Search
Close this search box.

Corrosion behavior of laser powder bed fusion additive manufacturing produced TiNi alloy by micro-arc oxidation – npj Materials Degradation

  • Chern Lin, J. H., Lo, S. J. & Ju, C. P. Biocorrosion study of titanium-nickel alloys. J. Oral. Rehabil. 23, 129–134 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Sharma, N., Jangra, K. K. & Raj, T. Fabrication of NiTi alloy: a review, proceedings of the institution of mechanical engineers. Proc. Inst. Mech. Eng. 232, 250–269 (2018).

    CAS 

    Google Scholar
     

  • Miura, F., Mogi, M., Ohura, Y. & Hamanaka, H. The super-elastic property of the Japanese NiTi alloy wire for use in orthodontics. Am. J. Orthod. 90, 1–10 (1986).

    Article 
    CAS 

    Google Scholar
     

  • Jayasathyakawin, S. et al. Mechanical properties and applications of Magnesium alloy–Review. Mater. Today. Proc. 27, 909–913 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Chen, J. et al. Mechanical properties of magnesium alloys for medical application: a review. J. Mech. Behav. Biomed. Mater. 87, 68–79b (2018).

    Article 
    CAS 

    Google Scholar
     

  • Patel, S. K. et al. A review on NiTi alloys for biomedical applications and their biocompatibility. Mater. Today. Proc. 33, 5548–5551 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Veverkova, J. et al. Effect of Ni ion release on the cells in contact with NiTi alloys. Environ. Sci. Pollut. Res. 27, 7934–7942 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Aksoy, C. B., Canadinc, D. & Yagci, M. B. Assessment of Ni ion release from TiTaHfNbZr high entropy alloy coated NiTi shape memory substrates in artificial saliva and gastric fluid. Mater. Chem. Phys. 236, 121802 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Nasakina, E. O., Sudarchikova, M. A., Sergienko, K. V., Konushkin, S. V. & Sevost’yanov, M. A. Ion release and surface characterization of nanostructured nitinol during long-term testing. Nanomaterials 9, 1569 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Li, C., Zheng, Y. F. & Zhao, L. C. Electrochemical corrosion behavior of Ti44Ni47Nb9 alloy in simulated body fluids. Mater. Sci. Eng. A 438, 504–508 (2006).

    Article 

    Google Scholar
     

  • Zhang, T. C. & Li, D. Y. An experimental study on the erosion behavior of pseudoelastic TiNi alloy in dry sand and in aggressive media. Mater. Sci. Eng. A 293, 208–214 (2000).

    Article 

    Google Scholar
     

  • Kayumova, E. M., Churakova, A. & Latypov, O. R. Comparison of the corrosion behavior of the TiNi alloy in the coarse-grained and ultrafine-grained state. JPCS 2124, 012026 (2021).


    Google Scholar
     

  • Zhang, L. C., Chen, L. Y. & Wang, L. Surface modification of titanium and titanium alloys: technologies, developments, and future interests. Adv. Eng. Mater. 22, 1901258 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ohtsu, N., Hirano, Y. & Takiguchi, K. Comparison of NiTi alloy surfaces formed by anodization in nitric, phosphoric, and sulfuric acid electrolytes. Surf. Coat. Technol. 335, 306–313 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Meisner, L. L. et al. Effect of silicon, titanium, and zirconium ion implantation on NiTi biocompatibility. Adv. Mater. Sci. Eng. 2012, 706094.1–706094.16 (2012).

    Article 

    Google Scholar
     

  • Xu, J. L., Liu, F. & Luo, J. M. Microstructure and corrosion resistance of microarc oxidation coating on surface of biomedical nickel-titanium alloy. Electroplat. Finish. 30, 41–44 (2011).


    Google Scholar
     

  • Wang, J. H., Wang, J., Lu, Y., Du, M. H. & Han, F. Z. Effects of single pulse energy on the properties of ceramic coating prepared by micro-arc oxidation on Ti alloy. Appl. Surf. Sci. 324, 405–413 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Wang, F., Hou, B., Yuan, K. & Wang, Y. Compactness of coatings treated by MAO and LSM on Ti alloy. Emerg. Mater. Res. 4, 265–272 (2015).


    Google Scholar
     

  • Lim, Y. W. et al. Enhanced cell integration to titanium alloy by surface treatment with microarc oxidation: a pilot study. Clin. Orthop. Relat. Res. 467, 2251–2258 (2009).

    Article 

    Google Scholar
     

  • Cui, Y. & Khan, A. W. A case study: reliability-based product development and improvement model. Qual. Reliab. Eng. Int. 24, 361–373 (2008).

    Article 

    Google Scholar
     

  • Liu, F., Xu, J., Wang, F., Zhao, L. & Shimizu, T. Biomimetic deposition of apatite coatings on micro-arc oxidation treated biomedical NiTi alloy. Surf. Coat. Technol. 204, 3294–3299 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Sukuroglu, E. E. et al. The effect of TiO2 coating on biological NiTi alloys after micro-arc oxidation treatment for corrosion resistance. Proc. Inst. Mech. Eng. H 231, 699–704 (2017).

    Article 

    Google Scholar
     

  • Sukuroglu, S., Sukuroglu, E. E. D., Totik, Y. & Küükosman, R. Investigation of in-vitro properties of NiTi alloy after micro arc oxidation. J. Polytech. 24, 373–382 (2021).


    Google Scholar
     

  • Chen, L. Y., Liang, S. X., Liu, Y. & Zhang, L. C. Additive manufacturing of metallic lattice structures: unconstrained design, accurate fabrication, fascinated performances, and challenges. Mater. Sci. Eng. R Rep. 146, 100648 (2021).

    Article 

    Google Scholar
     

  • Li, S. J. et al. Compression fatigue behavior of Ti–6Al–4V mesh arrays fabricated by electron beam melting. Acta Mater. 60, 793–802 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Shahrubudin, N., Lee, T. C. & Ramlan, R. An overview on 3D printing technology: technological. Mater. Appl. Procedia Manuf. 35, 1286–1296 (2019).


    Google Scholar
     

  • Lin, X., Yang, H., Chen, J., Huang, W. & Yue, T. M. Microstructural evolution in laser rapid forming of a graded titanium-nickel alloy. in 26th International Congress on Applications of Lasers and Electro-Optics, ICALEO 2007 – Congress Proceedings (Laser Institute of America, 2007).

  • Kondoh, K., Umeda, J., Soba, R. & Tanabe Y. Titanium in Medical and Dental Applications 583–590 (Elsevier, 2018)

  • Jia, C. F. et al. Corrosion behavior of TiNi alloy fabricated by selective laser melting in simulated saliva. Coatings 12, 840 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wang, H. Y. et al. Effect of sandblasting intensity on microstructures and properties of pure titanium micro-arc oxidation coatings in an optimized composite technique. Appl. Surf. Sci. 292, 204–212 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Dai, W. B. et al. The effect of surface roughness of the substrate on fatigue life of coated aluminum alloy by micro-arc oxidation. J. Alloy. Compd. 765, 1018–1025 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Fazel, M., Salimijazi, H. R., Golozar, M. A. & Garsivaz, M. R. A comparison of corrosion, tribocorrosion and electrochemical impedance properties of pure Ti and Ti6Al4V alloy treated by micro-arc oxidation process. Appl. Surf. Sci. 324, 751–756 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Maj, L. et al. Titania coating formation on hydrostatically extruded pure titanium by micro-arc oxidation method. J. Mater. Sci. Technol. 111, 224–235 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Yao, Z. Q. et al. Synthesis and properties of hydroxyapatite-containing porous titania coating on ultrafine-grained titanium by micro-arc oxidation. Acta Biomater. 6, 2816–2825 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Samadianfard,, S. R., Seifzadeh, D. & Dikici, B. Application of g-C3N4/sol-gel nanocomposite on AM60B magnesium alloy and investigation of its properties. Int. J. Miner. Metall. Mater. 30, 1113–1127 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Marti, A. Inert bioceramics (Al2O3, ZrO2) for medical application. Injury 31, 33–36 (2000).

    Article 

    Google Scholar
     

  • Rahmati, M. & Mozafari, M. Biocompatibility of alumina-based biomaterials—a review. J. Cell Physiol. 234, 3321–3335 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Sekine, I., Sakaguchi, K. & Yuasa, M. Estimation and prediction of degradation of coating films by frequency at maximum phase angle. J. Coat. Tech. 64, 45–49 (1992).

    CAS 

    Google Scholar
     

  • Zuo, Y., Pang, R., Li, W., Xiong, J. P. & Tang, Y. M. The evaluation of coating performance by the variations of phase angles in middle and high frequency domains of EIS. Corros. Sci. 50, 3322–3328 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Kaseem, M. & Choe, H. C. Synchronized improvements in the protective and bioactive properties of plasma-electrolyzed layers via cellulose microcrystalline. Acs. Biomater. Sci. Eng. 9, 197–210 (2022).

    Article 

    Google Scholar
     

  • Kaseem, M. et al. Guar gum-driven high-energy plasma electrolytic oxidation for concurrent improvements in the electrochemical and catalytic properties of Ti-15 Zr alloy. Surf. Interfaces 3, 102403 (2022).

    Article 

    Google Scholar
     

  • Kaseem, M. & Choe, H. C. The effect of in-situ reactive incorporation of MoOx on the corrosion behavior of Ti-6Al-4 V alloy coated via micro-arc oxidation coating. Corros. Sci. 192, 109764 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kaseem, M. & Choe, H. C. Simultaneous improvement of corrosion resistance and bioactivity of a titanium alloy via wet and dry plasma treatments. J. Alloy. Compd. 851, 156840 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Touzain, S. Some comments on the use of the EIS phase angle to evaluate organic coating degradation. Electrochim. Acta 55, 6190–6194 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Yao, Z. P., Jiang, Z. H., Xin, S. G., Sun, X. T. & W, X. H. Electrochemical impedance spectroscopy of ceramic coatings on Ti–6Al–4V by micro-plasma oxidation. Electrochim. Acta 50, 3273–3279 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Bai, Y. et al. Improved corrosion behavior of electron beam melted Ti-6Al-4V alloy in phosphate buffered saline. Corros. Sci. 123, 289–296 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Huang, H. H. et al. Ion release from NiTi orthodontic wires in artificial saliva with various acidities. Biomaterials 24, 3585–3592 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Katic, V. et al. Effect of pH, fluoride and hydrofluoric acid concentration on ion release from NiTi wires with various coatings. Dent. Mater. 36, 149–156 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Messer, R. L. & Lucas, L. C. Evaluations of metabolic activities as biocompatibility tools: a study of individual ions’ effects on fibroblasts. Dent. Mater. 15, 1–6 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Lin, Z., Wang, T., Yu, X., Sun, X. & Yang, H. Functionalization treatment of micro-arc oxidation coatings on magnesium alloys: a review. J. Alloy. Compd. 879, 160453 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Velten, D. et al. Preparation of TiO2 layers on cp-Ti and Ti6Al4V by thermal and anodic oxidation and by sol-gel coating techniques and their characterization. J. Biomed. Mater. Res. 59, 18–28 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Liu, F. & Shimizu, T. Effects of NaAlO2 concentrations on structure and characterization of micro-arc oxidation coatings formed on biomedical NiTi alloy. J. Ceram. Soc. Jpn. 118, 113–117 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Xu, J. L., Zhong, Z. C., Yu, D. Z., Liu, F. & Luo, J. M. Effect of micro-arc oxidation surface modification on the properties of the NiTi shape memory alloy. J. Mater. Sci. Mater. Med. 23, 2839–2846 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Jia, C. F. Study on Microstructure and Corrosion Characteristics of TiNi Alloy Prepared by Selective Laser Melting (Jiamusi University, 2022).

  • Zhu, L. H. et al. Effects of micro-arc oxidation on surface properties of conventional and ultrafine-grained TiNi alloy. Chin. J. Nonferr. Metal. 24, 1014–1019 (2014).

    CAS 

    Google Scholar
     

  • Zhao, X. L. et al. Comparison of the microstructures and mechanical properties of Ti–6Al–4V fabricated by selective laser melting and electron beam melting. Mater. Des. 95, 21–31 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Kajanek, D. et al. Impact of shot peening on corrosion performance of AZ31 magnesium alloy coated by PEO: comparison with conventional surface pre-treatments. Surf. Coat. Technol. 446, 128773 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zigante, M. et al. Symptoms of titanium and nickel allergic sensitization in orthodontic treatment. Prog. Orthod. 21, 17 (2020).

    Article 

    Google Scholar
     

  • Koike, M. & Fujii, H. In vitro assessment of corrosive properties of titanium as a biomaterial. J. Oral. Rehabil. 28, 540–548 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Matomo, Y., Nakagawa, M., Mausuya, S., Ishikawa, K. & Terada, Y. Corrosion behavior of pure titanium and titanium alloys in various concentrations of acidulated phosphate fluoride (APF) Solutions. Dent. Mater. 25, 104–112 (2006).

    Article 

    Google Scholar
     

  • Mirjalili, M., Momeni, M., Ebrahimi, N. & Moayed, M. H. Comparative study on corrosion behaviour of Nitinol and stainless steel orthodontic wires in simulated saliva solution in presence of fluoride ions. Mater. Sci. Eng. C 33, 2084–2093 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Kwon, Y. H., Cheon, Y. D., Seol, H. J., Lee, J. H. & Kim, H. I. Changes on NiTi orthodontic wired due to acidic fluoride solution. Dent. Mater. 23, 557–565 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Guo, J. & Mi, C. In vitro experimental study on the precipitation of titanium ions from four nickel-titanium orthodontic arch wires. Oral. Med. Res. 31, 328–331 (2015).

    CAS 

    Google Scholar
     

  • Aǧaoǧlu, G., Arun, T., Izgü, B. & Yarat, A. Nickel and chromium levels in the saliva and serum of patients with fixed orthodontic appliances. Angle Orthod. 71, 375–379 (2001).


    Google Scholar
     

  • Denkhaus, E. & Salnikow, K. Nickel essentiality, toxicity, and carcinogenicity. Crit. Rev. Oncol. Hematol. 42, 35–56 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Shabalovskaya, S. A. et al. The influence of surface oxides on the distribution and release of nickel from nitinol wires. Biomaterials 30, 468–477 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Bour, H., Nicolas, J. F., Garrigue, J. L., Demiden, A. & Schmitt, D. Establishment of nickel-specific T cell lines from patients with allergic contact dermatitis: comparison of dierent protocols. Clin. Immunol. Immunopathol. 73, 142–145 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Al-Mayouf, A. M., Al-Swayih, A. A., Al-Mobarak, N. A. & Al-Jabab, A. S. Corrosion behavior of a new titanium alloy for dental implant applications in fluoride media. Mater. Chem. Phys. 86, 320–329 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Tao, X. J. et al. Synthesis of a porous oxide layer on a multifunctional biomedical titanium by micro-arc oxidation. Mater. Sci. Eng. C 29, 1923–1930 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Feighan, J. E., Goldberg, V. M., Davy, D., Parr, J. A. & Stevenson, S. The influence of surface-blasting on the incorporation of titanium alloy implants in a rabbit intramedullary model. J. Bone Jt. Surg. 77-A, 1380–1395 (1995).

    Article 

    Google Scholar
     

  • Sader, M. S., Balduino, A., Soares, G. A. & Borojevic, R. Effect of three distinct treatments of titanium surface on osteoblast attachment, proliferation, and differentiation. Clin. Oral. Implants Res. 16, 667–675 (2005).

    Article 

    Google Scholar
     

  • Wen, L. et al. Influence of coating microstructure on fatigue performance of microarc oxidation coated LY12 alloy specimen. Rare Met. Mater. Eng. 38, 747–750 (2009).

    CAS 

    Google Scholar
     

  • Ren, D. C. et al. Microstructure and properties of equiatomic Ti-Ni alloy fabricated by selective laser melting. Mater. Sci. Eng. A 771, 138286 (2020).

    Article 

    Google Scholar