Search
Close this search box.

CRISPR/Cas9-mediated knock-in cells of the late-onset Alzheimer’s disease-risk variant, SHARPIN G186R, reveal reduced NF-κB pathway and accelerated Aβ secretion – Journal of Human Genetics

  • Gatz M, Reynolds CA, Fratiglioni L, Johansson B, Mortimer JA, Berg S, et al. Role of genes and environments for explaining Alzheimer disease. Arch Gen Psychiatry. 2006;63:168.

    Article 
    PubMed 

    Google Scholar
     

  • Bellenguez C, Küçükali F, Jansen IE, Kleineidam L, Moreno-Grau S, Amin N, et al. New insights into the genetic etiology of Alzheimer’s disease and related dementias. Nat Genet. 2022;54:412–36.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Asanomi Y, Shigemizu D, Miyashita A, Mitsumori R, Mori T, Hara N, et al. A rare functional variant of SHARPIN attenuates the inflammatory response and associates with increased risk of late-onset Alzheimer’s disease. Mol Med. 2019;25:20.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gerlach B, Cordier SM, Schmukle AC, Emmerich CH, Rieser E, Haas TL, et al. Linear ubiquitination prevents inflammation and regulates immune signalling. Nature. 2011;471:591–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tokunaga F, Nakagawa T, Nakahara M, Saeki Y, Taniguchi M, Sakata S, et al. SHARPIN is a component of the NF-κB-activating linear ubiquitin chain assembly complex. Nature. 2011;471:633–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ikeda F, Deribe YL, Skånland SS, Stieglitz B, Grabbe C, Franz-Wachtel M, et al. SHARPIN forms a linear ubiquitin ligase complex regulating NF-κB activity and apoptosis. Nature. 2011;471:637–41.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakazawa S, Oikawa D, Ishii R, Ayaki T, Takahashi H, Takeda H, et al. Linear ubiquitination is involved in the pathogenesis of optineurin-associated amyotrophic lateral sclerosis. Nat Commun. 2016;7:1–14.

    Article 

    Google Scholar
     

  • Dittmar G, Winklhofer KF. Linear ubiquitin chains: Cellular functions and strategies for detection and quantification. Front Chem. 2019;7:915.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oikawa D, Sato Y, Ito H, Tokunaga F. Linear ubiquitin code: Its writer, erasers, decoders, inhibitors, and implications in disorders. Int J Mol Sci. 2020;21:3381.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jahan AS, Elbæk CR, Damgaard RB. Met1-linked ubiquitin signalling in health and disease: inflammation, immunity, cancer, and beyond. Cell Death Differ. 2021;28:473–92.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Douglas T, Saleh M. Cross-regulation between LUBAC and caspase-1 modulates cell death and inflammation. J Biol Chem. 2020;295:5216–28.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nastase M-V, Zeng-Brouwers J, Frey H, Hsieh LT-H, Poluzzi C, Beckmann J, et al. An essential role for SHARPIN in the regulation of caspase 1 activity in sepsis. Am J Pathol. 2016;186:1206–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He L, Ingram A, Rybak AP, Tang D. Shank-interacting protein–like 1 promotes tumorigenesis via PTEN inhibition in human tumor cells. J Clin Invest. 2010;120:2094–108.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tanaka Y, Tateishi K, Nakatsuka T, Kudo Y, Takahashi R, Miyabayashi K, et al. Sharpin promotes hepatocellular carcinoma progression via transactivation of Versican expression. Oncogenesis. 2016;5:e277.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang H, Yu S, Wang W, Li X, Hou Y, Liu Z, et al. SHARPIN facilitates p53 degradation in breast cancer cells. Neoplasia. 2017;19:84–92.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tian Z, Tang J, Yang Q, Li X, Zhu J, Wu G. Atypical ubiquitin-binding protein SHARPIN promotes breast cancer progression. Biomed Pharmacother. 2019;119:109414.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou S, Liang Y, Zhang X, Liao L, Yang Y, Ouyang W, et al. SHARPIN promotes melanoma progression via Rap1 signaling pathway. J Invest Dermatol. 2020;140:395–403.e6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang Y, Liang Y, Zheng Y, Tang L, Zhou S, Zhu J. SHARPIN regulates cell proliferation of cutaneous basal cell carcinoma via inactivation of the transcriptional factors GLI2 and c‑JUN. Mol Med Rep. 2020;21:1799–808.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang A, Wang W, Chen Z, Pang D, Zhou X, Lu K, et al. SHARPIN inhibits esophageal squamous cell carcinoma progression by modulating Hippo signaling. Neoplasia. 2020;22:76–85.

    Article 
    PubMed 

    Google Scholar
     

  • Zeng C, Xiong D, Zhang K, Yao J. Shank‑associated RH domain interactor signaling in tumorigenesis. Oncol Lett. 2020;20:2579–86.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Rojas I, Moreno-Grau S, Tesi N, Grenier-Boley B, Andrade V, Jansen IE, et al. Common variants in Alzheimer’s disease and risk stratification by polygenic risk scores. Nat Commun. 2021;12:3417.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Asanomi Y, Shigemizu D, Akiyama S, Miyashita A, Mitsumori R, Hara N, et al. A functional variant of SHARPIN confers increased risk of late-onset Alzheimer’s disease. J Hum Genet. 2022;67:203–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ohnishi Y, Tanaka T, Ozaki K, Yamada R, Suzuki H, Nakamura Y. A high-throughput SNP typing system for genome-wide association studies. J Hum Genet. 2001;46:471–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shigemizu D, Asanomi Y, Akiyama S, Mitsumori R, Niida S, Ozaki K. Whole-genome sequencing reveals novel ethnicity-specific rare variants associated with Alzheimer’s disease. Mol Psychiatry. 2022;27:2554–62.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hampel H, Hardy J, Blennow K, Chen C, Perry G, Kim SH, et al. The amyloid-β pathway in Alzheimer’s disease. Mol Psychiatry. 2021;26:5481–503.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paris D, Patel N, Quadros A, Linan M, Bakshi P, Ait-Ghezala G, et al. Inhibition of Aβ production by NF-κB inhibitors. Neurosci Lett. 2007;415:11–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen C-H, Zhou W, Liu S, Deng Y, Cai F, Tone M, et al. Increased NF-κB signalling up-regulates BACE1 expression and its therapeutic potential in Alzheimer’s disease. Int J Neuropsychopharmacol. 2012;15:77–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kaltschmidt B, Uherek M, Volk B, Baeuerle PA, Kaltschmidt C. Transcription factor NF-κB is activated in primary neurons by amyloid β peptides and in neurons surrounding early plaques from patients with Alzheimer disease. Proc Natl Acad Sci. 1997;94:2642–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Akama KT, Albanese C, Pestell RG, Van Eldik LJ. Amyloid β-peptide stimulates nitric oxide production in astrocytes through an NFκB-dependent mechanism. Proc Natl Acad Sci. 1998;95:5795–800.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang J, Wise L, Fukuchi K-I. TLR4 cross-talk with NLRP3 inflammasome and complement signaling pathways in Alzheimer’s disease. Front Immunol. 2020;11:724.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krishnan D, Menon RN, Mathuranath PS, Gopala S. A novel role for SHARPIN in amyloid-β phagocytosis and inflammation by peripheral blood-derived macrophages in Alzheimer’s disease. Neurobiol Aging. 2020;93:131–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krishnan D, Menon RN, Gopala S. SHARPIN: Role in finding NEMO and in amyloid-beta clearance and degradation (ABCD) pathway in Alzheimer’s disease? Cell Mol Neurobiol. 2022;42:1267–81.

  • Hernandez-Rapp J, Rainone S, Goupil C, Dorval V, Smith PY, Saint-Pierre M, et al. microRNA-132/212 deficiency enhances Aβ production and senile plaque deposition in Alzheimer’s disease triple transgenic mice. Sci Rep. 2016;6:1–11.

    Article 

    Google Scholar
     

  • Leal NS, Schreiner B, Pinho CM, Filadi R, Wiehager B, Karlström H, et al. Mitofusin-2 knockdown increases ER–mitochondria contact and decreases amyloid β-peptide production. J Cell Mol Med. 2016;20:1686–95.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khan I, Krishnaswamy S, Sabale M, Groth D, Wijaya L, Morici M, et al. Efficient production of a mature and functional gamma secretase protease. Sci Rep. 2018;8:1–15.

    Article 

    Google Scholar
     

  • Sato Y, Terawaki S, Oikawa D, Shimizu K, Okina Y, Ito H, et al. Involvement of heterologous ubiquitination including linear ubiquitination in Alzheimer’s disease and amyotrophic lateral sclerosis. Front Mol Biosci. 2023;10:1–15.

    Article 

    Google Scholar
     

  • Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015;14:388–405.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leng F, Edison P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol. 2021;17:157–72.

    Article 
    PubMed 

    Google Scholar
     

  • Jorfi M, Maaser-Hecker A, Tanzi RE. The neuroimmune axis of Alzheimer’s disease. Genome Med. 2023;15:6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cooper YA, Teyssier N, Dräger NM, Guo Q, Davis JE, Sattler SM, et al. Functional regulatory variants implicate distinct transcriptional networks in dementia. Science. 2022;377:eabi8654.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alves F, Kallinowski P, Ayton S. Accelerated Brain Volume Loss Caused by Anti–β-Amyloid Drugs: A Systematic Review and Meta-analysis. Neurology. 2023;100:e2114–24.