angew. Chem. 134, e202201485 (2022).

    Article 

    Google Scholar
     

  • Kapate, N. et al. A backpack-based myeloid cell therapy for multiple sclerosis. Proc. Natl Acad. Sci. USA 120, e2221535120 (2023).

    Article 

    Google Scholar
     

  • Liu, S. et al. NK cell-based cancer immunotherapy: from basic biology to clinical development. J. Hematol. Oncol. 14, 1–17 (2021).

    Article 

    Google Scholar
     

  • Kumbhojkar, N. et al. Neutrophils bearing adhesive polymer micropatches as a drug-free cancer immunotherapy. Nat. Biomed. Eng. 8, 579–592 (2024).

    Article 

    Google Scholar
     

  • Rafiq, S. et al. Targeted delivery of a PD-1-blocking scFv by CAR-T cells enhances anti-tumor efficacy in vivo. Nat. Biotechnol. 36, 847–856 (2018).

    Article 

    Google Scholar
     

  • Chen, X. et al. Secretion of bispecific protein of anti-PD-1 fused with TGF-β trap enhances antitumor efficacy of CAR-T cell therapy. Mol. Ther. Oncol. 21, 144–157 (2021).

    Article 

    Google Scholar
     

  • Ghasemi, A. et al. Cytokine-armed dendritic cell progenitors for antigen-agnostic cancer immunotherapy. Nat. Cancer 5, 240–261 (2023).

    Article 

    Google Scholar
     

  • Agarwalla, P. et al. Bioinstructive implantable scaffolds for rapid in vivo manufacture and release of CAR-T cells. Nat. Biotechnol. 40, 1250–1258 (2022).

    Article 

    Google Scholar
     

  • Anselmo, A. C. et al. Delivering nanoparticles to lungs while avoiding liver and spleen through adsorption on red blood cells. ACS Nano 7, 11129–11137 (2013).

    Article 

    Google Scholar
     

  • Anselmo, A. C. et al. Exploiting shape, cellular-hitchhiking and antibodies to target nanoparticles to lung endothelium: synergy between physical, chemical and biological approaches. Biomaterials 68, 1–8 (2015).

    Article 

    Google Scholar
     

  • Brenner, J. S. et al. Red blood cell-hitchhiking boosts delivery of nanocarriers to chosen organs by orders of magnitude. Nat. Commun. 9, 2684 (2018).

    Article 

    Google Scholar
     

  • Ukidve, A. et al. Erythrocyte-driven immunization via biomimicry of their natural antigen-presenting function. Proc. Natl Acad. Sci. USA 117, 17727–17736 (2020).

    Article 

    Google Scholar
     

  • Zhao, Z., Ukidve, A., Gao, Y., Kim, J. & Mitragotri, S. Erythrocyte leveraged chemotherapy (ELeCt): nanoparticle assembly on erythrocyte surface to combat lung metastasis. Sci. Adv. 5, eaax9250 (2019).

    Article 

    Google Scholar
     

  • Zhao, Z. et al. Systemic tumour suppression via the preferential accumulation of erythrocyte-anchored chemokine-encapsulating nanoparticles in lung metastases. Nat. Biomed. Eng. 5, 441–454 (2021).

    Article 

    Google Scholar
     

  • Ding, Y. et al. RBC-hitchhiking chitosan nanoparticles loading methylprednisolone for lung-targeting delivery. J. Control, Rel. 341, 702–715 (2022).

    Article 

    Google Scholar
     

  • Wang, C. et al. Multifunctional theranostic red blood cells for magnetic‐field‐enhanced in vivo combination therapy of cancer. Adv. Mater. 26, 4794–4802 (2014).

    Article 

    Google Scholar
     

  • Ferguson, L. T. et al. Dual affinity to RBCs and target cells (DART) enhances both organ-and cell type-targeting of intravascular nanocarriers. ACS Nano 16, 4666–4683 (2022).

    Article 

    Google Scholar
     

  • Zhao, Z. et al. Engineering of living cells with polyphenol‐functionalized biologically active nanocomplexes. Adv. Mater. 32, 2003492 (2020).

    Article 

    Google Scholar
     

  • Zhao, Z. et al. Red blood cell anchoring enables targeted transduction and re‐administration of AAV‐mediated gene therapy. Adv. Sci. 9, 2201293 (2022).

    Article 

    Google Scholar
     

  • Zelepukin, I. et al. Nanoparticle-based drug delivery via RBC-hitchhiking for the inhibition of lung metastases growth. Nanoscale 11, 1636–1646 (2019).

    Article 

    Google Scholar
     

  • Schmid, D. et al. T cell-targeting nanoparticles focus delivery of immunotherapy to improve antitumor immunity. Nat. Commun. 8, 1–12 (2017).

    Article 

    Google Scholar
     

  • Huang, B. et al. Active targeting of chemotherapy to disseminated tumors using nanoparticle-carrying T cells. Sci. Transl. Med. 7, 291ra94 (2015).

    Article 

    Google Scholar
     

  • Shi, C. et al. Trojan horse nanocapsule enabled in situ modulation of the phenotypic conversion of TH17 cells to Treg cells for the treatment of multiple sclerosis in mice. Adv. Mater. 35, 2210262 (2023).

    Article 

    Google Scholar
     

  • Gao, C. et al. Supramolecular macrophage–liposome marriage for cell‐hitchhiking delivery and immunotherapy of acute pneumonia and melanoma. Adv. Funct. Mater. 31, 2102440 (2021).

    Article 

    Google Scholar
     

  • Yang, L. et al. Live macrophage-delivered doxorubicin-loaded liposomes effectively treat triple-negative breast cancer. ACS Nano 16, 9799–9809 (2022).

    Article 

    Google Scholar
     

  • Im, S. et al. Harnessing the formation of natural killer–tumor cell immunological synapses for enhanced therapeutic effect in solid tumors. Adv. Mater. 32, 2000020 (2020).

    Article 

    Google Scholar
     

  • Mosquera, J., García, I. & Liz-Marzán, L. M. Cellular uptake of nanoparticles versus small molecules: a matter of size. Acc. Chem. Res. 51, 2305–2313 (2018).

    Article 

    Google Scholar
     

  • Rennick, J. J., Johnston, A. P. & Parton, R. G. Key principles and methods for studying the endocytosis of biological and nanoparticle therapeutics. Nat. Nanotechnol. 16, 266–276 (2021).

    Article 

    Google Scholar
     

  • Dou, H. et al. Development of a macrophage-based nanoparticle platform for antiretroviral drug delivery. Blood 108, 2827–2835 (2006).

    Article 

    Google Scholar
     

  • Choi, M.-R. et al. A cellular Trojan horse for delivery of therapeutic nanoparticles into tumors. Nano Lett. 7, 3759–3765 (2007).

    Article 

    Google Scholar
     

  • Evans, M. A. et al. Macrophage‐mediated delivery of hypoxia‐activated prodrug nanoparticles. Adv. Ther. 3, 1900162 (2020).

    Article 

    Google Scholar
     

  • Qi, Y., Yan, X., Xia, T. & Liu, S. Use of macrophage as a Trojan horse for cancer nanotheranostics. Mater. Des. 198, 109388 (2021).

    Article 

    Google Scholar
     

  • Mantovani, A., Allavena, P., Marchesi, F. & Garlanda, C. Macrophages as tools and targets in cancer therapy. Nat. Rev. Drug. Discov. 21, 799–820 (2022).

    Article 

    Google Scholar
     

  • Choi, J. et al. Use of macrophages to deliver therapeutic and imaging contrast agents to tumors. Biomaterials 33, 4195–4203 (2012).

    Article 

    Google Scholar
     

  • De Oliveira, S., Rosowski, E. E. & Huttenlocher, A. Neutrophil migration in infection and wound repair: going forward in reverse. Nat. Rev. Immunol. 16, 378–391 (2016).

    Article 

    Google Scholar
     

  • Kolaczkowska, E. & Kubes, P. Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol. 13, 159–175 (2013).

    Article 

    Google Scholar
     

  • Xue, J. et al. Neutrophil-mediated anticancer drug delivery for suppression of postoperative malignant glioma recurrence. Nat. Nanotechnol. 12, 692 (2017).

    Article 

    Google Scholar
     

  • Luo, Z. et al. Neutrophil hitchhiking for drug delivery to the bone marrow. Nat. Nanotechnol. 18, 647–656 (2023).

    Article 

    Google Scholar
     

  • Shi, M. et al. Dual functional monocytes modulate bactericidal and anti‐inflammation process for severe osteomyelitis treatment. Small 16, 1905185 (2020).

    Article 

    Google Scholar
     

  • Kim, H. et al. Gold nanoparticle‐carrying T cells for the combined immuno‐photothermal therapy. Small 19, 2301377 (2023).

    Article 

    Google Scholar
     

  • Wu, M. et al. MR imaging tracking of inflammation-activatable engineered neutrophils for targeted therapy of surgically treated glioma. Nat. Commun. 9, 4777 (2018).

    Article 

    Google Scholar
     

  • Sun, P. et al. A smart nanoparticle-laden and remote-controlled self-destructive macrophage for enhanced chemo/chemodynamic synergistic therapy. ACS Nano 14, 13894–13904 (2020).

    Article 

    Google Scholar
     

  • Ye, B. et al. Neutrophils mediated multistage nanoparticle delivery for prompting tumor photothermal therapy. J. Nanobiotechnol. 18, 1–14 (2020).

    Article 

    Google Scholar
     

  • Li, Z. et al. Small gold nanorods laden macrophages for enhanced tumor coverage in photothermal therapy. Biomaterials 74, 144–154 (2016).

    Article 

    Google Scholar
     

  • Li, Z. et al. Cell-borne 2D nanomaterials for efficient cancer targeting and photothermal therapy. Biomaterials 133, 37–48 (2017).

    Article 

    Google Scholar
     

  • Pinho, S., Macedo, M. H., Rebelo, C., Sarmento, B. & Ferreira, L. Stem cells as vehicles and targets of nanoparticles. Drug. Discov. Today 23, 1071–1078 (2018).

    Article 

    Google Scholar
     

  • Cao, B., Yang, M., Zhu, Y., Qu, X. & Mao, C. Stem cells loaded with nanoparticles as a drug carrier for in vivo breast cancer therapy. Adv. Mater. 26, 4627–4631 (2014).

    Article 

    Google Scholar
     

  • Lai, Y.-H. et al. Stem cell–nanomedicine system as a theranostic bio-gadolinium agent for targeted neutron capture cancer therapy. Nat. Commun. 14, 285 (2023).

    Article 

    Google Scholar
     

  • Anselmo, A. C. et al. Monocyte-mediated delivery of polymeric backpacks to inflamed tissues: a generalized strategy to deliver drugs to treat inflammation. J. Control. Rel. 199, 29–36 (2015).

    Article 

    Google Scholar
     

  • Gilbert, J. B., O’Brien, J. S., Suresh, H. S., Cohen, R. E. & Rubner, M. F. Orientation‐specific attachment of polymeric microtubes on cell surfaces. Adv. Mater. 25, 5948–5952 (2013).

    Article 

    Google Scholar
     

  • Polak, R. et al. Liposome‐loaded cell backpacks. Adv. Healthc. Mater. 4, 2832–2841 (2015).

    Article 

    Google Scholar
     

  • Wang, L. L.-W. et al. Preclinical characterization of macrophage-adhering gadolinium micropatches for MRI contrast after traumatic brain injury in pigs. Sci. Transl. Med. 16, eadk5413 (2024).

    Article 

    Google Scholar
     

  • Alapan, Y. et al. Soft erythrocyte-based bacterial microswimmers for cargo delivery. Sci. Robot. 3, eaar4423 (2018).

    Article 

    Google Scholar
     

  • Tang, J. et al. Cardiac cell–integrated microneedle patch for treating myocardial infarction. Sci. Adv. 4, eaat9365 (2018).

    Article 

    Google Scholar
     

  • Bagó, J. R. et al. Electrospun nanofibrous scaffolds increase the efficacy of stem cell-mediated therapy of surgically resected glioblastoma. Biomaterials 90, 116–125 (2016).

    Article 

    Google Scholar
     

  • Xue, Y. et al. LNP-RNA-engineered adipose stem cells for accelerated diabetic wound healing. Nat. Commun. 15, 739 (2024).

    Article 

    Google Scholar
     

  • Webber, M. J., Khan, O. F., Sydlik, S. A., Tang, B. C. & Langer, R. A perspective on the clinical translation of scaffolds for tissue engineering. Ann. Biomed. Eng. 43, 641–656 (2015).

    Article 

    Google Scholar
     

  • Drury, J. L. & Mooney, D. J. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24, 4337–4351 (2003).

    Article 

    Google Scholar
     

  • Lee, H. et al. A decade of advances in single‐cell nanocoating for mammalian cells. Adv. Healthc. Mater. 10, 2100347 (2021).

    Article 

    Google Scholar
     

  • Singh, A. et al. Enhanced lubrication on tissue and biomaterial surfaces through peptide-mediated binding of hyaluronic acid. Nat. Mater. 13, 988–995 (2014).

    Article 

    Google Scholar
     

  • Rossi, N. A., Constantinescu, I., Brooks, D. E., Scott, M. D. & Kizhakkedathu, J. N. Enhanced cell surface polymer grafting in concentrated and nonreactive aqueous polymer solutions. J. Am. Chem. Soc. 132, 3423–3430 (2010).

    Article 

    Google Scholar
     

  • Kim, H. et al. General and facile coating of single cells via mild reduction. J. Am. Chem. Soc. 140, 1199–1202 (2018).

    Article 

    Google Scholar
     

  • Mahal, L. K., Yarema, K. J. & Bertozzi, C. R. Engineering chemical reactivity on cell surfaces through oligosaccharide biosynthesis. Science 276, 1125–1128 (1997).

    Article 

    Google Scholar
     

  • Wilson, J. T., Krishnamurthy, V. R., Cui, W., Qu, Z. & Chaikof, E. L. Noncovalent cell surface engineering with cationic graft copolymers. J. Am. Chem. Soc. 131, 18228–18229 (2009).

    Article 

    Google Scholar
     

  • Teramura, Y., Kaneda, Y., Totani, T. & Iwata, H. Behavior of synthetic polymers immobilized on a cell membrane. Biomaterials 29, 1345–1355 (2008).

    Article 

    Google Scholar
     

  • Park, J. et al. Engineering the surface of therapeutic “living” cells. Chem. Rev. 118, 1664–1690 (2018).

    Article 

    Google Scholar
     

  • Le, Y. & Scott, M. D. Immunocamouflage: the biophysical basis of immunoprotection by grafted methoxypoly(ethylene glycol) (mPEG). Acta Biomater. 6, 2631–2641 (2010).

    Article 

    Google Scholar
     

  • Yang, S. H. et al. Mussel-inspired encapsulation and functionalization of individual yeast cells. J. Am. Chem. Soc. 133, 2795–2797 (2011).

    Article 

    Google Scholar
     

  • Wang, D., Toyofuku, W. M. & Scott, M. D. The potential utility of methoxypoly (ethylene glycol)-mediated prevention of rhesus blood group antigen RhD recognition in transfusion medicine. Biomaterials 33, 3002–3012 (2012).

    Article 

    Google Scholar
     

  • Bochenek, M. A. et al. Alginate encapsulation as long-term immune protection of allogeneic pancreatic islet cells transplanted into the omental bursa of macaques. Nat. Biomed. Eng. 2, 810–821 (2018).

    Article 

    Google Scholar
     

  • Veiseh, O. et al. Size-and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates. Nat. Mater. 14, 643–651 (2015).

    Article 

    Google Scholar
     

  • Dhawan, A. et al. Alginate microencapsulated human hepatocytes for the treatment of acute liver failure in children. J. Hepatol. 72, 877–884 (2020).

    Article 

    Google Scholar
     

  • Snow, B. et al. A phase IIb, randomised, double-blind, placebo-controlled, dose-ranging investigation of the safety and efficacy of NTCELL® [immunoprotected (alginate-encapsulated) porcine choroid plexus cells for xenotransplantation] in patients with Parkinson’s disease. Parkinsonism Relat. Disord. 61, 88–93 (2019).

    Article 

    Google Scholar
     

  • de Vos, P., Lazarjani, H. A., Poncelet, D. & Faas, M. M. Polymers in cell encapsulation from an enveloped cell perspective. Adv. Drug Deliv. Rev. 67, 15–34 (2014).

    Article 

    Google Scholar
     

  • Chaimov, D. et al. Innovative encapsulation platform based on pancreatic extracellular matrix achieve substantial insulin delivery. J. Control. Rel. 257, 91–101 (2017).

    Article 

    Google Scholar
     

  • Calafiore, R. et al. Microencapsulated pancreatic islet allografts into nonimmunosuppressed patients with type 1 diabetes: first two cases. Diabetes Care 29, 137–138 (2006).

    Article 

    Google Scholar
     

  • Basta, G. et al. Long-term metabolic and immunological follow-up of nonimmunosuppressed patients with type 1 diabetes treated with microencapsulated islet allografts: four cases. Diabetes Care 34, 2406–2409 (2011).

    Article 

    Google Scholar
     

  • Tuch, B. E. et al. Safety and viability of microencapsulated human islets transplanted into diabetic humans. Diabetes Care 32, 1887–1889 (2009).

    Article 

    Google Scholar
     

  • Vegas, A. J. et al. Combinatorial hydrogel library enables identification of materials that mitigate the foreign body response in primates. Nat. Biotechnol. 34, 345–352 (2016).

    Article 

    Google Scholar
     

  • Matlaga, B. F., Yasenchak, L. P. & Salthouse, T. N. Tissue response to implanted polymers: the significance of sample shape. J. Biomed. Mater. Res. 10, 391–397 (1976).

    Article 

    Google Scholar
     

  • Shapiro, A. J. et al. Insulin expression and C-peptide in type 1 diabetes subjects implanted with stem cell-derived pancreatic endoderm cells in an encapsulation device. Cell Rep. Med. 2, 100466 (2021).

    Article 

    Google Scholar
     

  • Chang, R. et al. Nanoporous immunoprotective device for stem-cell-derived β-cell replacement therapy. ACS Nano 11, 7747–7757 (2017).

    Article 

    Google Scholar
     

  • Sivaraj, D. et al. Hydrogel scaffolds to deliver cell therapies for wound healing. Front. Bioeng. Biotechnol. 9, 660145 (2021).

    Article 

    Google Scholar
     

  • Garg, R. K. et al. Capillary force seeding of hydrogels for adipose-derived stem cell delivery in wounds. Stem Cell Transl. Med. 3, 1079–1089 (2014).

    Article 

    Google Scholar
     

  • Anselmo, A. C. & Mitragotri, S. Nanoparticles in the clinic. Bioeng. Transl. Med. 1, 10–29 (2016).

    Article 

    Google Scholar
     

  • Anselmo, A. C. & Mitragotri, S. Nanoparticles in the clinic: an update. Bioeng. Transl. Med. 4, e10143 (2019).

    Article 

    Google Scholar
     

  • Mandal, A., Clegg, J. R., Anselmo, A. C. & Mitragotri, S. Hydrogels in the clinic. Bioeng. Transl. Med. 5, e10158 (2020).

    Article 

    Google Scholar
     

  • Bailey, S. R. & Maus, M. V. Gene editing for immune cell therapies. Nat. Biotechnol. 37, 1425–1434 (2019).

    Article 

    Google Scholar
     

  • Ellis, G. I., Sheppard, N. C. & Riley, J. L. Genetic engineering of T cells for immunotherapy. Nat. Rev. Genet. 22, 427–447 (2021).

    Article 

    Google Scholar
     

  • Hamilton, E. et al. PRIME™ IL-15 (RPTR-147): preliminary clinical results and biomarker analysis from a first-in-human phase 1 study of IL-15 loaded peripherally-derived autologous T cell therapy in solid tumor patients. J. Immunother. Cancer 8, A479–A480 (2020).


    Google Scholar
     

  • Falcetti, C. & Offner, O. Torben Straight Nissen joins Repertoire® Immune Medicines as Chief Executive Officer. Company refocusing on the potential of its DECODE™ platform to develop transformative immune medicines. businesswire https://go.nature.com/4cYiABC (2022).

  • Aijaz, A. et al. Biomanufacturing for clinically advanced cell therapies. Nat. Biomed. Eng. 2, 362–376 (2018).

    Article 

    Google Scholar
     

  • Batty, C. J., Bachelder, E. M. & Ainslie, K. M. Historical perspective of clinical nano and microparticle formulations for delivery of therapeutics. Trends Mol. Med. 27, 516–519 (2021).

    Article 

    Google Scholar
     

  • Stewart, S. A., Domínguez-Robles, J., Donnelly, R. F. & Larrañeta, E. Implantable polymeric drug delivery devices: classification, manufacture, materials, and clinical applications. Polymers 10, 1379 (2018).

    Article 

    Google Scholar
     

  • Li, J., Wu, C., Chu, P. K. & Gelinsky, M. 3D printing of hydrogels: rational design strategies and emerging biomedical applications. Mater. Sci. Eng. R: Rep. 140, 100543 (2020).

    Article 

    Google Scholar
     

  • Zhang, H. et al. Microfluidics for nano-drug delivery systems: from fundamentals to industrialization. Acta Pharm. Sin. B 13, 3277–3299 (2023).

    Article 

    Google Scholar
     

  • Kim, H. U., Roh, Y. H., Mun, S. J. & Bong, K. W. Discontinuous dewetting in a degassed mold for fabrication of homogeneous polymeric microparticles. ACS Appl. Mater. Interfaces 12, 53318–53327 (2020).

    Article 

    Google Scholar
     

  • Wang, J.-Y. & Wang, Y. Particle replication in non-wetting templates: a platform for engineering shape-and size-specific janus particles. Angew. Chem. Int. Ed. Engl. 52, 6580–6589 (2012).


    Google Scholar
     

  • Li, J. & Mooney, D. J. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 1, 16071 (2016).

    Article 

    Google Scholar
     

  • Kakkar, A., Traverso, G., Farokhzad, O. C., Weissleder, R. & Langer, R. Evolution of macromolecular complexity in drug delivery systems. Nat. Rev. Chem. 1, 63 (2017).

    Article 

    Google Scholar
     

  • Zhang, Y., Chan, H. F. & Leong, K. W. Advanced materials and processing for drug delivery: the past and the future. Adv. Drug Deliv. Rev. 65, 104–120 (2013).

    Article 

    Google Scholar
     

  • Chen, R. et al. Biomaterial-assisted scalable cell production for cell therapy. Biomaterials 230, 119627 (2020). This review discusses how biomaterials enhance cell production by creating biomimetic environments that support cell adhesion and proliferation, maintain cell characteristics, and improve production efficiency and quality control through automated, Good Manufacturing Practice-compliant methods.

    Article 

    Google Scholar
     

  • Roh, K.-H., Nerem, R. M. & Roy, K. Biomanufacturing of therapeutic cells: state of the art, current challenges, and future perspectives. Annu. Rev. Chem. Biomol. Eng. 7, 455–478 (2016).

    Article 

    Google Scholar
     

  • Chen, A. K.-L., Chen, X., Choo, A. B. H., Reuveny, S. & Oh, S. K. W. Critical microcarrier properties affecting the expansion of undifferentiated human embryonic stem cells. Stem Cell Res. 7, 97–111 (2011).

    Article 

    Google Scholar
     

  • Carletti, E., Motta, A. & Migliaresi, C. Scaffolds for tissue engineering and 3D cell culture. Methods Mol. Biol. 695, 17–39 (2011).

    Article 

    Google Scholar
     

  • Cheung, A. S., Zhang, D. K., Koshy, S. T. & Mooney, D. J. Scaffolds that mimic antigen-presenting cells enable ex vivo expansion of primary T cells. Nat. Biotechnol. 36, 160–169 (2018).

    Article 

    Google Scholar
     

  • Ashley, E. A. Towards precision medicine. Nat. Rev. Genet. 17, 507–522 (2016).

    Article 

    Google Scholar
     

  • Manzari, M. T. et al. Targeted drug delivery strategies for precision medicines. Nat. Rev. Mater. 6, 351–370 (2021).

    Article 

    Google Scholar
     

  • Facklam, A. L., Volpatti, L. R. & Anderson, D. G. Biomaterials for personalized cell therapy. Adv. Mater. 32, 1902005 (2020). This review underscores the importance of biomaterials in tissue regeneration, therapeutic protein delivery and cancer immunotherapy, focusing on advancements in engineering material properties and functionalities tailored for personalized cell therapies.

    Article 

    Google Scholar
     

  • Keymeulen, B. et al. Encapsulated stem cell-derived β cells exert glucose control in patients with type 1 diabetes. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-02055-5 (2023).

  • Philippidis, A. First patient dosed with VCTX210, a cell therapy for type 1 diabetes: ViaCyte and CRISPR Therapeutics are evaluating an immune-evasive cell replacement therapy that they developed to help patients produce their own insulin. Genet. Eng. Biotechnol. News 42, 10–11 (2022).


    Google Scholar
     

  • Fernandez, E. et al. MVX-ONCO-1 in advanced refractory cancers: Safety, feasibility, and preliminary efficacy results from all HNSCC patients treated in two ongoing clinical trials. J. Clin. Oncol. 39, e18005 (2021).

    Article 

    Google Scholar
     

  • Mach, N. et al. LBA46 SAKK 11/16, a phase IIa trial evaluating overall survival (OS) for recurrent/metastatic head & neck squamous cell carcinoma (RMHNSCC) patients (pts) progressing after ≥1 line of systemic therapy, treated with MVX-ONCO-1, a novel, first in class cell encapsulation-based immunotherapy. Ann. Oncol. 34, S1286 (2023).

    Article 

    Google Scholar
     

  • Kauper, K. et al. Continuous intraocular drug delivery lasting over a decade: ciliary neurotrophic factor (CNTF) secreted from Neurotech’s NT-501 implanted in subjects with retinal degenerative disorders. Investig. Ophthalmol. Vis. Sci. 64, 3680–3680 (2023).


    Google Scholar
     

  • Birch, D. G. et al. Randomized trial of ciliary neurotrophic factor delivered by encapsulated cell intraocular implants for retinitis pigmentosa. Am. J. Ophthalmol. 156, 283–292.e1 (2013).

    Article 

    Google Scholar
     

  • Chew, E. Y. et al. Effect of ciliary neurotrophic factor on retinal neurodegeneration in patients with macular telangiectasia type 2: a randomized clinical trial. Ophthalmology 126, 540–549 (2019).

    Article 

    Google Scholar
     

  • Brizuela, C. et al. Cell-based regenerative endodontics for treatment of periapical lesions: a randomized, controlled phase I/II clinical trial. J. Dental Res. 99, 523–529 (2020).

    Article 

    Google Scholar
     

  • Evans, M. A. et al. Macrophage-mediated delivery of light activated nitric oxide prodrugs with spatial, temporal and concentration control. Chem. Sci. 9, 3729–3741 (2018).

    Article 

    Google Scholar
     

  • Tomás, R. M., Martyn, B., Bailey, T. L. & Gibson, M. I. Engineering cell surfaces by covalent grafting of synthetic polymers to metabolically-labeled glycans. Acs Macro Lett. 7, 1289–1294 (2018).

    Article 

    Google Scholar
     

  • Zhao, Y. et al. Surface-anchored framework for generating RhD-epitope stealth red blood cells. Sci. Adv. 6, eaaw9679 (2020).

    Article 

    Google Scholar
     

  • Rurik, J. G. et al. CAR T cells produced in vivo to treat cardiac injury. Science 375, 91–96 (2022).

    Article 

    Google Scholar
     

  • Barberio, A. E. et al. Cancer cell coating nanoparticles for optimal tumor-specific cytokine delivery. ACS Nano 14, 11238–11253 (2020).

    Article 

    Google Scholar
     

  • Wayteck, L. et al. Hitchhiking nanoparticles: reversible coupling of lipid-based nanoparticles to cytotoxic T lymphocytes. Biomaterials 77, 243–254 (2016).

    Article 

    Google Scholar
     

  • Merivaara, A. et al. Preservation of biomaterials and cells by freeze-drying: change of paradigm. J. Control. Rel. 336, 480–498 (2021).

    Article 

    Google Scholar
     

  • Wikström, J. et al. Viability of freeze dried microencapsulated human retinal pigment epithelial cells. Eur. J. Pharm. Sci. 47, 520–526 (2012).

    Article 

    Google Scholar
     

  • Auvinen, V.-V. et al. Effects of nanofibrillated cellulose hydrogels on adipose tissue extract and hepatocellular carcinoma cell spheroids in freeze-drying. Cryobiology 91, 137–145 (2019).

    Article 

    Google Scholar
     

  • Hamilton, J. R. et al. In vivo human T cell engineering with enveloped delivery vehicles. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-02085-z (2024).

  • Smith, T. T. et al. In situ programming of leukaemia-specific T cells using synthetic DNA nanocarriers. Nat. Nanotechnol. 12, 813–820 (2017).

    Article 

    Google Scholar
     

  • Breda, L. et al. In vivo hematopoietic stem cell modification by mRNA delivery. Science 381, 436–443 (2023).

    Article 

    Google Scholar