
Fitzsimmons, R., Mazurek, M. S., Soos, A. & Simmons, C. A. Mesenchymal stromal/stem cells in regenerative medicine and tissue engineering. Stem Cells Int. 2018, 8031718–8031733 (2018).
Zhu, Y., Ge, J., Huang, C., Liu, H. & Jiang, H. Application of mesenchymal stem cell therapy for aging Frailty: From mechanisms to therapeutics. Theranostics 11, 5675–5685 (2021).
Chen, H., Liu, O., Chen, S. & Zhou, Y. Aging and mesenchymal stem cells: Therapeutic opportunities and challenges in the Older Group. Gerontology 68, 339–352 (2022).
Abruzzo, P. M. et al. Herb-derived products: Natural tools to delay and counteract stem cell senescence. Stem Cells Int. 2020, 8827038–8827064 (2020).
Vono, R., Jover, G. E., Spinetti, G. & Madeddu, P. Oxidative stress in mesenchymal stem cell senescence: Regulation by coding and noncoding Rnas. Antioxid. Redox Signal. 29, 864–879 (2018).
Denu, R. A. & Hematti, P. Effects of oxidative stress on mesenchymal stem cell biology. Oxidative Med. Cell. Longev. 2016, 2989076–2989085 (2016).
Pernas, L., Scorrano, L. Mito-morphosis: Mitochondrial fusion, fission, and cristae remodeling as key mediators of cellular function. Annu. Rev. Physiol. 78, 505–531 (2016).
Liu, L. et al. Mitophagy and its contribution to metabolic and aging-associated disorders. Antioxid. Redox Signal. 32, 906–927 (2020).
Pickles, S., Vigié, P. & Youle, R. J. Mitophagy and quality control mechanisms in mitochondrial maintenance. Curr. Biol. 28, R170–R185 (2018).
Naik, P. P., Birbrair, A. & Bhutia, S. K. Mitophagy-driven metabolic switch reprograms stem cell fate. Cell. Mol. Life Sci. 76, 27–43 (2019).
Feng, X., Yin, W., Wang, J., Feng, L. & Kang, Y. J. Mitophagy promotes the stemness of bone marrow-derived mesenchymal stem cells. Exp. Biol. Med. 246, 97–105 (2021).
Patel, S. S. et al. Cellular and molecular mechanisms of curcumin in prevention and treatment of disease. Crit. Rev. Food Sci. Nutr. 60, 887–939 (2020).
Zia, A., Farkhondeh, T., Pourbagher-Shahri, A. M. & Samarghandian, S. The role of curcumin in aging and senescence: Molecular mechanisms. Biomed. Pharmacother. 134, 111119–111128 (2021).
Deng, J. et al. Curcumin alleviates the senescence of canine bone marrow mesenchymal stem cells during in vitro expansion by activating the autophagy pathway. Int. J. Mol. Sci. 22, 11356–11376 (2021).
Ortega-Dominguez, B. et al. Curcumin prevents Cisplatin-Induced renal alterations in mitochondrial bioenergetics and dynamic. Food Chem. Toxicol. 107, 373–385 (2017).
Jin, Z. et al. Curcumin exerts chondroprotective effects against osteoarthritis by promoting Ampk/Pink1/Parkin-mediated mitophagy. Biomed. Pharmacother. 151, 113092–113102 (2022).
Lone, J., Choi, J. H., Kim, S. W. & Yun, J. W. Curcumin induces Brown Fat-Like phenotype in 3T3-L1 and primary White adipocytes. J. Nutr. Biochem. 27, 193–202 (2016).
Mahjoob, M. & Stochaj, U. Curcumin nanoformulations to combat aging-related diseases. Ageing Res. Rev. 69, 101364 (2021).
Huang, M. et al. Liposome co-encapsulation as a strategy for the delivery of curcumin and resveratrol. Food Funct. 10, 6447–6458 (2019).
Chen, Y., Lu, Y., Lee, R. J. & Xiang, G. Nano encapsulated curcumin: And its potential for biomedical applications. Int. J. Nanomed. 15, 3099–3120 (2020).
Kim, D. W., Choi, C. H., Park, J. P. & Lee, S. J. Nanospheres loaded with Curcumin improve the Bioactivity of umbilical cord blood-mesenchymal stem cells Via C-Src activation during the skin wound healing process. Cells 9, 1467–1485 (2020).
Nogales, C. et al. Network pharmacology: Curing causal mechanisms instead of treating symptoms. Trends Pharmacol. Sci. 43, 136–150 (2022).
Li, X. et al. Network pharmacology approaches for research of traditional Chinese medicines. Chin. J. Nat. Med. 21, 323–332 (2023).
Zhang, D. et al. Autophagy inhibits the mesenchymal stem cell aging induced by D-Galactose through Ros/Jnk/P38 signalling. Clin. Exp. Pharmacol. Physiol. 47, 466–477 (2020).
Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).
Liu, J., Ding, Y., Liu, Z. & Liang, X. Senescence in mesenchymal stem cells: Functional alterations, molecular mechanisms, and rejuvenation strategies. Front. Cell. Dev. Biol. 8, 258–274 (2020).
Gao, L. et al. Antiaging effects of Dietary supplements and natural products. Front. Pharmacol. 14, 1192714–1192733 (2023).
Ye, G. et al. Oxidative stress-mediated mitochondrial dysfunction facilitates mesenchymal stem cell senescence in Ankylosing Spondylitis. Cell. Death Dis. 11, 775–787 (2020).
Denu, R. A. & Hematti, P. Optimization of oxidative stress for mesenchymal Stromal/Stem cell engraftment, function and longevity. Free Radic Biol. Med. 167, 193–200 (2021).
Nir, D. et al. Antioxidants attenuate heat shock induced premature senescence of bovine mesenchymal stem cells. Int. J. Mol. Sci. 23, 5750–5765 (2022).
Yang, Q., Leong, S. A., Chan, K. P., Yuan, X. L. & Ng, T. K. Complex effect of continuous curcumin exposure on human bone marrow-derived mesenchymal stem cell regenerative properties through Matrix Metalloproteinase Regulation. Basic. Clin. Pharmacol. Toxicol. 128, 141–153 (2021).
He, Q. et al. Exploring the mechanism of curcumin in the treatment of colon cancer based on network pharmacology and molecular docking. Front. Pharmacol. 14, 1102581–1102596 (2023).
Zhang, F. et al. P53 and Parkin co-regulate mitophagy in bone marrow mesenchymal stem cells to promote the repair of early steroid-induced osteonecrosis of the femoral head. Cell. Death Dis. 11, 42–57 (2020).
Gao, T., Li, Y., Wang, X. & Ren, F. Alginate oligosaccharide-mediated butyrate-Hif-1Alpha Axis improves skin aging in mice. J. Pharm. Anal. 14, 100911–100925 (2024).
Chen, X. et al. Ginsenoside Ck cooperates with bone mesenchymal stem cells to enhance angiogenesis post-stroke via Glut1 and Hif-1Alpha/Vegf pathway. Phytother Res. 38, 4321–4335 (2024).
Zhou, C. H., Zhang, X. P., Liu, F. & Wang, W. Modeling the interplay between the Hif-1 and P53 pathways in Hypoxia. Sci. Rep. 5, 13834–13843 (2015).
Baker, N., Sohn, J. & Tuan, R. S. Promotion of human mesenchymal stem cell osteogenesis by Pi3-Kinase/Akt signaling, and the influence of Caveolin-1/Cholesterol homeostasis. Stem Cell. Res. Ther. 6, 238–248 (2015).
Suwanmanee, G., Tantrawatpan, C., Kheolamai, P., Paraoan, L. & Manochantr, S. Fucoxanthin diminishes oxidative stress damage in human placenta-derived mesenchymal stem cells through the Pi3K/Akt/Nrf-2 pathway. Sci. Rep. 13, 22974–22993 (2023).
Budgude, P., Kale, V. & Vaidya, A. Pharmacological inhibition of P38 Mapk rejuvenates bone marrow derived-mesenchymal stromal cells and boosts their hematopoietic stem cell-supportive ability. Stem Cell. Rev. Rep. 17, 2210–2222 (2021).
Kang, X. et al. Zuogui Wan slowed senescence of bone marrow mesenchymal stem cells by suppressing Wnt/Beta-Catenin signaling. J. Ethnopharmacol. 294, 115323–115334 (2022).
Fu, Z. J. et al. Hif-1Alpha-Bnip3-mediated mitophagy in tubular cells protects against renal Ischemia/Reperfusion Injury. Redox Biol. 36, 101671–101686 (2020).
Liu, B. et al. Zhen-Wu-Tang Induced Mitophagy to protect mitochondrial function in chronic glomerulonephritis Via Pi3K/Akt/Mtor and Ampk pathways. Front. Pharmacol. 12, 777670–777682 (2021).
Yao, J. et al. Cdk9 inhibition blocks the initiation of Pink1-Prkn-mediated mitophagy by regulating the Sirt1-Foxo3-Bnip3 axis and enhances the therapeutic effects involving mitochondrial dysfunction in hepatocellular carcinoma. Autophagy 18, 1879–1897 (2022).
Liu, L. J., Lv, Z., Xue, X., Xing, Z. Y. & Zhu, F. Canonical wnt signaling activated by Wnt7B contributes to L-Hbs-mediated Sorafenib resistance in hepatocellular carcinoma by inhibiting mitophagy. Cancers 14, 5781–5797 (2022).
Miwa, S., Kashyap, S., Chini, E. & von Zglinicki, T. Mitochondrial dysfunction in cell senescence and aging. J. Clin. Invest. 132, e158447–e158455 (2022).
Banji, O. J., Banji, D. & Ch, K. Curcumin and hesperidin improve cognition by suppressing mitochondrial dysfunction and apoptosis induced by D-Galactose in rat brain. Food Chem. Toxicol. 74, 51–59 (2014).
Negrette-Guzman, M. et al. Curcumin attenuates gentamicin-induced kidney mitochondrial alterations: Possible role of a mitochondrial biogenesis mechanism. Evid.-Based Complement Altern. Med. 2015, 917435–917451 (2015)
Ren, L. et al. Mitochondrial dynamics: Fission and fusion in fate determination of mesenchymal stem cells. Front. Cell. Dev. Biol. 8, 580070–580087 (2020).
Liu, F. et al. Lrrc17 controls Bmsc senescence via mitophagy and inhibits the therapeutic effect of Bmscs on ovariectomy-induced bone loss. Redox Biol. 43, 101963–101976 (2021).
Cao, S. et al. Curcumin ameliorates oxidative stress-induced intestinal barrier injury and mitochondrial damage by promoting parkin dependent mitophagy through Ampk-Tfeb signal pathway. Free Radic Biol. Med. 147, 8–22 (2020).
WANG, X., LUO, L. E. U. N. G. A. W., XU, C. & J. & Tem Observation of Ultrasound-Induced Mitophagy in Nasopharyngeal Carcinoma Cells in the Presence of Curcumin. Exp. Ther. Med. 3, 146–148 (2012).
Wang, W. & Xu, J. Curcumin attenuates cerebral ischemia-reperfusion Injury through regulating mitophagy and preserving mitochondrial function. Curr. Neurovasc Res. 17, 113–122 (2020).
- SEO Powered Content & PR Distribution. Get Amplified Today.
- PlatoData.Network Vertical Generative Ai. Empower Yourself. Access Here.
- PlatoAiStream. Web3 Intelligence. Knowledge Amplified. Access Here.
- PlatoESG. Carbon, CleanTech, Energy, Environment, Solar, Waste Management. Access Here.
- PlatoHealth. Biotech and Clinical Trials Intelligence. Access Here.
- Source: https://www.nature.com/articles/s41598-024-82614-1