Comprehensive antifungal investigation of green synthesized silver nanoformulation against four agriculturally significant fungi and its cytotoxic applications – Scientific Reports

  • Savary, S. et al. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 3, 430–439 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Jain, A., Sarsaiya, S., Wu, Q., Lu, Y. & Shi, J. A review of plant leaf fungal diseases and its environment speciation. Bioengineered 10, 409–424 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Derbyshire, M. C. & Denton-Giles, M. The control of Sclerotinia stem rot on oilseed rape (Brassica napus): Current practices and future opportunities. Plant Pathol. 65, 859–877 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Willbur, J., McCaghey, M., Kabbage, M. & Smith, D. L. An overview of the Sclerotinia sclerotiorum pathosystem in soybean: Impact, fungal biology, and current management strategies. Trop. Plant Pathol. 44, 3–11 (2019).

    Article 

    Google Scholar
     

  • O’Sullivan, C. A., Belt, K. & Thatcher, L. F. Tackling control of a cosmopolitan phytopathogen: Sclerotinia. Front. Plant Sci. 12, 707509 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vikal, S. et al. Bioinspired palladium-doped manganese oxide nanocorns: A remarkable antimicrobial agent targeting phyto/animal pathogens. Sci. Rep. 13, 14039 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • da Silva, L. L., Moreno, H. L. A., Correia, H. L. N., Santana, M. F. & de Queiroz, M. V. Colletotrichum: Species complexes, lifestyle, and peculiarities of some sources of genetic variability. Appl. Microbiol. Biotechnol. 104, 1891–1904 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Khodadadi, F. et al. Identification and characterization of Colletotrichum species causing apple bitter rot in New York and description of C. noveboracense sp. nov. Sci. Rep. 10, 11043 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ji, Y., Li, X., Gao, Q. H., Geng, C. & Duan, K. Colletotrichum species pathogenic to strawberry: Discovery history, global diversity, prevalence in China, and the host range of top two species. Phytopathol. Res. 4, 42 (2022).

    Article 

    Google Scholar
     

  • Sharma, R. & Tamta, S. A review on red rot: The ‘cancer’ of sugarcane. J. Plant Pathol. Microbiol. 1, 003 (2015).


    Google Scholar
     

  • Viswanathan, R., Selvakumar, R., Manivannan, K., Nithyanantham, R. & Kaverinathan, K. Behaviour of soil borne inoculum of Colletotrichum falcatum in causing red rot in sugarcane varieties with varying disease resistance. Sugar Tech 22, 485–497 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Gautam, A. K. Colletotrichum gloeosporioides: Biology, pathogenicity and management in India. J. Plant Physiol. Pathol. 02, 2–11 (2014).

    Article 

    Google Scholar
     

  • Kamle, M. & Kumar, P. Colletotrichum gloeosporioides: Pathogen of anthracnose disease in mango (Mangifera indica L.) (ed. Kumar, P., Gupta, V., Tiwari, A., Kamle, M.) Curr. Trends Plant Dis. Diagn. Manag. Pract. 207–219 (Fungal Biology, Springer, 2016).

  • Ajayi-Oyetunde, O. O. & Bradley, C. A. Rhizoctonia solani: Taxonomy, population biology and management of Rhizoctonia seedling disease of soybean. Plant Pathol. 67, 3–17 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Zrenner, R., Genzel, F., Verwaaijen, B., Wibberg, D. & Grosch, R. Necrotrophic lifestyle of Rhizoctonia solani AG3-PT during interaction with its host plant potato as revealed by transcriptome analysis. Sci. Rep. 10, 12574 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lakshmeesha, T. R. et al. Biofabrication of zinc oxide nanoparticles from Melia azedarach and its potential in controlling soybean seed-borne phytopathogenic fungi. Saudi J. Biol. Sci. 27, 1923–1930 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abdelaziz, A. M. et al. Efficient role of endophytic Aspergillus terreus in biocontrol of Rhizoctonia solani causing damping-off disease of Phaseolus vulgaris and Vicia faba. Microorganisms 11, 1487 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • El-Baky, N. A. & Amara, A. A. A. F. Recent approaches towards control of fungal diseases in plants: An updated review. J. Fungi 7, 7110900 (2021).

    Article 

    Google Scholar
     

  • Peng, Y. et al. Research progress on phytopathogenic fungi and their role as biocontrol agents. Front. Microbiol. 12, 670135 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sanchez-Torres, P. Molecular mechanisms underlying fungicide resistance in citrus postharvest green mold. J. Fungi 7, 7090783 (2021).

    Article 

    Google Scholar
     

  • Naziya, B., Murali, M. & Amruthesh, K. N. Plant growth-promoting fungi (Pgpf) instigate plant growth and induce disease resistance in Capsicum annuum L. upon infection with Colletotrichum capsici (syd.) butler & bisby. Biomolecules 10, 41 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Gowtham, H. G. et al. Plant growth promoting rhizobacteria—Bacillus amyloliquefaciens improves plant growth and induces resistance in chilli against anthracnose disease. Biol. Control 126, 209–217 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Pokrajac, L. et al. Nanotechnology for a sustainable future: Addressing global challenges with the international network4sustainable nanotechnology. ACS Nano 15, 18608–18623 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Singh, R. P., Handa, R. & Manchanda, G. Nanoparticles in sustainable agriculture: An emerging opportunity. J. Control. Release 329, 1234–1248 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Joudeh, N. & Linke, D. Nanoparticle classification, physicochemical properties, characterization, and applications: A comprehensive review for biologists. J. Nanobiotechnol. 20, 262 (2022).

    Article 

    Google Scholar
     

  • Baig, N., Kammakakam, I., Falath, W. & Kammakakam, I. Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges. Mater. Adv. 2, 1821–1871 (2021).

    Article 

    Google Scholar
     

  • Tomah, A. A., Alamer, I. S. A., Li, B. & Zhang, J. Z. Mycosynthesis of silver nanoparticles using screened Trichoderma isolates and their antifungal activity against Sclerotinia sclerotiorum. Nanomaterials 10, 1–15 (2020).

    Article 

    Google Scholar
     

  • Mikhailova, E. O. Silver nanoparticles: Mechanism of action and probable bio-application. J. Funct. Biomater. 11, 11040084 (2020).

    Article 

    Google Scholar
     

  • Mittal, A. K. et al. Bio-synthesis of silver nanoparticles using Potentilla fulgens Wall. ex Hook. and its therapeutic evaluation as anticancer and antimicrobial agent. Mater. Sci. Eng. C 53, 120–127 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Khatoon, N., Mazumder, J. A. & Sardar, M. Biotechnological applications of green synthesized silver nanoparticles. J. Nanosci. Curr. Res. 2, 2572–0813 (2017).

    Article 

    Google Scholar
     

  • Naganthran, A. et al. Synthesis, characterization and biomedical application of silver nanoparticles. Materials 15, 427 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elbahnasawy, M. A., Shehabeldine, A. M., Khattab, A. M., Amin, B. H. & Hashem, A. H. Green biosynthesis of silver nanoparticles using novel endophytic Rothia endophytica: Characterization and anticandidal activity. J. Drug Deliv. Sci. Technol. 62, 102401 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Singh, J. et al. Green synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. J. Nanobiotechnol. 16, 1–24 (2018).

    Article 

    Google Scholar
     

  • Kazemi, S. et al. Recent advances in green synthesized nanoparticles: From production to application. Mater. Today Sustain. 24, 100500 (2023).

    Article 

    Google Scholar
     

  • Khalil, M. M. H., Ismail, E. H., El-Baghdady, K. Z. & Mohamed, D. Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity. Arab. J. Chem. 7, 1131–1139 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Prabakaran, S. & Rajan, M. Biosynthesis of nanoparticles and their roles in numerous areas. Compr. Anal. Chem. 94, 1–47 (2021).

    CAS 

    Google Scholar
     

  • Vishwanath, R. & Negi, B. Conventional and green methods of synthesis of silver nanoparticles and their antimicrobial properties. Curr. Res. Green Sustain. Chem. 4, 100205 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Rana, A., Yadav, K. & Jagadevan, S. A comprehensive review on green synthesis of nature-inspired metal nanoparticles: Mechanism, application and toxicity. J. Clean. Prod. 272, 122880 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Manik, U. P., Nande, A., Raut, S. & Dhoble, S. J. Green synthesis of silver nanoparticles using plant leaf extraction of Artocarpus heterophylus and Azadirachta indica. Results Mater. 6, 100086 (2020).

    Article 

    Google Scholar
     

  • Wasilewska, A. et al. Physico-chemical properties and antimicrobial activity of silver nanoparticles fabricated by green synthesis. Food Chem. 400, 133960 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oves, M., Rauf, M. A. & Qari, H. A. Therapeutic applications of biogenic silver nanomaterial synthesized from the paper flower of Bougainvillea glabra (Miami, Pink). Nanomaterials 13, 615 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jadoun, S., Arif, R., Jangid, N. K. & Meena, R. K. Green synthesis of nanoparticles using plant extracts: A review. Environ. Chem. Lett. 19, 355–374 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ying, S. et al. Green synthesis of nanoparticles: Current developments and limitations. Environ. Technol. Innov. 26, 102336 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Saha, J., Begum, A., Mukherjee, A. & Kumar, S. A novel green synthesis of silver nanoparticles and their catalytic action in reduction of methylene blue dye. Sustain. Environ. Res. 27, 245–250 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Iqbal, J. et al. Biogenic synthesis of green and cost effective iron nanoparticles and evaluation of their potential biomedical properties. J. Mol. Struct. 1199, 126979 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Singh, J., Verma, A., Kapoor, N. & Pratap, D. Nanocatalytic application of the green synthesized silver nanoparticles for enhancement of the enzymatic activity of fungal amylase and cellulase. Int. J. Nanosci. Nanotechnol 19, 187–198 (2023).

    CAS 

    Google Scholar
     

  • Alharbi, N. S., Alsubhi, N. S. & Felimban, A. I. Green synthesis of silver nanoparticles using medicinal plants: Characterization and application. J. Radiat. Res. Appl. Sci. 15, 109–124 (2022).

    CAS 

    Google Scholar
     

  • Jain, S. & Mehata, M. S. Medicinal plant leaf extract and pure flavonoid mediated green synthesis of silver nanoparticles and their enhanced antibacterial property. Sci. Rep. 7, 15867 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oves, M. et al. Antimicrobial and anticancer activities of silver nanoparticles synthesized from the root hair extract of Phoenix dactylifera. Mater. Sci. Eng. C 89, 429–443 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Debela, D. T. et al. New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Med. 9, 20503121211034370 (2021).

    Article 
    MathSciNet 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anand, U. et al. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis. 10, 1367–1401 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hashem, A. H. & El-Sayyad, G. S. Antimicrobial and anticancer activities of biosynthesized bimetallic silver-zinc oxide nanoparticles (Ag-ZnO NPs) using pomegranate peel extract. Biomass Convers. Biorefin. 13, 1–13 (2023).

  • Xu, L. et al. Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics 10, 8996–9031 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oves, M. et al. Green synthesis of silver nanoparticles by Conocarpus lancifolius plant extract and their antimicrobial and anticancer activities. Saudi J. Biol. Sci. 29, 460–471 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Burdusel, A. C. et al. Biomedical applications of silver nanoparticles: An up-to-date overview. Nanomaterials 8, 8090681 (2018).

    Article 

    Google Scholar
     

  • Zhang, P. et al. Nanotechnology and artificial intelligence to enable sustainable and precision agriculture. Nat. Plants 7, 864–876 (2021).

    Article 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Verma, A. & Mehata, M. S. Controllable synthesis of silver nanoparticles using neem leaves and their antimicrobial activity. J. Radiat. Res. Appl. Sci. 9, 109–115 (2016).

    CAS 

    Google Scholar
     

  • Ahmed, S., Ahmad, M., Swami, B. L. & Ikram, S. Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J. Radiat. Res. Appl. Sci. 9, 1–7 (2016).


    Google Scholar
     

  • Roy, P., Das, B., Mohanty, A. & Mohapatra, S. Green synthesis of silver nanoparticles using Azadirachta indica leaf extract and its antimicrobial study. Appl. Nanosci. 7, 843–850 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Asif, M. et al. Green Synthesis of silver nanoparticles (AgNPs), structural characterization, and their antibacterial potential. Dose-Response 20, 15593258221088708 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giri, A. K. et al. Green synthesis and characterization of silver nanoparticles using Eugenia roxburghii DC. extract and activity against biofilm-producing bacteria. Sci. Rep. 12, 8383 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Majid Sharifi-Rad, H. S. E. P. P. Green synthesis of silver nanoparticles (AgNPs) by Lallemantia royleana leaf extract: Their bio-pharmaceutical and catalytic properties. J. Photochem. Photobiol. A Chem. 448, 115318 (2024).

    Article 

    Google Scholar
     

  • Banerjee, P., Satapathy, M., Mukhopahayay, A. & Das, P. Leaf extract mediated green synthesis of silver nanoparticles from widely available Indian plants: Synthesis, characterization, antimicrobial property and toxicity analysis. Bioresour. Bioprocess. 1, 1–10 (2014).

    Article 

    Google Scholar
     

  • Vanlalveni, C. et al. Green synthesis of silver nanoparticles using plant extracts and their antimicrobial activities: A review of recent literature. RSC Adv. 11, 2804–2837 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, X. F., Liu, Z. G., Shen, W. & Gurunathan, S. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci. 17, 17091534 (2016).

    Article 

    Google Scholar
     

  • Khan, I., Saeed, K. & Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 12, 908–931 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Pratap, D. & Singh, J. Novel method for green synthesis of soluble nanoparticles and product thereof. Application No.: 202211043204 A (Indian Patent Office) Published Date:16/09/2022 (Issue No. 37/2022, Page No. 57906).

  • Salem, S. S., Ali, O. M., Reyad, A. M., Abd-Elsalam, K. A. & Hashem, A. H. Pseudomonas indica-mediated silver nanoparticles: Antifungal and antioxidant biogenic tool for suppressing mucormycosis fungi. J. Fungi 8, 126 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Vikal, S. et al. Structural, optical and antimicrobial properties of pure and Ag-doped ZnO nanostructures. J. Semicond. 43, 032802 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Li, L. et al. The antifungal activity and mechanism of silver nanoparticles against four pathogens causing kiwifruit post-harvest rot. Front. Microbiol. 13, 988633 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marfavi, Z. H. et al. Glioblastoma U-87MG tumour cells suppressed by ZnO folic acid-conjugated nanoparticles: An in vitro study. Artif. Cells Nanomed. Biotechnol. 47, 2783–2790 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mousavi, M., Koosha, F. & Neshastehriz, A. Chemo-radiation therapy of U87-MG glioblastoma cells using SPIO@AuNP-cisplatin-alginate nanocomplex. Heliyon 9, e13847 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mofeed, J., Deyab, M., El-Bilawy, E., Deyab, M. A. & Abd El-Halim, E. H. Anticancer activity of some filamentous cyanobacterial isolates against Hep-G2 and MCF-7 cancer cell lines. Int. J. Life Sci. 8, 10–17 (2018).


    Google Scholar
     

  • Chen, Z., Bertin, R. & Froldi, G. EC50 estimation of antioxidant activity in DPPH assay using several statistical programs. Food Chem. 138, 414–420 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sudarsan, S. et al. Green synthesis of silver nanoparticles by Cytobacillus firmus isolated from the stem bark of Terminalia arjuna and their antimicrobial activity. Biomolecules 11, 1–16 (2021).

    Article 

    Google Scholar
     

  • Saied, E. et al. Photocatalytic and antimicrobial activities of biosynthesized silver nanoparticles using Cytobacillus firmus. Life 12, 1331 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hashem, A. H. et al. Watermelon rind mediated biosynthesis of bimetallic selenium-silver nanoparticles: Characterization, antimicrobial and anticancer activities. Plants 12, 3288 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hasanin, M., Elbahnasawy, M. A., Shehabeldine, A. M. & Hashem, A. H. Ecofriendly preparation of silver nanoparticles-based nanocomposite stabilized by polysaccharides with antibacterial, antifungal and antiviral activities. BioMetals 34, 1313–1328 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amargeetha, A. & Velavan, S. X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS) analysis of silver nanoparticles synthesized from Erythrina indica flowers. Nanosci. Technol. Open Access 5, 1–5 (2018).

    Article 

    Google Scholar
     

  • Hano, C. & Abbasi, B. H. Plant-based green synthesis of nanoparticles: Production, characterization and applications. Biomolecules 12, 12010031 (2022).


    Google Scholar
     

  • Peng, S., McMahon, J. M., Schatz, G. C., Gray, S. K. & Sun, Y. Reversing the size-dependence of surface plasmon resonances. Proc. Natl. Acad. Sci. 107, 14530–14534 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Asimuddin, M. et al. Azadirachta indica based biosynthesis of silver nanoparticles and evaluation of their antibacterial and cytotoxic effects. J. King Saud Univ. Sci. 32, 648–656 (2020).

    Article 

    Google Scholar
     

  • Alharbi, N. S. & Alsubhi, N. S. Green synthesis and anticancer activity of silver nanoparticles prepared using fruit extract of Azadirachta indica. J. Radiat. Res. Appl. Sci. 15, 335–345 (2022).

    CAS 

    Google Scholar
     

  • Al-Otibi, F. et al. Biosynthesis of silver nanoparticles using Malva parviflora and their antifungal activity. Saudi J. Biol. Sci. 28, 2229–2235 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ibrahim, H. M. M. Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. J. Radiat. Res. Appl. Sci. 8, 265–275 (2015).


    Google Scholar
     

  • Ali, I. A. M., Ahmed, A. B. & Al-Ahmed, H. I. Green synthesis and characterization of silver nanoparticles for reducing the damage to sperm parameters in diabetic compared to metformin. Sci. Rep. 13, 2256 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rahmah, M. I., Sabry, R. S. & Aziz, W. J. Synthesis and study photocatalytic activity of Fe2O3-doped ZnO nanostructure under visible light irradiation. Int. J. Environ. Anal. Chem. 101, 2598–2611 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Jyoti, K., Baunthiyal, M. & Singh, A. Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics. J. Radiat. Res. Appl. Sci. 9, 217–227 (2016).

    CAS 

    Google Scholar
     

  • Sengupta, A. & Sarkar, A. Synthesis and characterization of nanoparticles from neem leaves and banana peels: A green prospect for dye degradation in wastewater. Ecotoxicology 31, 537–548 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sagar, V., Patel, R. R., Singh, S. K. & Singh, M. Green synthesis of silver nanoparticles: Methods, biological applications, delivery and toxicity. Mater. Adv. 4, 1831–1849 (2023).

    Article 

    Google Scholar
     

  • Oh, J. W., Chun, S. C. & Chandrasekaran, M. Preparation and in vitro characterization of chitosan nanoparticles and their broad-spectrum antifungal action compared to antibacterial activities against phytopathogens of tomato. Agronomy 9, 21 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Roy, A., Bulut, O., Some, S., Mandal, A. K. & Yilmaz, M. D. Green synthesis of silver nanoparticles: Biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Adv. 9, 2673–2702 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumari, M. et al. An insight into the mechanism of antifungal activity of biogenic nanoparticles than their chemical counterparts. Pestic Biochem. Physiol. 157, 45–52 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mansoor, S. et al. Fabrication of silver nanoparticles against fungal pathogens. Front. Nanotechnol. 3, 679358 (2021).

    Article 

    Google Scholar
     

  • Du, H., Lo, T. M., Sitompul, J. & Chang, M. W. Systems-level analysis of Escherichia coli response to silver nanoparticles: The roles of anaerobic respiration in microbial resistance. Biochem. Biophys. Res. Commun. 424, 657–662 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Durán, N. et al. Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity. Nanomed. Nanotechnol. Biol. Med. 12, 789–799 (2016).

    Article 

    Google Scholar
     

  • Yun, J. E. & Lee, D. G. Silver nanoparticles: A novel antimicrobial agent. In Antimicrobial Nanoarchitectonics: From Synthesis to Applications 139–166 (Elsevier, 2017).

    Chapter 

    Google Scholar
     

  • Selim, Y. A., Azb, M. A., Ragab, I. & HM Abd El-Azim, M. Green synthesis of zinc oxide nanoparticles using aqueous extract of Deverra tortuosa and their cytotoxic activities. Sci. Rep. 10, 3445 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, W. et al. Glioblastoma multiforme (GBM): An overview of current therapies and mechanisms of resistance. Pharmacol. Res. 171, 105780 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wypij, M. et al. Biogenic silver nanoparticles: Assessment of their cytotoxicity, genotoxicity and study of capping proteins. Molecules 25, 3022 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Varadharajaperumal, P., Subramanian, B. & Santhanam, A. Biopolymer mediated nanoparticles synthesized from Adenia hondala for enhanced tamoxifen drug delivery in breast cancer cell line. Adv. Nat. Sci. Nanosci. Nanotechnol. 8, 035011 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Wang, D. et al. Fungus-mediated green synthesis of nano-silver using Aspergillus sydowii and its antifungal/antiproliferative activities. Sci. Rep. 11, 10356 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murali, M. et al. Zinc oxide nanoparticles prepared through microbial mediated synthesis for therapeutic applications: A possible alternative for plants. Front. Microbiol. 14, 1227951 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murali, M. et al. Plant-mediated zinc oxide nanoparticles: Advances in the new millennium towards understanding their therapeutic role in biomedical applications. Pharmaceutics 13, 1662 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • El-Naggar, N. E. A., Hussein, M. H. & El-Sawah, A. A. Bio-fabrication of silver nanoparticles by phycocyanin, characterization, in vitro anticancer activity against breast cancer cell line and in vivo cytotxicity. Sci. Rep. 7, 10844 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Umar, H., Kavaz, D. & Rizaner, N. Biosynthesis of zinc oxide nanoparticles using Albizia lebbeck stem bark, and evaluation of its antimicrobial, antioxidant, and cytotoxic activities on human breast cancer cell lines. Int. J. Nanomedicine 14, 87–100 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Locatelli, E. et al. Targeted delivery of silver nanoparticles and alisertib: In vitro and in vivo synergistic effect against glioblastoma. Nanomedicine 9, 839–849 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Simsek, A., Pehlivanoglu, S. & AydinAcar, C. Anti-proliferative and apoptotic effects of green synthesized silver nanoparticles using Lavandula angustifolia on human glioblastoma cells. 3 Biotech. 11, 374 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh, S. P., Mishra, A., Shyanti, R. K., Singh, R. P. & Acharya, A. Silver nanoparticles synthesized using Carica papaya leaf extract (AgNPs-PLE) causes cell cycle arrest and apoptosis in human prostate (DU145) cancer cells. Biol. Trace Elem. Res. 199, 1316–1331 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Farahani, A. F., Hamdi, S. M. M. & Mirzaee, A. GC/MS analysis and phyto-synthesis of silver nanoparticles using Amygdalus spinosissima extract: Antibacterial, antioxidant effects, anticancer and apoptotic effects. Avicenna J. Med. Biotechnol. 14, 223–232 (2022).


    Google Scholar