Search
Close this search box.

Control of stem cell renewal and fate by YAP and TAZ – Nature Reviews Molecular Cell Biology

  • Zakrzewski, W., Dobrzynski, M., Szymonowicz, M. & Rybak, Z. Stem cells: past, present, and future. Stem Cell Res. Ther. 10, 68 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamanaka, S. Pluripotent stem cell-based cell therapy-promise and challenges. Cell Stem Cell 27, 523–531 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Odelberg, S. J. Unraveling the molecular basis for regenerative cellular plasticity. PLoS Biol. 2, E232 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  • Twitty, V. C. & Schwind, J. L. The growth of eyes and limbs transplanted heteroplastically between two species of Amblystoma. J. Exp. Zool. 59, 61–86 (1931).

    Article  Google Scholar 

  • Higgins, G. M. & Anderson, R. M. Experimental pathology of the liver, 1: restoration of the liver of the white rat following partial surgical removal. Arch. Pathol. 12, 186–202 (1931).

    Google Scholar 

  • Kawasaki, S. et al. Liver regeneration in recipients and donors after transplantation. Lancet 339, 580–581 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Zheng, Y. & Pan, D. The Hippo signaling pathway in development and disease. Dev. Cell 50, 264–282 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Totaro, A., Panciera, T. & Piccolo, S. YAP/TAZ upstream signals and downstream responses. Nat. Cell Biol. 20, 888–899 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma, S., Meng, Z., Chen, R. & Guan, K. L. The Hippo pathway: biology and pathophysiology. Annu. Rev. Biochem. 88, 577–604 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Driskill, J. H. & Pan, D. The Hippo pathway in liver homeostasis and pathophysiology. Annu. Rev. Pathol. 16, 299–322 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Pan, D. The unfolding of the Hippo signaling pathway. Dev. Biol. 487, 1–9 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Harvey, K. F., Pfleger, C. M. & Hariharan, I. K. The Drosophila Mst ortholog, Hippo, restricts growth and cell proliferation and promotes apoptosis. Cell 114, 457–467 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Jia, J., Zhang, W., Wang, B., Trinko, R. & Jiang, J. The Drosophila Ste20 family kinase dMST functions as a tumor suppressor by restricting cell proliferation and promoting apoptosis. Genes Dev. 17, 2514–2519 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pantalacci, S., Tapon, N. & Leopold, P. The Salvador partner Hippo promotes apoptosis and cell-cycle exit in Drosophila. Nat. Cell Biol. 5, 921–927 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Udan, R. S., Kango-Singh, M., Nolo, R., Tao, C. & Halder, G. Hippo promotes proliferation arrest and apoptosis in the Salvador/Warts pathway. Nat. Cell Biol. 5, 914–920 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Wu, S., Huang, J., Dong, J. & Pan, D. Hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with Salvador and Warts. Cell 114, 445–456 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Justice, R. W., Zilian, O., Woods, D. F., Noll, M. & Bryant, P. J. The Drosophila tumor suppressor gene warts encodes a homolog of human myotonic dystrophy kinase and is required for the control of cell shape and proliferation. Genes Dev. 9, 534–546 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Xu, T., Wang, W., Zhang, S., Stewart, R. A. & Yu, W. Identifying tumor suppressors in genetic mosaics: the Drosophila lats gene encodes a putative protein kinase. Development 121, 1053–1063 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Kango-Singh, M. et al. Shar-pei mediates cell proliferation arrest during imaginal disc growth in Drosophila. Development 129, 5719–5730 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Tapon, N. et al. salvador promotes both cell cycle exit and apoptosis in Drosophila and is mutated in human cancer cell lines. Cell 110, 467–478 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Lai, Z. C. et al. Control of cell proliferation and apoptosis by mob as tumor suppressor, mats. Cell 120, 675–685 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Huang, J., Wu, S., Barrera, J., Matthews, K. & Pan, D. The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila homolog of YAP. Cell 122, 421–434 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Zhang, L. et al. The TEAD/TEF family of transcription factor scalloped mediates Hippo signaling in organ size control. Dev. Cell 14, 377–387 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, S., Liu, Y., Zheng, Y., Dong, J. & Pan, D. The TEAD/TEF family protein Scalloped mediates transcriptional output of the Hippo growth-regulatory pathway. Dev. Cell 14, 388–398 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Lei, Q. Y. et al. TAZ promotes cell proliferation and epithelial-mesenchymal transition and is inhibited by the Hippo pathway. Mol. Cell Biol. 28, 2426–2436 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, B. et al. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 21, 2747–2761 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong, J. et al. Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell 130, 1120–1133 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, C. Y. et al. The Hippo tumor pathway promotes TAZ degradation by phosphorylating a phosphodegron and recruiting the SCFβ-TrCP E3 ligase. J. Biol. Chem. 285, 37159–37169 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, B., Li, L., Tumaneng, K., Wang, C. Y. & Guan, K. L. A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCFβ-TRCP. Genes Dev. 24, 72–85 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, F. X. et al. Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. Cell 150, 780–791 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mo, J. S. et al. Cellular energy stress induces AMPK-mediated regulation of YAP and the Hippo pathway. Nat. Cell Biol. 17, 500–510 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, B. et al. Cell detachment activates the Hippo pathway via cytoskeleton reorganization to induce anoikis. Genes Dev. 26, 54–68 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • Dupont, S. et al. Role of YAP/TAZ in mechanotransduction. Nature 474, 179–183 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Plouffe, S. W. et al. The Hippo pathway effector proteins YAP and TAZ have both distinct and overlapping functions in the cell. J. Biol. Chem. 293, 11230–11240 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagenbeek, T. J. et al. The Hippo pathway effector TAZ induces TEAD-dependent liver inflammation and tumors. Sci. Signal 11, eaaj1757 (2018).

    Article  PubMed  Google Scholar 

  • Zanconato, F. et al. Genome-wide association between YAP/TAZ/TEAD and AP-1 at enhancers drives oncogenic growth. Nat. Cell Biol. 17, 1218–1227 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh, H. et al. Genome-wide association of Yorkie with chromatin and chromatin-remodeling complexes. Cell Rep. 3, 309–318 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cordenonsi, M. et al. The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell 147, 759–772 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Mani, S. A. et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133, 704–715 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thiery, J. P., Acloque, H., Huang, R. Y. & Nieto, M. A. Epithelial-mesenchymal transitions in development and disease. Cell 139, 871–890 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Kim, K. M. et al. Taz protects hematopoietic stem cells from an aging-dependent decrease in PU.1 activity. Nat. Commun. 13, 5187 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashimoto, M. & Sasaki, H. Epiblast formation by TEAD-YAP-dependent expression of pluripotency factors and competitive elimination of unspecified cells. Dev. Cell 50, 139–154.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Yui, S. et al. YAP/TAZ-dependent reprogramming of colonic epithelium links ecm remodeling to tissue regeneration. Cell Stem Cell 22, 35–49.e7 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ayyaz, A. et al. Single-cell transcriptomes of the regenerating intestine reveal a revival stem cell. Nature 569, 121–125 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Pepe-Mooney, B. J. et al. Single-cell analysis of the liver epithelium reveals dynamic heterogeneity and an essential role for YAP in homeostasis and regeneration. Cell Stem Cell 25, 23–38.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aloia, L. et al. Epigenetic remodelling licences adult cholangiocytes for organoid formation and liver regeneration. Nat. Cell Biol. 21, 1321–1333 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaneshige, A. et al. Relayed signaling between mesenchymal progenitors and muscle stem cells ensures adaptive stem cell response to increased mechanical load. Cell Stem Cell 29, 265–280.e6 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Sladitschek-Martens, H. L. et al. YAP/TAZ activity in stromal cells prevents ageing by controlling cGAS-STING. Nature 607, 790–798 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janse van Rensburg, H. J. et al. The Hippo pathway component TAZ promotes immune evasion in human cancer through PD-L1. Cancer Res. 78, 1457–1470 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Yang, L. et al. TAZ maintains telomere length in TNBC cells by mediating Rad51C expression. Breast Cancer Res. 23, 89 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Q. et al. Human telomerase reverse transcriptase is a novel target of Hippo-YAP pathway. FASEB J. 34, 4178–4188 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Totaro, A. et al. Cell phenotypic plasticity requires autophagic flux driven by YAP/TAZ mechanotransduction. Proc. Natl Acad. Sci. USA 116, 17848–17857 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pavel, M. et al. Contact inhibition controls cell survival and proliferation via YAP/TAZ-autophagy axis. Nat. Commun. 9, 2961 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, H. et al. YAP/TAZ drives cell proliferation and tumour growth via a polyamine-eIF5A hypusination-LSD1 axis. Nat. Cell Biol. 24, 373–383 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, W. et al. AMPK modulates Hippo pathway activity to regulate energy homeostasis. Nat. Cell Biol. 17, 490–499 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, J. et al. YAP/TAZ regulates sprouting angiogenesis and vascular barrier maturation. J. Clin. Invest. 127, 3441–3461 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, X. et al. YAP/TAZ orchestrate VEGF signaling during developmental angiogenesis. Dev. Cell 42, 462–478.e7 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Lee, D. H. et al. LATS-YAP/TAZ controls lineage specification by regulating TGFβ signaling and Hnf4α expression during liver development. Nat. Commun. 7, 11961 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alder, O. et al. Hippo signaling influences HNF4A and FOXA2 enhancer switching during hepatocyte differentiation. Cell Rep. 9, 261–271 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meinhardt, G. et al. Pivotal role of the transcriptional co-activator YAP in trophoblast stemness of the developing human placenta. Proc. Natl Acad. Sci. USA 117, 13562–13570 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yimlamai, D. et al. Hippo pathway activity influences liver cell fate. Cell 157, 1324–1338 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azzolin, L. et al. YAP/TAZ incorporation in the β-catenin destruction complex orchestrates the Wnt response. Cell 158, 157–170 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Park, H. W. et al. Alternative wnt signaling activates YAP/TAZ. Cell 162, 780–794 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varelas, X. et al. TAZ controls Smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-renewal. Nat. Cell Biol. 10, 837–848 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Qin, H. et al. YAP induces human naive pluripotency. Cell Rep. 14, 2301–2312 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, B. K., Mei, S. C., Chen, E. H., Zheng, Y. & Pan, D. YAP induces an oncogenic transcriptional program through TET1-mediated epigenetic remodeling in liver growth and tumorigenesis. Nat. Genet. 54, 1202–1213 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Nishioka, N. et al. The Hippo signaling pathway components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass. Dev. Cell 16, 398–410 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Nishioka, N. et al. Tead4 is required for specification of trophectoderm in pre-implantation mouse embryos. Mech. Dev. 125, 270–283 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Yagi, R. et al. Transcription factor TEAD4 specifies the trophectoderm lineage at the beginning of mammalian development. Development 134, 3827–3836 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Frum, T., Watts, J. L. & Ralston, A. TEAD4, YAP1 and WWTR1 prevent the premature onset of pluripotency prior to the 16-cell stage. Development 146, dev179861 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Wicklow, E. et al. HIPPO pathway members restrict SOX2 to the inner cell mass where it promotes ICM fates in the mouse blastocyst. PLoS Genet. 10, e1004618 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Cockburn, K., Biechele, S., Garner, J. & Rossant, J. The Hippo pathway member Nf2 is required for inner cell mass specification. Curr. Biol. 23, 1195–1201 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Lorthongpanich, C. et al. Temporal reduction of LATS kinases in the early preimplantation embryo prevents ICM lineage differentiation. Genes Dev. 27, 1441–1446 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anani, S., Bhat, S., Honma-Yamanaka, N., Krawchuk, D. & Yamanaka, Y. Initiation of Hippo signaling is linked to polarity rather than to cell position in the pre-implantation mouse embryo. Development 141, 2813–2824 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Zhao, B. et al. Angiomotin is a novel Hippo pathway component that inhibits YAP oncoprotein. Genes Dev. 25, 51–63 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • Hirate, Y. et al. Polarity-dependent distribution of angiomotin localizes Hippo signaling in preimplantation embryos. Curr. Biol. 23, 1181–1194 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saha, B. et al. TEAD4 ensures postimplantation development by promoting trophoblast self-renewal: an implication in early human pregnancy loss. Proc. Natl Acad. Sci. USA 117, 17864–17875 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, R., Wei, C., Ma, Q. & Wang, W. Hippo-YAP1 signaling pathway and severe preeclampsia (sPE) in the Chinese population. Pregnancy Hypertens. 19, 1–10 (2020).

    Article  PubMed  Google Scholar 

  • Moroishi, T. et al. A YAP/TAZ-induced feedback mechanism regulates Hippo pathway homeostasis. Genes Dev. 29, 1271–1284 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai, J. et al. YAP-VGLL4 antagonism defines the major physiological function of the Hippo signaling effector YAP. Genes Dev. 36, 1119–1128 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, Q. et al. Homeostatic control of Hippo signaling activity revealed by an endogenous activating mutation in YAP. Genes Dev. 29, 1285–1297 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lian, I. et al. The role of YAP transcription coactivator in regulating stem cell self-renewal and differentiation. Genes Dev. 24, 1106–1118 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bae, J. S. et al. Loss of Mob1a/b impairs the differentiation of mouse embryonic stem cells into the three germ layer lineages. Exp. Mol. Med. 51, 1–12 (2019).

    PubMed  PubMed Central  Google Scholar 

  • Li, P. et al. Functional role of Mst1/Mst2 in embryonic stem cell differentiation. PLoS One 8, e79867 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamm, C., Bower, N. & Anneren, C. Regulation of mouse embryonic stem cell self-renewal by a Yes-YAP-TEAD2 signaling pathway downstream of LIF. J. Cell Sci. 124, 1136–1144 (2011).

    Article  PubMed  Google Scholar 

  • Chung, H. et al. Yap1 is dispensable for self-renewal but required for proper differentiation of mouse embryonic stem (ES) cells. EMBO Rep. 17, 519–529 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LeBlanc, L. et al. Yap1 safeguards mouse embryonic stem cells from excessive apoptosis during differentiation. eLife 7, e40167 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang, Z. et al. YAP stabilizes SMAD1 and promotes BMP2-induced neocortical astrocytic differentiation. Development 143, 2398–2409 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, Z. et al. Neogenin promotes BMP2 activation of YAP and smad1 and enhances astrocytic differentiation in developing mouse neocortex. J. Neurosci. 36, 5833–5849 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, J. Y. et al. Yap is essential for retinal progenitor cell cycle progression and RPE cell fate acquisition in the developing mouse eye. Dev. Biol. 419, 336–347 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitagawa, M. A Sveinsson’s chorioretinal atrophy-associated missense mutation in mouse Tead1 affects its interaction with the co-factors YAP and TAZ. Biochem. Biophys. Res. Commun. 361, 1022–1026 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Zhao, X. et al. Yap and Taz promote osteogenesis and prevent chondrogenesis in neural crest cells in vitro and in vivo. Sci. Signal. 15, eabn9009 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, F. X. et al. Protein kinase A activates the Hippo pathway to modulate cell proliferation and differentiation. Genes Dev. 27, 1223–1232 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reginensi, A. et al. Yap- and Cdc42-dependent nephrogenesis and morphogenesis during mouse kidney development. PLoS Genet. 9, e1003380 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McNeill, H. & Reginensi, A. Lats1/2 regulate Yap/Taz to control nephron progenitor epithelialization and inhibit myofibroblast formation. J. Am. Soc. Nephrol. 28, 852–861 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Drake, K. A. et al. Transcription factors YAP/TAZ and SRF cooperate to specify renal myofibroblasts in the developing mouse kidney. J. Am. Soc. Nephrol. 33, 1694–1707 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Yi, J. et al. Large tumor suppressor homologs 1 and 2 regulate mouse liver progenitor cell proliferation and maturation through antagonism of the coactivators YAP and TAZ. Hepatology 64, 1757–1772 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Zhang, N. et al. The Merlin/NF2 tumor suppressor functions through the YAP oncoprotein to regulate tissue homeostasis in mammals. Dev. Cell 19, 27–38 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao, T. et al. Hippo signaling regulates differentiation and maintenance in the exocrine pancreas. Gastroenterology 144, 1543–1553.e1 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Mamidi, A. et al. Mechanosignalling via integrins directs fate decisions of pancreatic progenitors. Nature 564, 114–118 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Rosado-Olivieri, E. A., Anderson, K., Kenty, J. H. & Melton, D. A. YAP inhibition enhances the differentiation of functional stem cell-derived insulin-producing β cells. Nat. Commun. 10, 1464 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Song, J. Y. et al. Dual function of Yap in the regulation of lens progenitor cells and cellular polarity. Dev. Biol. 386, 281–290 (2014).

    Article  CAS  PubMed  Google Scholar 

  • von Gise, A. et al. YAP1, the nuclear target of Hippo signaling, stimulates heart growth through cardiomyocyte proliferation but not hypertrophy. Proc. Natl Acad. Sci. USA 109, 2394–2399 (2012).

    Article  Google Scholar 

  • Xin, M. et al. Regulation of insulin-like growth factor signaling by Yap governs cardiomyocyte proliferation and embryonic heart size. Sci. Signal. 4, ra70 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • Heallen, T. et al. Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science 332, 458–461 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey, D. D. et al. Use of hPSC-derived 3D organoids and mouse genetics to define the roles of Yap in the development of the esophagus. Development 146, dev178855 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cebola, I. et al. TEAD and YAP regulate the enhancer network of human embryonic pancreatic progenitors. Nat. Cell Biol. 17, 615–626 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez, L. A. et al. YAP1 is amplified and up-regulated in hedgehog-associated medulloblastomas and mediates Sonic hedgehog-driven neural precursor proliferation. Genes Dev. 23, 2729–2741 (2009).

    Article  Google Scholar 

  • Cao, X., Pfaff, S. L. & Gage, F. H. YAP regulates neural progenitor cell number via the TEA domain transcription factor. Genes Dev. 22, 3320–3334 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, H., Pasolli, H. A. & Fuchs, E. Yes-associated protein (YAP) transcriptional coactivator functions in balancing growth and differentiation in skin. Proc. Natl Acad. Sci. USA 108, 2270–2275 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elbediwy, A. et al. Integrin signalling regulates YAP and TAZ to control skin homeostasis. Development 143, 1674–1687 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, M. J., Byun, M. R., Furutani-Seiki, M., Hong, J. H. & Jung, H. S. YAP and TAZ regulate skin wound healing. J. Invest. Dermatol. 134, 518–525 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Totaro, A. et al. YAP/TAZ link cell mechanics to Notch signalling to control epidermal stem cell fate. Nat. Commun. 8, 15206 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vincent-Mistiaen, Z. et al. YAP drives cutaneous squamous cell carcinoma formation and progression. eLife 7, e33304 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Debaugnies, M. et al. YAP and TAZ are essential for basal and squamous cell carcinoma initiation. EMBO Rep. 19, e45809 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao, R. et al. Yap tunes airway epithelial size and architecture by regulating the identity, maintenance, and self-renewal of stem cells. Dev. Cell 30, 151–165 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, Z. et al. MAPK-mediated YAP activation controls mechanical-tension-induced pulmonary alveolar regeneration. Cell Rep. 16, 1810–1819 (2016).

    Article  CAS  PubMed  Google Scholar 

  • LaCanna, R. et al. Yap/Taz regulate alveolar regeneration and resolution of lung inflammation. J. Clin. Invest. 129, 2107–2122 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Judson, R. N. et al. The Hippo pathway member Yap plays a key role in influencing fate decisions in muscle satellite cells. J. Cell Sci. 125, 6009–6019 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tremblay, A. M. et al. The Hippo transducer YAP1 transforms activated satellite cells and is a potent effector of embryonal rhabdomyosarcoma formation. Cancer Cell 26, 273–287 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Zhang, L. et al. The CalcR-PKA-Yap1 axis is critical for maintaining quiescence in muscle stem cells. Cell Rep. 29, 2154–2163.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Silver, J. S. et al. Injury-mediated stiffening persistently activates muscle stem cells through YAP and TAZ mechanotransduction. Sci. Adv. 7, eabe4501 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, D. et al. Mst1 and Mst2 protein kinases restrain intestinal stem cell proliferation and colonic tumorigenesis by inhibition of Yes-associated protein (Yap) overabundance. Proc. Natl Acad. Sci. USA 108, E1312–E1320 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai, J. et al. The Hippo signaling pathway restricts the oncogenic potential of an intestinal regeneration program. Genes Dev. 24, 2383–2388 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camargo, F. D. et al. YAP1 increases organ size and expands undifferentiated progenitor cells. Curr. Biol. 17, 2054–2060 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Gregorieff, A., Liu, Y., Inanlou, M. R., Khomchuk, Y. & Wrana, J. L. Yap-dependent reprogramming of Lgr5+ stem cells drives intestinal regeneration and cancer. Nature 526, 715–718 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Gjorevski, N. et al. Designer matrices for intestinal stem cell and organoid culture. Nature 539, 560–564 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Roulis, M. et al. Paracrine orchestration of intestinal tumorigenesis by a mesenchymal niche. Nature 580, 524–529 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorrentino, G. et al. Bile acids signal via TGR5 to activate intestinal stem cells and epithelial regeneration. Gastroenterology 159, 956–968.e8 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Cai, J., Maitra, A., Anders, R. A., Taketo, M. M. & Pan, D. β-Catenin destruction complex-independent regulation of Hippo-YAP signaling by APC in intestinal tumorigenesis. Genes Dev. 29, 1493–1506 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barry, E. R. et al. Restriction of intestinal stem cell expansion and the regenerative response by YAP. Nature 493, 106–110 (2013).

    Article  PubMed  Google Scholar 

  • Fu, L. et al. Up-regulation of FOXD1 by YAP alleviates senescence and osteoarthritis. PLoS Biol. 17, e3000201 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ge, Y. et al. The aging skin microenvironment dictates stem cell behavior. Proc. Natl Acad. Sci. USA 117, 5339–5350 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monroe, T. O. et al. YAP partially reprograms chromatin accessibility to directly induce adult cardiogenesis in vivo. Dev. Cell 48, 765–779.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panciera, T. et al. Induction of expandable tissue-specific stem/progenitor cells through transient expression of YAP/TAZ. Cell Stem Cell 19, 725–737 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, D. et al. Mst1 and Mst2 maintain hepatocyte quiescence and suppress hepatocellular carcinoma development through inactivation of the Yap1 oncogene. Cancer Cell 16, 425–438 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu, L. et al. Hippo signaling is a potent in vivo growth and tumor suppressor pathway in the mammalian liver. Proc. Natl Acad. Sci. USA 107, 1437–1442 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, K. P. et al. The Hippo-salvador pathway restrains hepatic oval cell proliferation, liver size, and liver tumorigenesis. Proc. Natl Acad. Sci. USA 107, 8248–8253 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishio, M. et al. Dysregulated YAP1/TAZ and TGF-β signaling mediate hepatocarcinogenesis in Mob1a/1b-deficient mice. Proc. Natl Acad. Sci. USA 113, E71–E80 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Tao, J. et al. Activation of β-catenin and Yap1 in human hepatoblastoma and induction of hepatocarcinogenesis in mice. Gastroenterology 147, 690–701 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Sun, P. et al. Maintenance of primary hepatocyte functions in vitro by inhibiting mechanical tension-induced YAP activation. Cell Rep. 29, 3212–3222.e4 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Qin, H. et al. Transcriptional analysis of pluripotency reveals the Hippo pathway as a barrier to reprogramming. Hum. Mol. Genet. 21, 2054–2067 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKee, C., Brown, C. & Chaudhry, G. R. Self-assembling scaffolds supported long-term growth of human primed embryonic stem cells and upregulated core and naive pluripotent markers. Cells 8, 1650 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kern, J. G. et al. Inactivation of LATS1/2 drives luminal-basal plasticity to initiate basal-like mammary carcinomas. Nat. Commun. 13, 7198 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Hao, Y., Chun, A., Cheung, K., Rashidi, B. & Yang, X. Tumor suppressor LATS1 is a negative regulator of oncogene YAP. J. Biol. Chem. 283, 5496–5509 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Overholtzer, M. et al. Transforming properties of YAP, a candidate oncogene on the chromosome 11q22 amplicon. Proc. Natl Acad. Sci. USA 103, 12405–12410 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao, D. D. et al. KRAS and YAP1 converge to regulate EMT and tumor survival. Cell 158, 171–184 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao, H., Jiang, N., Zhou, B., Liu, Q. & Du, C. TAZ regulates cell proliferation and epithelial-mesenchymal transition of human hepatocellular carcinoma. Cancer Sci. 106, 151–159 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng, D., Jin, L., Chen, Y., Xi, X. & Guo, Y. YAP promotes epithelial mesenchymal transition by upregulating Slug expression in human colorectal cancer cells. Int. J. Clin. Exp. Pathol. 13, 701–710 (2020).

    PubMed  PubMed Central  Google Scholar 

  • Castellan, M. et al. Single-cell analyses reveal YAP/TAZ as regulators of stemness and cell plasticity in Glioblastoma. Nat. Cancer 2, 174–188 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Kapoor, A. et al. Yap1 activation enables bypass of oncogenic Kras addiction in pancreatic cancer. Cell 158, 185–197 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitajima, S. et al. Overcoming resistance to dual innate immune and MEK inhibition downstream of KRAS. Cancer Cell 34, 439–452.e6 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, L. et al. The Hippo effector YAP promotes resistance to RAF- and MEK-targeted cancer therapies. Nat. Genet. 47, 250–256 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, B. S. et al. Inhibition of YAP reverses primary resistance to EGFR inhibitors in colorectal cancer cells. Oncol. Rep. 40, 2171–2182 (2018).

    CAS  PubMed  Google Scholar 

  • Guo, L. et al. Knockdown of TAZ modifies triple-negative breast cancer cell sensitivity to EGFR inhibitors by regulating YAP expression. Oncol. Rep. 36, 729–736 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Matsuda, T. et al. NF2 activates Hippo signaling and promotes ischemia/reperfusion injury in the heart. Circ. Res. 119, 596–606 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morikawa, Y., Heallen, T., Leach, J., Xiao, Y. & Martin, J. F. Dystrophin-glycoprotein complex sequesters Yap to inhibit cardiomyocyte proliferation. Nature 547, 227–231 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, Z. et al. Cardiac-specific YAP activation improves cardiac function and survival in an experimental murine MI model. Circ. Res. 115, 354–363 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leach, J. P. et al. Hippo pathway deficiency reverses systolic heart failure after infarction. Nature 550, 260–264 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, S. et al. Gene therapy knockdown of Hippo signaling resolves arrhythmic events in pigs after myocardial infarction. Circulation 146, 1558–1560 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Liu, S. et al. Gene therapy knockdown of Hippo signaling induces cardiomyocyte renewal in pigs after myocardial infarction. Sci. Transl. Med. 13, eabd6892 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kastan, N. et al. Small-molecule inhibition of Lats kinases may promote Yap-dependent proliferation in postmitotic mammalian tissues. Nat. Commun. 12, 3100 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito, M. et al. Characterization of a small molecule that promotes cell cycle activation of human induced pluripotent stem cell-derived cardiomyocytes. J. Mol. Cell Cardiol. 128, 90–95 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Hara, H. et al. Discovery of a small molecule to increase cardiomyocytes and protect the heart after ischemic injury. JACC Basic Transl. Sci. 3, 639–653 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Fan, F. et al. Pharmacological targeting of kinases MST1 and MST2 augments tissue repair and regeneration. Sci. Transl. Med. 8, 352ra108 (2016).

    Article  PubMed  Google Scholar 

  • Yovchev, M. et al. Experimental model for successful liver cell therapy by lenti TTR-YapERT2 transduced hepatocytes with tamoxifen control of Yap subcellular location. Sci. Rep. 6, 19275 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loforese, G. et al. Impaired liver regeneration in aged mice can be rescued by silencing Hippo core kinases MST1 and MST2. EMBO Mol. Med. 9, 46–60 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Stronati, E. et al. YAP1 regulates the self-organized fate patterning of hESC-derived gastruloids. Stem Cell Rep. 17, 211–220 (2022).

    Article  CAS  Google Scholar 

  • Liu-Chittenden, Y. et al. Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP. Genes Dev. 26, 1300–1305 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng, R. & Dong, J. The Hippo signaling pathway in drug resistance in cancer. Cancers 13, 318 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen, C. D. K. & Yi, C. YAP/TAZ signaling and resistance to cancer therapy. Trends Cancer 5, 283–296 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurppa, K. J. et al. Treatment-induced tumor dormancy through YAP-mediated transcriptional reprogramming of the apoptotic pathway. Cancer Cell 37, 104–122.e12 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan, P. et al. Autopalmitoylation of TEAD proteins regulates transcriptional output of the Hippo pathway. Nat. Chem. Biol. 12, 282–289 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang, T. T. et al. Small molecule inhibitors of TEAD auto-palmitoylation selectively inhibit proliferation and tumor growth of NF2-deficient mesothelioma. Mol. Cancer Ther. 20, 986–998 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Sun, Y. et al. Pharmacological blockade of TEAD-YAP reveals its therapeutic limitation in cancer cells. Nat. Commun. 13, 6744 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tolcher, A. W. et al. A phase 1, first-in-human study of IK-930, an oral TEAD inhibitor targeting the Hippo pathway in subjects with advanced solid tumors. J. Clin. Oncol. 40, TPS3168 (2022).

    Article  Google Scholar 

  • Schmelzle, T. et al. Abstract LB319: IAG933, a selective and orally efficacious YAP1/WWTR1(TAZ)-panTEAD protein-protein interaction inhibitor with pre-clinical activity in monotherapy and combinations. Cancer Res. 83, LB319 (2023).

    Article  Google Scholar 

  • Yap, T. A. et al. Abstract CT006: First-in-class, first-in-human phase 1 trial of VT3989, an inhibitor of yes-associated protein (YAP)/transcriptional enhancer activator domain (TEAD), in patients (pts) with advanced solid tumors enriched for malignant mesothelioma and other tumors with neurofibromatosis 2 (NF2) mutations. Cancer Res. 83, CT006 (2023).

    Article  Google Scholar 

  • Koontz, L. M. et al. The Hippo effector Yorkie controls normal tissue growth by antagonizing scalloped-mediated default repression. Dev. Cell 25, 388–401 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiao, S. et al. A peptide mimicking VGLL4 function acts as a YAP antagonist therapy against gastric cancer. Cancer Cell 25, 166–180 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Sorrentino, G. et al. Metabolic control of YAP and TAZ by the mevalonate pathway. Nat. Cell Biol. 16, 357–366 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Driskill, J. H. et al. WWTR1(TAZ)-CAMTA1 reprograms endothelial cells to drive epithelioid hemangioendothelioma. Genes Dev. 35, 495–511 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saikawa, S. et al. Angiotensin receptor blockade attenuates cholangiocarcinoma cell growth by inhibiting the oncogenic activity of Yes-associated protein. Cancer Lett. 434, 120–129 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Wang, W. et al. Tankyrase inhibitors target YAP by stabilizing angiomotin family proteins. Cell Rep. 13, 524–532 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuan, W. C. et al. NUAK2 is a critical YAP target in liver cancer. Nat. Commun. 9, 4834 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Kowalczyk, W. et al. Hippo signaling instructs ectopic but not normal organ growth. Science 378, eabg3679 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Moya, I. M. et al. Peritumoral activation of the Hippo pathway effectors YAP and TAZ suppresses liver cancer in mice. Science 366, 1029–1034 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Phillips, J. E., Santos, M., Konchwala, M., Xing, C. & Pan, D. Genome editing in the unicellular holozoan Capsaspora owczarzaki suggests a premetazoan role for the Hippo pathway in multicellular morphogenesis. eLife 11, e77598 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sebe-Pedros, A., Zheng, Y., Ruiz-Trillo, I. & Pan, D. Premetazoan origin of the Hippo signaling pathway. Cell Rep. 1, 13–20 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Heallen, T. et al. Hippo signaling impedes adult heart regeneration. Development 140, 4683–4690 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, C. et al. Common and distinctive functions of the Hippo effectors Taz and Yap in skeletal muscle stem cell function. Stem Cell 35, 1958–1972 (2017).

    Article  CAS  Google Scholar 

  • Hamaratoglu, F. et al. The tumour-suppressor genes NF2/Merlin and expanded act through Hippo signalling to regulate cell proliferation and apoptosis. Nat. Cell Biol. 8, 27–36 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Yin, F. et al. Spatial organization of Hippo signaling at the plasma membrane mediated by the tumor suppressor Merlin/NF2. Cell 154, 1342–1355 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Genevet, A., Wehr, M. C., Brain, R., Thompson, B. J. & Tapon, N. Kibra is a regulator of the Salvador/Warts/Hippo signaling network. Dev. Cell 18, 300–308 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, L. et al. Multiphase coalescence mediates Hippo pathway activation. Cell 185, 4376–4393.e18 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Feng, X. et al. Hippo-independent activation of YAP by the GNAQ uveal melanoma oncogene through a trio-regulated rho GTPase signaling circuitry. Cancer Cell 25, 831–845 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, F. X. et al. Mutant Gq/11 promote uveal melanoma tumorigenesis by activating YAP. Cancer Cell 25, 822–830 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, H. et al. YAP/TAZ activation drives Uveal melanoma initiation and progression. Cell Rep. 29, 3200–3211.e04 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeRan, M. et al. Energy stress regulates Hippo-YAP signaling involving AMPK-mediated regulation of angiomotin-like 1 protein. Cell Rep. 9, 495–503 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enzo, E. et al. Aerobic glycolysis tunes YAP/TAZ transcriptional activity. EMBO J. 34, 1349–1370 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, X. et al. The essential role of YAP O-GlcNAcylation in high-glucose-stimulated liver tumorigenesis. Nat. Commun. 8, 15280 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aragona, M. et al. A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell 154, 1047–1059 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Elosegui-Artola, A. et al. Force triggers YAP nuclear entry by regulating transport across nuclear pores. Cell 171, 1397–1410.e14 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Nakajima, H. et al. Flow-dependent endothelial YAP regulation contributes to vessel maintenance. Dev. Cell 40, 523–536.e6 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Wang, L. et al. Integrin-YAP/TAZ-JNK cascade mediates atheroprotective effect of unidirectional shear flow. Nature 540, 579–582 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Codelia, V. A., Sun, G. & Irvine, K. D. Regulation of YAP by mechanical strain through Jnk and Hippo signaling. Curr. Biol. 24, 2012–2017 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng, Z. et al. RAP2 mediates mechanoresponses of the Hippo pathway. Nature 560, 655–660 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang, L. et al. The SWI/SNF complex is a mechanoregulated inhibitor of YAP and TAZ. Nature 563, 265–269 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar