Search
Close this search box.

Deciphering the molecular mechanisms of stem cell dynamics in hair follicle regeneration – Experimental & Molecular Medicine

  • Schneider, M. R., Schmidt-Ullrich, R. & Paus, R. The hair follicle as a dynamic miniorgan. Curr. Biol. 19, R132–R142 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hsu, Y. C., Li, L. & Fuchs, E. Transit-amplifying cells orchestrate stem cell activity and tissue regeneration. Cell 157, 935–949 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Greco, V. et al. A two-step mechanism for stem cell activation during hair regeneration. Cell Stem Cell 4, 155–169 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ito, M. et al. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat. Med. 11, 1351–1354 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, S. A., Li, K. N. & Tumbar, T. Stem cell-intrinsic mechanisms regulating adult hair follicle homeostasis. Exp. Dermatol. 30, 430–447 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Plikus, M. V. et al. Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration. Nature 451, 340–344 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lay, K., Kume, T. & Fuchs, E. FOXC1 maintains the hair follicle stem cell niche and governs stem cell quiescence to preserve long-term tissue-regenerating potential. Proc. Natl Acad. Sci. USA 113, E1506–E1515 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, L., Siegenthaler, J. A., Dowell, R. D. & Yi, R. Foxc1 reinforces quiescence in self-renewing hair follicle stem cells. Science 351, 613–617 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Horsley, V., Aliprantis, A. O., Polak, L., Glimcher, L. H. & Fuchs, E. NFATc1 balances quiescence and proliferation of skin stem cells. Cell 132, 299–310 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choi, Y. S. et al. Distinct functions for Wnt/beta-catenin in hair follicle stem cell proliferation and survival and interfollicular epidermal homeostasis. Cell Stem Cell 13, 720–733 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sennett, R. & Rendl, M. Mesenchymal-epithelial interactions during hair follicle morphogenesis and cycling. Semin. Cell Dev. Biol. 23, 917–927 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, C. L., Huang, W. Y., Wang, E. H. C., Tai, K. Y. & Lin, S. J. Functional complexity of hair follicle stem cell niche and therapeutic targeting of niche dysfunction for hair regeneration. J. Biomed. Sci. 27, 43 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jang, H., Jo, Y., Lee, J. H. & Choi, S. Aging of hair follicle stem cells and their niches. BMB Rep. 56, 2–9 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Paus, R., Nickoloff, B. J. & Ito, T. A. ‘hairy’ privilege. Trends Immunol. 26, 32–40 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bertolini, M., McElwee, K., Gilhar, A., Bulfone-Paus, S. & Paus, R. Hair follicle immune privilege and its collapse in alopecia areata. Exp. Dermatol 29, 703–725 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pratt, C. H., King, L. E. Jr., Messenger, A. G., Christiano, A. M. & Sundberg, J. P. Alopecia areata. Nat. Rev. Dis. Prim. 3, 17011 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Inui, S. & Itami, S. Androgen actions on the human hair follicle: perspectives. Exp. Dermatol 22, 168–171 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ohnemus, U. et al. Hair cycle control by estrogens: catagen induction via estrogen receptor (ER)-alpha is checked by ER beta signaling. Endocrinology 146, 1214–1225 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Craven, A. J. et al. Prolactin signaling influences the timing mechanism of the hair follicle: analysis of hair growth cycles in prolactin receptor knockout mice. Endocrinology 142, 2533–2539 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Redler, S., Messenger, A. G. & Betz, R. C. Genetics and other factors in the aetiology of female pattern hair loss. Exp. Dermatol 26, 510–517 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Lutz, G. Hair loss and hyperprolactinemia in women. Dermatoendocrinol 4, 65–71 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paus, R., Bulfone-Paus, S. & Bertolini, M. Hair follicle immune privilege revisited: the key to alopecia areata management. J. Investig. Dermatol Symp. Proc. 19, S12–S17 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Anzai, A., Wang, E. H. C., Lee, E. Y., Aoki, V. & Christiano, A. M. Pathomechanisms of immune-mediated alopecia. Int Immunol. 31, 439–447 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Randall, V. A. Hormonal regulation of hair follicles exhibits a biological paradox. Semin. Cell Dev. Biol. 18, 274–285 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Costin, G. E. & Hearing, V. J. Human skin pigmentation: melanocytes modulate skin color in response to stress. FASEB J. 21, 976–994 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin, J. Y. & Fisher, D. E. Melanocyte biology and skin pigmentation. Nature 445, 843–850 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dreno, B. et al. Microbiome in healthy skin, update for dermatologists. J. Eur. Acad. Dermatol Venereol. 30, 2038–2047 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Geueke, A. & Niemann, C. Stem and progenitor cells in sebaceous gland development, homeostasis and pathologies. Exp. Dermatol 30, 588–597 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Torkamani, N., Rufaut, N. W., Jones, L. & Sinclair, R. Destruction of the arrector pili muscle and fat infiltration in androgenic alopecia. Br. J. Dermatol 170, 1291–1298 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Muller-Rover, S. et al. A comprehensive guide for the accurate classification of murine hair follicles in distinct hair cycle stages. J. Invest Dermatol 117, 3–15 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Augustyniak, A. & Mc Mahon, H. Dietary marine-derived ingredients for stimulating hair cell cycle. Biomed. Pharmacother. 163, 114838 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rezza, A., Sennett, R. & Rendl, M. Adult stem cell niches: cellular and molecular components. Curr. Top. Dev. Biol. 107, 333–372 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yi, R. Concise review: mechanisms of quiescent hair follicle stem cell regulation. Stem Cells 35, 2323–2330 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Hsu, Y. C., Pasolli, H. A. & Fuchs, E. Dynamics between stem cells, niche, and progeny in the hair follicle. Cell 144, 92–105 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hagner, A. et al. Transcriptional profiling of the adult hair follicle mesenchyme reveals r-spondin as a novel regulator of dermal progenitor function. iScience 23, 101019 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fuchs, E. & Blau, H. M. Tissue stem cells: architects of their niches. Cell Stem Cell 27, 532–556 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, H., Adam, R. C., Ge, Y., Hua, Z. L. & Fuchs, E. Epithelial-mesenchymal micro-niches govern stem cell lineage choices. Cell 169, 483–496.e413 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rompolas, P., Mesa, K. R. & Greco, V. Spatial organization within a niche as a determinant of stem-cell fate. Nature 502, 513–518 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heitman, N. et al. Dermal sheath contraction powers stem cell niche relocation during hair cycle regression. Science 367, 161–166 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nishimura, E. K. et al. Dominant role of the niche in melanocyte stem-cell fate determination. Nature 416, 854–860 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nishimura, E. K. Melanocyte stem cells: a melanocyte reservoir in hair follicles for hair and skin pigmentation. Pigment Cell Melanoma Res. 24, 401–410 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qiu, W., Chuong, C. M. & Lei, M. Regulation of melanocyte stem cells in the pigmentation of skin and its appendages: Biological patterning and therapeutic potentials. Exp. Dermatol 28, 395–405 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chou, W. C. et al. Direct migration of follicular melanocyte stem cells to the epidermis after wounding or UVB irradiation is dependent on Mc1r signaling. Nat. Med. 19, 924–929 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Niemann, C. & Horsley, V. Development and homeostasis of the sebaceous gland. Semin. Cell Dev. Biol. 23, 928–936 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frances, D. & Niemann, C. Stem cell dynamics in sebaceous gland morphogenesis in mouse skin. Dev. Biol. 363, 138–146 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fischer, H. et al. Holocrine secretion of sebum is a unique dnase2-dependent mode of programmed cell death. J. Invest. Dermatol. 137, 587–594 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schneider, M. R. & Paus, R. Sebocytes, multifaceted epithelial cells: lipid production and holocrine secretion. Int. J. Biochem. Cell Biol. 42, 181–185 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zouboulis, C. C. et al. Beyond acne: current aspects of sebaceous gland biology and function. Rev. Endocr. Metab. Disord. 17, 319–334 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moore, K. A. & Lemischka, I. R. Stem cells and their niches. Science 311, 1880–1885 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, K. N. & Tumbar, T. Hair follicle stem cells as a skin-organizing signaling center during adult homeostasis. EMBO J. 40, e107135 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hsu, Y. C., Li, L. & Fuchs, E. Emerging interactions between skin stem cells and their niches. Nat. Med. 20, 847–856 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brunet, A., Goodell, M. A. & Rando, T. A. Ageing and rejuvenation of tissue stem cells and their niches. Nat. Rev. Mol. Cell Biol. 24, 45–62 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hsu, Y. C. & Fuchs, E. Building and maintaining the skin. Cold Spring Harb. Perspect. Biol. 14, a040840 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Castellana, D., Paus, R. & Perez-Moreno, M. Macrophages contribute to the cyclic activation of adult hair follicle stem cells. PLoS Biol. 12, e1002002 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gur-Cohen, S. et al. Stem cell-driven lymphatic remodeling coordinates tissue regeneration. Science 366, 1218–1225 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Genander, M. et al. BMP signaling and its pSMAD1/5 target genes differentially regulate hair follicle stem cell lineages. Cell Stem Cell 15, 619–633 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kobielak, K., Stokes, N., de la Cruz, J., Polak, L. & Fuchs, E. Loss of a quiescent niche but not follicle stem cells in the absence of bone morphogenetic protein signaling. Proc. Natl Acad. Sci. USA 104, 10063–10068 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kimura-Ueki, M. et al. Hair cycle resting phase is regulated by cyclic epithelial FGF18 signaling. J. Invest. Dermatol. 132, 1338–1345 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gay, D. et al. Fgf9 from dermal gammadelta T cells induces hair follicle neogenesis after wounding. Nat. Med. 19, 916–923 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harel, S. et al. Pharmacologic inhibition of JAK-STAT signaling promotes hair growth. Sci. Adv. 1, e1500973 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, E. C. E., Dai, Z., Ferrante, A. W., Drake, C. G. & Christiano, A. M. A subset of TREM2(+) dermal macrophages secretes oncostatin M to maintain hair follicle stem cell quiescence and inhibit hair growth. Cell Stem Cell 24, 654–669 e656 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Myung, P. S., Takeo, M., Ito, M. & Atit, R. P. Epithelial Wnt ligand secretion is required for adult hair follicle growth and regeneration. J. Invest. Dermatol. 133, 31–41 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leiros, G. J., Ceruti, J. M., Castellanos, M. L., Kusinsky, A. G. & Balana, M. E. Androgens modify Wnt agonists/antagonists expression balance in dermal papilla cells preventing hair follicle stem cell differentiation in androgenetic alopecia. Mol. Cell. Endocrinol. 439, 26–34 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lien, W. H. et al. In vivo transcriptional governance of hair follicle stem cells by canonical Wnt regulators. Nat. Cell Biol. 16, 179–190 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Folgueras, A. R. et al. Architectural niche organization by LHX2 is linked to hair follicle stem cell function. Cell Stem Cell 13, 314–327 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leishman, E. et al. Foxp1 maintains hair follicle stem cell quiescence through regulation of Fgf18. Development 140, 3809–3818 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Osorio, K. M. et al. Runx1 modulates developmental, but not injury-driven, hair follicle stem cell activation. Development 135, 1059–1068 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, J. K. et al. IRX5 promotes DNA damage repair and activation of hair follicle stem cells. Stem Cell Rep. 18, 1227–1243 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Haensel, D. et al. An Ovol2-Zeb1 transcriptional circuit regulates epithelial directional migration and proliferation. EMBO Rep. 20, e46273 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Shirokova, V. et al. Foxi3 deficiency compromises hair follicle stem cell specification and activation. Stem Cells 34, 1896–1908 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Adam, R. C. et al. Pioneer factors govern super-enhancer dynamics in stem cell plasticity and lineage choice. Nature 521, 366–370 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ren, X. et al. Lgr4 deletion delays the hair cycle and inhibits the activation of hair follicle stem cells. J. Invest. Dermatol. 140, 1706–1712 e1704 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jaks, V. et al. Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nat. Genet. 40, 1291–1299 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Merrill, B. J., Gat, U., DasGupta, R. & Fuchs, E. Tcf3 and Lef1 regulate lineage differentiation of multipotent stem cells in skin. Genes Dev. 15, 1688–1705 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, A. B., Zhang, Y. V. & Tumbar, T. Gata6 promotes hair follicle progenitor cell renewal by genome maintenance during proliferation. EMBO J. 36, 61–78 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Adam, R. C. et al. NFI transcription factors provide chromatin access to maintain stem cell identity while preventing unintended lineage fate choices. Nat. Cell Biol. 22, 640–650 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pivetti, S. et al. Loss of PRC1 activity in different stem cell compartments activates a common transcriptional program with cell type-dependent outcomes. Sci. Adv. 5, eaav1594 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, J. et al. Progressive alopecia reveals decreasing stem cell activation probability during aging of mice with epidermal deletion of DNA methyltransferase 1. J. Invest. Dermatol. 132, 2681–2690 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rabbani, P. et al. Coordinated activation of Wnt in epithelial and melanocyte stem cells initiates pigmented hair regeneration. Cell 145, 941–955 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nishimura, E. K. et al. Key roles for transforming growth factor beta in melanocyte stem cell maintenance. Cell Stem Cell 6, 130–140 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chang, C. Y. et al. NFIB is a governor of epithelial-melanocyte stem cell behaviour in a shared niche. Nature 495, 98–102 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takeo, M. et al. EdnrB governs regenerative response of melanocyte stem cells by crosstalk with Wnt signaling. Cell Rep. 15, 1291–1302 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Botchkareva, N. V., Khlgatian, M., Longley, B. J., Botchkarev, V. A. & Gilchrest, B. A. SCF/c-kit signaling is required for cyclic regeneration of the hair pigmentation unit. FASEB J. 15, 645–658 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liao, C. P., Booker, R. C., Morrison, S. J. & Le, L. Q. Identification of hair shaft progenitors that create a niche for hair pigmentation. Genes Dev. 31, 744–756 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Veniaminova, N. A. et al. Niche-specific factors dynamically regulate sebaceous gland stem cells in the skin. Dev. Cell 51, 326–340 e324 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grose, R. et al. The role of fibroblast growth factor receptor 2b in skin homeostasis and cancer development. EMBO J. 26, 1268–1278 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clayton, R. W. et al. Homeostasis of the sebaceous gland and mechanisms of acne pathogenesis. Br. J. Dermatol. 181, 677–690 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choa, R. et al. Thymic stromal lymphopoietin induces adipose loss through sebum hypersecretion. Science 373, eabd2893 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kobayashi, T. et al. Homeostatic control of sebaceous glands by innate lymphoid cells regulates commensal bacteria equilibrium. Cell 176, 982–997.e916 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paus, R., Ito, N., Takigawa, M. & Ito, T. The hair follicle and immune privilege. J. Investig. Dermatol Symp. Proc. 8, 188–194 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Rajabi, F., Drake, L. A., Senna, M. M. & Rezaei, N. Alopecia areata: a review of disease pathogenesis. Br. J. Dermatol. 179, 1033–1048 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Paus, R., Eichmuller, S., Hofmann, U., Czarnetzki, B. M. & Robinson, P. Expression of classical and non-classical MHC class I antigens in murine hair follicles. Br. J. Dermatol. 131, 177–183 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ito, T. et al. Collapse and restoration of MHC class-I-dependent immune privilege: exploiting the human hair follicle as a model. Am. J. Pathol. 164, 623–634 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hamed, F. N. et al. Alopecia areata patients show deficiency of FOXP3+CD39+ T regulatory cells and clonotypic restriction of Treg TCRbeta-chain, which highlights the immunopathological aspect of the disease. PLoS ONE 14, e0210308 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raffin, C., Vo, L. T. & Bluestone, J. A. T(reg) cell-based therapies: challenges and perspectives. Nat. Rev. Immunol. 20, 158–172 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harries, M. J. et al. Lichen planopilaris is characterized by immune privilege collapse of the hair follicle’s epithelial stem cell niche. J. Pathol. 231, 236–247 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meyer, K. C. et al. Evidence that the bulge region is a site of relative immune privilege in human hair follicles. Br. J. Dermatol. 159, 1077–1085 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Rosenblum, M. D., Yancey, K. B., Olasz, E. B. & Truitt, R. L. CD200, a “no danger” signal for hair follicles. J. Dermatol. Sci. 41, 165–174 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harrist, T. J., Ruiter, D. J., Mihm, M. C. Jr. & Bhan, A. K. Distribution of major histocompatibility antigens in normal skin. Br. J. Dermatol. 109, 623–633 (1983).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoshida, R., Tanaka, K., Amagai, M. & Ohyama, M. Involvement of the bulge region with decreased expression of hair follicle stem cell markers in senile female cases of alopecia areata. J. Eur. Acad. Dermatol. Venereol. 25, 1346–1350 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ito, T. et al. Maintenance of hair follicle immune privilege is linked to prevention of NK cell attack. J. Invest. Dermatol 128, 1196–1206 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kono, M., Nagata, H., Umemura, S., Kawana, S. & Osamura, R. Y. In situ expression of corticotropin-releasing hormone (CRH) and proopiomelanocortin (POMC) genes in human skin. FASEB J. 15, 2297–2299 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ito, N. et al. Corticotropin-releasing hormone stimulates the in situ generation of mast cells from precursors in the human hair follicle mesenchyme. J. Invest. Dermatol. 130, 995–1004 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Agudo, J. et al. Quiescent tissue stem cells evade immune surveillance. Immunity 48, 271–285 e275 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harries, M. J. et al. Lichen planopilaris and frontal fibrosing alopecia as model epithelial stem cell diseases. Trends Mol. Med. 24, 435–448 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Ho, B. S. et al. Progressive expression of PPARGC1alpha is associated with hair miniaturization in androgenetic alopecia. Sci. Rep. 9, 8771 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matsumura, H. et al. Hair follicle aging is driven by transepidermal elimination of stem cells via COL17A1 proteolysis. Science 351, aad4395 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, C. et al. Escape of hair follicle stem cells causes stem cell exhaustion during aging. Nat. Aging 1, 889–903 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Rathnayake, D. & Sinclair, R. Male androgenetic alopecia. Expert Opin. Pharmacother. 11, 1295–1304 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, C. C. et al. Regenerative hair waves in aging mice and extra-follicular modulators follistatin, dkk1, and sfrp4. J. Invest. Dermatol. 134, 2086–2096 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keyes, B. E. et al. Nfatc1 orchestrates aging in hair follicle stem cells. Proc. Natl Acad. Sci. USA 110, E4950–E4959 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choi, S. et al. Corticosterone inhibits GAS6 to govern hair follicle stem-cell quiescence. Nature 592, 428–432 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ge, Y. et al. The aging skin microenvironment dictates stem cell behavior. Proc. Natl Acad. Sci. USA 117, 5339–5350 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koester, J. et al. Niche stiffening compromises hair follicle stem cell potential during ageing by reducing bivalent promoter accessibility. Nat. Cell Biol. 23, 771–781 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Salzer, M. C. et al. Identity noise and adipogenic traits characterize dermal fibroblast aging. Cell 175, 1575–1590 e1522 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morinaga, H. et al. Obesity accelerates hair thinning by stem cell-centric converging mechanisms. Nature 595, 266–271 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Flores, A. et al. Lactate dehydrogenase activity drives hair follicle stem cell activation. Nat. Cell Biol. 19, 1017–1026 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reichenbach, B. et al. Glutamate transporter Slc1a3 mediates inter-niche stem cell activation during skin growth. EMBO J. 37, e98280 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peters, F. et al. Ceramide synthase 4 regulates stem cell homeostasis and hair follicle cycling. J. Invest. Dermatol. 135, 1501–1509 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, C. S. et al. Glutamine metabolism controls stem cell fate reversibility and long-term maintenance in the hair follicle. Cell Metab. 32, 629–642 e628 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nishimura, E. K., Granter, S. R. & Fisher, D. E. Mechanisms of hair graying: incomplete melanocyte stem cell maintenance in the niche. Science 307, 720–724 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Inomata, K. et al. Genotoxic stress abrogates renewal of melanocyte stem cells by triggering their differentiation. Cell 137, 1088–1099 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dai, D. M. et al. Modeling human gray hair by irradiation as a valuable tool to study aspects of tissue aging. Geroscience 45, 1215–1230 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, B. et al. Hyperactivation of sympathetic nerves drives depletion of melanocyte stem cells. Nature 577, 676–681 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zarei, M., Wikramanayake, T. C., Falto-Aizpurua, L., Schachner, L. A. & Jimenez, J. J. Low level laser therapy and hair regrowth: an evidence-based review. Lasers Med. Sci. 31, 363–371 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Fertig, R. M., Gamret, A. C., Cervantes, J. & Tosti, A. Microneedling for the treatment of hair loss? J. Eur. Acad. Dermatol. Venereol. 32, 564–569 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Avci, P., Gupta, G. K., Clark, J., Wikonkal, N. & Hamblin, M. R. Low-level laser (light) therapy (LLLT) for treatment of hair loss. Lasers Surg. Med. 46, 144–151 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Varothai, S. & Bergfeld, W. F. Androgenetic alopecia: an evidence-based treatment update. Am. J. Clin. Dermatol. 15, 217–230 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Ellis, J. A. & Sinclair, R. D. Male pattern baldness: current treatments, future prospects. Drug Discov. Today 13, 791–797 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xing, L. et al. Alopecia areata is driven by cytotoxic T lymphocytes and is reversed by JAK inhibition. Nat. Med. 20, 1043–1049 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Damsky, W. & King, B. A. JAK inhibitors in dermatology: the promise of a new drug class. J. Am. Acad. Dermatol. 76, 736–744 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • King, B. et al. Two phase 3 trials of baricitinib for alopecia areata. N. Engl. J. Med. 386, 1687–1699 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goldstein, J. et al. Calcineurin/Nfatc1 signaling links skin stem cell quiescence to hormonal signaling during pregnancy and lactation. Genes Dev. 28, 983–994 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, J. et al. Runx1 and p21 synergistically limit the extent of hair follicle stem cell quiescence in vivo. Proc. Natl Acad. Sci. USA 110, 4634–4639 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kadaja, M. et al. SOX9: a stem cell transcriptional regulator of secreted niche signaling factors. Genes Dev. 28, 328–341 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoeck, J. D. et al. Stem cell plasticity enables hair regeneration following Lgr5(+) cell loss. Nat. Cell Biol. 19, 666–676 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Adam, R. C. et al. Temporal layering of signaling effectors drives chromatin remodeling during hair follicle stem cell lineage progression. Cell Stem Cell 22, 398–413 e397 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suen, W. J., Li, S. T. & Yang, L. T. Hes1 regulates anagen initiation and hair follicle regeneration through modulation of hedgehog signaling. Stem Cells 38, 301–314 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, G. et al. SIRT7 activates quiescent hair follicle stem cells to ensure hair growth in mice. EMBO J. 39, e104365 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar