Curcumin liposomes alleviate senescence of bone marrow mesenchymal stem cells by activating mitophagy

  • Fitzsimmons, R., Mazurek, M. S., Soos, A. & Simmons, C. A. Mesenchymal stromal/stem cells in regenerative medicine and tissue engineering. Stem Cells Int. 2018, 8031718–8031733 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, Y., Ge, J., Huang, C., Liu, H. & Jiang, H. Application of mesenchymal stem cell therapy for aging Frailty: From mechanisms to therapeutics. Theranostics 11, 5675–5685 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Chen, H., Liu, O., Chen, S. & Zhou, Y. Aging and mesenchymal stem cells: Therapeutic opportunities and challenges in the Older Group. Gerontology 68, 339–352 (2022).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Abruzzo, P. M. et al. Herb-derived products: Natural tools to delay and counteract stem cell senescence. Stem Cells Int. 2020, 8827038–8827064 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vono, R., Jover, G. E., Spinetti, G. & Madeddu, P. Oxidative stress in mesenchymal stem cell senescence: Regulation by coding and noncoding Rnas. Antioxid. Redox Signal. 29, 864–879 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Denu, R. A. & Hematti, P. Effects of oxidative stress on mesenchymal stem cell biology. Oxidative Med. Cell. Longev. 2016, 2989076–2989085 (2016).

    Article 
    MATH 

    Google Scholar
     

  • Pernas, L., Scorrano, L. Mito-morphosis: Mitochondrial fusion, fission, and cristae remodeling as key mediators of cellular function. Annu. Rev. Physiol. 78, 505–531 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, L. et al. Mitophagy and its contribution to metabolic and aging-associated disorders. Antioxid. Redox Signal. 32, 906–927 (2020).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Pickles, S., Vigié, P. & Youle, R. J. Mitophagy and quality control mechanisms in mitochondrial maintenance. Curr. Biol. 28, R170–R185 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Naik, P. P., Birbrair, A. & Bhutia, S. K. Mitophagy-driven metabolic switch reprograms stem cell fate. Cell. Mol. Life Sci. 76, 27–43 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Feng, X., Yin, W., Wang, J., Feng, L. & Kang, Y. J. Mitophagy promotes the stemness of bone marrow-derived mesenchymal stem cells. Exp. Biol. Med. 246, 97–105 (2021).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Patel, S. S. et al. Cellular and molecular mechanisms of curcumin in prevention and treatment of disease. Crit. Rev. Food Sci. Nutr. 60, 887–939 (2020).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Zia, A., Farkhondeh, T., Pourbagher-Shahri, A. M. & Samarghandian, S. The role of curcumin in aging and senescence: Molecular mechanisms. Biomed. Pharmacother. 134, 111119–111128 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deng, J. et al. Curcumin alleviates the senescence of canine bone marrow mesenchymal stem cells during in vitro expansion by activating the autophagy pathway. Int. J. Mol. Sci. 22, 11356–11376 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Ortega-Dominguez, B. et al. Curcumin prevents Cisplatin-Induced renal alterations in mitochondrial bioenergetics and dynamic. Food Chem. Toxicol. 107, 373–385 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin, Z. et al. Curcumin exerts chondroprotective effects against osteoarthritis by promoting Ampk/Pink1/Parkin-mediated mitophagy. Biomed. Pharmacother. 151, 113092–113102 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lone, J., Choi, J. H., Kim, S. W. & Yun, J. W. Curcumin induces Brown Fat-Like phenotype in 3T3-L1 and primary White adipocytes. J. Nutr. Biochem. 27, 193–202 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mahjoob, M. & Stochaj, U. Curcumin nanoformulations to combat aging-related diseases. Ageing Res. Rev. 69, 101364 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, M. et al. Liposome co-encapsulation as a strategy for the delivery of curcumin and resveratrol. Food Funct. 10, 6447–6458 (2019).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Chen, Y., Lu, Y., Lee, R. J. & Xiang, G. Nano encapsulated curcumin: And its potential for biomedical applications. Int. J. Nanomed. 15, 3099–3120 (2020).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Kim, D. W., Choi, C. H., Park, J. P. & Lee, S. J. Nanospheres loaded with Curcumin improve the Bioactivity of umbilical cord blood-mesenchymal stem cells Via C-Src activation during the skin wound healing process. Cells 9, 1467–1485 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nogales, C. et al. Network pharmacology: Curing causal mechanisms instead of treating symptoms. Trends Pharmacol. Sci. 43, 136–150 (2022).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Li, X. et al. Network pharmacology approaches for research of traditional Chinese medicines. Chin. J. Nat. Med. 21, 323–332 (2023).

    PubMed 
    MATH 

    Google Scholar
     

  • Zhang, D. et al. Autophagy inhibits the mesenchymal stem cell aging induced by D-Galactose through Ros/Jnk/P38 signalling. Clin. Exp. Pharmacol. Physiol. 47, 466–477 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Liu, J., Ding, Y., Liu, Z. & Liang, X. Senescence in mesenchymal stem cells: Functional alterations, molecular mechanisms, and rejuvenation strategies. Front. Cell. Dev. Biol. 8, 258–274 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Gao, L. et al. Antiaging effects of Dietary supplements and natural products. Front. Pharmacol. 14, 1192714–1192733 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ye, G. et al. Oxidative stress-mediated mitochondrial dysfunction facilitates mesenchymal stem cell senescence in Ankylosing Spondylitis. Cell. Death Dis. 11, 775–787 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Denu, R. A. & Hematti, P. Optimization of oxidative stress for mesenchymal Stromal/Stem cell engraftment, function and longevity. Free Radic Biol. Med. 167, 193–200 (2021).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Nir, D. et al. Antioxidants attenuate heat shock induced premature senescence of bovine mesenchymal stem cells. Int. J. Mol. Sci. 23, 5750–5765 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Yang, Q., Leong, S. A., Chan, K. P., Yuan, X. L. & Ng, T. K. Complex effect of continuous curcumin exposure on human bone marrow-derived mesenchymal stem cell regenerative properties through Matrix Metalloproteinase Regulation. Basic. Clin. Pharmacol. Toxicol. 128, 141–153 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He, Q. et al. Exploring the mechanism of curcumin in the treatment of colon cancer based on network pharmacology and molecular docking. Front. Pharmacol. 14, 1102581–1102596 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, F. et al. P53 and Parkin co-regulate mitophagy in bone marrow mesenchymal stem cells to promote the repair of early steroid-induced osteonecrosis of the femoral head. Cell. Death Dis. 11, 42–57 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, T., Li, Y., Wang, X. & Ren, F. Alginate oligosaccharide-mediated butyrate-Hif-1Alpha Axis improves skin aging in mice. J. Pharm. Anal. 14, 100911–100925 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Chen, X. et al. Ginsenoside Ck cooperates with bone mesenchymal stem cells to enhance angiogenesis post-stroke via Glut1 and Hif-1Alpha/Vegf pathway. Phytother Res. 38, 4321–4335 (2024).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Zhou, C. H., Zhang, X. P., Liu, F. & Wang, W. Modeling the interplay between the Hif-1 and P53 pathways in Hypoxia. Sci. Rep. 5, 13834–13843 (2015).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Baker, N., Sohn, J. & Tuan, R. S. Promotion of human mesenchymal stem cell osteogenesis by Pi3-Kinase/Akt signaling, and the influence of Caveolin-1/Cholesterol homeostasis. Stem Cell. Res. Ther. 6, 238–248 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suwanmanee, G., Tantrawatpan, C., Kheolamai, P., Paraoan, L. & Manochantr, S. Fucoxanthin diminishes oxidative stress damage in human placenta-derived mesenchymal stem cells through the Pi3K/Akt/Nrf-2 pathway. Sci. Rep. 13, 22974–22993 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Budgude, P., Kale, V. & Vaidya, A. Pharmacological inhibition of P38 Mapk rejuvenates bone marrow derived-mesenchymal stromal cells and boosts their hematopoietic stem cell-supportive ability. Stem Cell. Rev. Rep. 17, 2210–2222 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kang, X. et al. Zuogui Wan slowed senescence of bone marrow mesenchymal stem cells by suppressing Wnt/Beta-Catenin signaling. J. Ethnopharmacol. 294, 115323–115334 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fu, Z. J. et al. Hif-1Alpha-Bnip3-mediated mitophagy in tubular cells protects against renal Ischemia/Reperfusion Injury. Redox Biol. 36, 101671–101686 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, B. et al. Zhen-Wu-Tang Induced Mitophagy to protect mitochondrial function in chronic glomerulonephritis Via Pi3K/Akt/Mtor and Ampk pathways. Front. Pharmacol. 12, 777670–777682 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yao, J. et al. Cdk9 inhibition blocks the initiation of Pink1-Prkn-mediated mitophagy by regulating the Sirt1-Foxo3-Bnip3 axis and enhances the therapeutic effects involving mitochondrial dysfunction in hepatocellular carcinoma. Autophagy 18, 1879–1897 (2022).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Liu, L. J., Lv, Z., Xue, X., Xing, Z. Y. & Zhu, F. Canonical wnt signaling activated by Wnt7B contributes to L-Hbs-mediated Sorafenib resistance in hepatocellular carcinoma by inhibiting mitophagy. Cancers 14, 5781–5797 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miwa, S., Kashyap, S., Chini, E. & von Zglinicki, T. Mitochondrial dysfunction in cell senescence and aging. J. Clin. Invest. 132, e158447–e158455 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Banji, O. J., Banji, D. & Ch, K. Curcumin and hesperidin improve cognition by suppressing mitochondrial dysfunction and apoptosis induced by D-Galactose in rat brain. Food Chem. Toxicol. 74, 51–59 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Negrette-Guzman, M. et al. Curcumin attenuates gentamicin-induced kidney mitochondrial alterations: Possible role of a mitochondrial biogenesis mechanism. Evid.-Based Complement Altern. Med. 2015, 917435–917451 (2015)

    Article 

    Google Scholar
     

  • Ren, L. et al. Mitochondrial dynamics: Fission and fusion in fate determination of mesenchymal stem cells. Front. Cell. Dev. Biol. 8, 580070–580087 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, F. et al. Lrrc17 controls Bmsc senescence via mitophagy and inhibits the therapeutic effect of Bmscs on ovariectomy-induced bone loss. Redox Biol. 43, 101963–101976 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Cao, S. et al. Curcumin ameliorates oxidative stress-induced intestinal barrier injury and mitochondrial damage by promoting parkin dependent mitophagy through Ampk-Tfeb signal pathway. Free Radic Biol. Med. 147, 8–22 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • WANG, X., LUO, L. E. U. N. G. A. W., XU, C. & J. & Tem Observation of Ultrasound-Induced Mitophagy in Nasopharyngeal Carcinoma Cells in the Presence of Curcumin. Exp. Ther. Med. 3, 146–148 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Wang, W. & Xu, J. Curcumin attenuates cerebral ischemia-reperfusion Injury through regulating mitophagy and preserving mitochondrial function. Curr. Neurovasc Res. 17, 113–122 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar