Search
Close this search box.

Controlled adsorption of multiple bioactive proteins enables targeted mast cell nanotherapy – Nature Nanotechnology

  • Ramsey, A. V., Bischoff, A. J. & Francis, M. B. Enzyme activated gold nanoparticles for versatile site-selective bioconjugation. J. Am. Chem. Soc. 143, 7342–7350 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Chen, J. et al. Tocilizumab–conjugated polymer nanoparticles for NIR-II photoacoustic-imaging-guided therapy of rheumatoid arthritis. Adv. Mater. 32, 2003399 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wang, X.-D., Rabe, K. S., Ahmed, I. & Niemeyer, C. M. Multifunctional silica nanoparticles for covalent immobilization of highly sensitive proteins. Adv. Mater. 27, 7945–7950 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Nel, A. E. et al. Understanding biophysicochemical interactions at the nano–bio interface. Nat. Mater. 8, 543–557 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Walkey, C. D. & Chan, W. C. W. Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem. Soc. Rev. 41, 2780–2799 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Rabe, M., Verdes, D. & Seeger, S. Understanding protein adsorption phenomena at solid surfaces. Adv. Colloid Interface Sci. 162, 87–106 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Cao, Z.-T. et al. Protein binding affinity of polymeric nanoparticles as a direct indicator of their pharmacokinetics. ACS Nano 14, 3563–3575 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Estephan, Z. G., Jaber, J. A. & Schlenoff, J. B. Zwitterion-stabilized silica nanoparticles: toward nonstick nano. Langmuir 26, 16884–16889 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Debayle, M. et al. Zwitterionic polymer ligands: an ideal surface coating to totally suppress protein-nanoparticle corona formation? Biomaterials 219, 119357 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Vincent, M. P., Navidzadeh, J. O., Bobbala, S. & Scott, E. A. Leveraging self-assembled nanobiomaterials for improved cancer immunotherapy. Cancer Cell 40, 255–276 (2022).

  • Vincent, M. P., Bobbala, S., Karabin, N. B., Frey, M., Liu, Y., Navidzadeh, J. O., Stack, T. & Scott, E. A. Surface chemistry-mediated modulation of adsorbed albumin folding state specifies nanocarrier clearance by distinct macrophage subsets. Nat. Commun. 12, 648 (2021).

  • Vincent, M. P., Karabin, N. B., Allen, S. D., Bobbala, S., Frey, M. A., Yi, S., Yang, Y. & Scott, E. A. The combination of morphology and surface chemistry defines the immunological identity of nanocarriers in human blood. Adv. Ther. 4, 2100062 (2021).

  • Duan, S. et al. CD33 recruitment inhibits IgE-mediated anaphylaxis and desensitizes mast cells to allergen. J. Clin. Invest. 129, e125456 (2021).

  • Duan, S. et al. Nanoparticles displaying allergen and Siglec-8 ligands suppress IgE-FcεRI–mediated anaphylaxis and desensitize mast cells to subsequent antigen challenge. J. Immunol. 206, 2290–2300 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Albert, C. et al. Monobody adapter for functional antibody display on nanoparticles for adaptable targeted delivery applications. Nat. Commun. 13, 5998 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Tonigold, M. et al. Pre-adsorption of antibodies enables targeting of nanocarriers despite a biomolecular corona. Nat. Nanotechnol. 13, 862–869 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Schöttler, S. et al. Protein adsorption is required for stealth effect of poly(ethylene glycol)- and poly(phosphoester)-coated nanocarriers. Nat. Nanotechnol. 11, 372–377 (2016).

    Article 

    Google Scholar
     

  • Kocbek, P., Obermajer, N., Cegnar, M., Kos, J. & Kristl, J. Targeting cancer cells using PLGA nanoparticles surface modified with monoclonal antibody. J. Controlled Release 120, 18–26 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Du, F. et al. Homopolymer self-assembly of poly(propylene sulfone) hydrogels via dynamic noncovalent sulfone–sulfone bonding. Nat. Commun. 11, 4896 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Sun, H. et al. Origin of proteolytic stability of peptide-brush polymers as globular proteomimetics. ACS Cent. Sci. 7, 2063–2072 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Panganiban, B. et al. Random heteropolymers preserve protein function in foreign environments. Science 359, 1239–1243 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Qiao, B., Jiménez-Ángeles, F., Nguyen, T. D. & Olvera de la Cruz, M. Water follows polar and nonpolar protein surface domains. Proc. Natl Acad. Sci. USA 116, 19274–19281 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Kolkhir, P., Elieh-Ali-Komi, D., Metz, M., Siebenhaar, F. & Maurer, M. Understanding human mast cells: lesson from therapies for allergic and non-allergic diseases. Nat. Rev. Immunol. 22, 294–308 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Valent, P. et al. Drug-induced mast cell eradication: a novel approach to treat mast cell activation disorders? J. Allergy Clin. Immunol. 149, 1866–1874 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Balbino, B. et al. The anti-IgE mAb omalizumab induces adverse reactions by engaging Fcγ receptors. J. Clin. Invest. 130, 1330–1335 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Galli, S. J., Gaudenzio, N. & Tsai, M. Mast cells in inflammation and disease: recent progress and ongoing concerns. Annu. Rev. Immunol. 38, 49–77 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Gotlib, J. et al. Proceedings from the inaugural American Initiative in Mast cell diseases (AIM) investigator conference. J. Allergy Clin. Immunol. 147, 2043–2052 (2021).

    Article 

    Google Scholar
     

  • Robida, P. A. et al. Functional and phenotypic characterization of Siglec-6 on human mast cells. Cells 11, 1138 (2022).

  • Dispenza, M. C. et al. Bruton’s tyrosine kinase inhibition effectively protects against human IgE-mediated anaphylaxis. J. Clin. Investig. 130, 4759–4770 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Crocker, P. R., Paulson, J. C. & Varki, A. Siglecs and their roles in the immune system. Nat. Rev. Immunol. 7, 255–266 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Duan, S. et al. CD33 recruitment inhibits IgE-mediated anaphylaxis and desensitizes mast cells to allergen. J. Clin. Invest. 129, 1387–1401 (2019).

    Article 

    Google Scholar
     

  • Macauley, M. S., Crocker, P. R. & Paulson, J. C. Siglec-mediated regulation of immune cell function in disease. Nat. Rev. Immunol. 14, 653–666 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Avril, T., Floyd, H., Lopez, F., Vivier, E. & Crocker, P. R. The membrane-proximal immunoreceptor tyrosine-based inhibitory motif is critical for the inhibitory signaling mediated by Siglecs-7 and -9, CD33-related siglecs expressed on human monocytes and NK cells1. J. Immunol. 173, 6841–6849 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Neuberger, M. S. et al. A hapten-specific chimaeric IgE antibody with human physiological effector function. Nature 314, 268–270 (1985).

    Article 
    CAS 

    Google Scholar
     

  • Abraham, M. J. et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015).

    Article 

    Google Scholar
     

  • Huang, J. et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat. Methods 14, 71–73 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Miyamoto, S. & Kollman, P. A. Settle: an analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Comput. Chem. 13, 952–962 (1992).

    Article 
    CAS 

    Google Scholar
     

  • Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Caslin, H. L. et al. The use of human and mouse mast cell and basophil cultures to assess type 2 inflammation. Methods Mol. Biol. 1799, 81–92 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Bryce, P. J. et al. Humanized mouse model of mast cell-mediated passive cutaneous anaphylaxis and passive systemic anaphylaxis. J. Allergy Clin. Immunol. 138, 769–779 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Bao, C. et al. A mast cell-thermoregulatory neuron circuit axis regulates hypothermia in anaphylaxis. Sci. Immunol. 8, eadc9417 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Schanin, J. et al. Discovery of an agonistic Siglec-6 antibody that inhibits and reduces human mast cells. Commun. Biol. 5, 1226 (2022).

    Article 
    CAS 

    Google Scholar