Search
Close this search box.

Comparative analysis of SEC61A1 mutant R236C in two patient-derived cellular platforms – Scientific Reports

  • Drenth, J. P., Chrispijn, M., Nagorney, D. M., Kamath, P. S. & Torres, V. E. Medical and surgical treatment options for polycystic liver disease. Hepatology 52, 2223–2230. https://doi.org/10.1002/hep.24036 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • van Aerts, R. M. M., van de Laarschot, L. F. M., Banales, J. M. & Drenth, J. P. H. Clinical management of polycystic liver disease. J. Hepatol. 68, 827–837. https://doi.org/10.1016/j.jhep.2017.11.024 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Masyuk, T. V., Masyuk, A. I. & LaRusso, N. F. Polycystic liver disease: Advances in understanding and treatment. Annu. Rev. Pathol. 17, 251–269. https://doi.org/10.1146/annurev-pathol-042320-121247 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cornec-Le Gall, E., Torres, V. E. & Harris, P. C. Genetic complexity of autosomal dominant polycystic kidney and liver diseases. J. Am. Soc. Nephrol. 29, 13–23. https://doi.org/10.1681/ASN.2017050483 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Besse, W. et al. Isolated polycystic liver disease genes define effectors of polycystin-1 function. J. Clin. Investig. 127, 1772–1785. https://doi.org/10.1172/JCI90129 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schlevogt, B. et al. A SEC61A1 variant is associated with autosomal dominant polycystic liver disease. Liver Int. 43, 401–412. https://doi.org/10.1111/liv.15493 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pfeffer, S. et al. Structure of the native Sec61 protein-conducting channel. Nat. Commun. 6, 8403. https://doi.org/10.1038/ncomms9403 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lang, S. et al. An update on Sec61 channel functions, mechanisms, and related diseases. Front. Physiol. 8, 887. https://doi.org/10.3389/fphys.2017.00887 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matlack, K. E., Mothes, W. & Rapoport, T. A. Protein translocation: Tunnel vision. Cell 92, 381–390. https://doi.org/10.1016/s0092-8674(00)80930-7 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sicking, M. et al. Complexity and specificity of Sec61-channelopathies: Human diseases affecting gating of the Sec61 complex. Cells https://doi.org/10.3390/cells10051036 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lang, S. et al. Sec61 complexes form ubiquitous ER Ca2+ leak channels. Channels (Austin) 5, 228–235. https://doi.org/10.4161/chan.5.3.15314 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sundaram, A., Plumb, R., Appathurai, S. & Mariappan, M. The Sec61 translocon limits IRE1alpha signaling during the unfolded protein response. Elife https://doi.org/10.7554/eLife.27187 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hetz, C., Zhang, K. & Kaufman, R. J. Mechanisms, regulation and functions of the unfolded protein response. Nat. Rev. Mol. Cell Biol. 21, 421–438. https://doi.org/10.1038/s41580-020-0250-z (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pohlschroder, M., Prinz, W. A., Hartmann, E. & Beckwith, J. Protein translocation in the three domains of life: Variations on a theme. Cell 91, 563–566. https://doi.org/10.1016/s0092-8674(00)80443-2 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bolar, N. A. et al. Heterozygous loss-of-function SEC61A1 mutations cause autosomal-dominant tubulo-interstitial and glomerulocystic kidney disease with anemia. Am. J. Hum. Genet. 99, 174–187. https://doi.org/10.1016/j.ajhg.2016.05.028 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schubert, D. et al. Plasma cell deficiency in human subjects with heterozygous mutations in Sec61 translocon alpha 1 subunit (SEC61A1). J. Allergy Clin. Immunol. 141, 1427–1438. https://doi.org/10.1016/j.jaci.2017.06.042 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Van Nieuwenhove, E. et al. Defective Sec61alpha1 underlies a novel cause of autosomal dominant severe congenital neutropenia. J. Allergy Clin. Immunol. 146, 1180–1193. https://doi.org/10.1016/j.jaci.2020.03.034 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weiand, M., Ballmaier, P., Niemietz, C., Schmidt, H. & Zibert, A. Combined transgene immortalized urothelial cells capable of reprogramming and hepatic differentiation. Biochem. Biophys. Rep. 31, 101308. https://doi.org/10.1016/j.bbrep.2022.101308 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Niemietz, C. J. et al. Evaluation of therapeutic oligonucleotides for familial amyloid polyneuropathy in patient-derived hepatocyte-like cells. PLoS One 11, e0161455. https://doi.org/10.1371/journal.pone.0161455 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dianat, N. et al. Generation of functional cholangiocyte-like cells from human pluripotent stem cells and HepaRG cells. Hepatology 60, 700–714. https://doi.org/10.1002/hep.27165 (2014).

    Article 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Shin, D. & Monga, S. P. Cellular and molecular basis of liver development. Compr. Physiol. 3, 799–815. https://doi.org/10.1002/cphy.c120022 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hall, B. S. et al. Inhibition of the SEC61 translocon by mycolactone induces a protective autophagic response controlled by EIF2S1-dependent translation that does not require ULK1 activity. Autophagy 18, 841–859. https://doi.org/10.1080/15548627.2021.1961067 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tanida, I., Ueno, T. & Kominami, E. LC3 and autophagy. Methods Mol. Biol. 445, 77–88. https://doi.org/10.1007/978-1-59745-157-4_4 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kauntz, H., Bousserouel, S., Gosse, F. & Raul, F. Silibinin triggers apoptotic signaling pathways and autophagic survival response in human colon adenocarcinoma cells and their derived metastatic cells. Apoptosis 16, 1042–1053. https://doi.org/10.1007/s10495-011-0631-z (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hopgood, M. F., Clark, M. G. & Ballard, F. J. Protein degradation in hepatocyte monolayers. Effects of glucagon, adenosine 3’:5’-cyclic monophosphate and insulin. Biochem. J. 186, 71–79. https://doi.org/10.1042/bj1860071 (1980).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nowak, K. L. & Edelstein, C. L. Apoptosis and autophagy in polycystic kidney disease (PKD). Cell Signal 68, 109518. https://doi.org/10.1016/j.cellsig.2019.109518 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brill, A. L. & Ehrlich, B. E. Polycystin 2: A calcium channel, channel partner, and regulator of calcium homeostasis in ADPKD. Cell Signal 66, 109490. https://doi.org/10.1016/j.cellsig.2019.109490 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pauwels, E., Schulein, R. & Vermeire, K. Inhibitors of the Sec61 complex and novel high throughput screening strategies to target the protein translocation pathway. Int. J. Mol. Sci. https://doi.org/10.3390/ijms222112007 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Espinoza, M. F. et al. Heat shock protein Hspa13 regulates endoplasmic reticulum and cytosolic proteostasis through modulation of protein translocation. J. Biol. Chem. 298, 102597. https://doi.org/10.1016/j.jbc.2022.102597 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weydert, C. et al. Fundamental insights into autosomal dominant polycystic kidney disease from human-based cell models. Pediatr. Nephrol. 34, 1697–1715. https://doi.org/10.1007/s00467-018-4057-5 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Kamiya, A. et al. An in vitro model of polycystic liver disease using genome-edited human inducible pluripotent stem cells. Stem Cell Res. 32, 17–24. https://doi.org/10.1016/j.scr.2018.08.018 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sicking, M. et al. Phenylbutyrate rescues the transport defect of the Sec61alpha mutations V67G and T185A for renin. Life Sci. Alliance https://doi.org/10.26508/lsa.202101150 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mangoo-Karim, R., Uchic, M., Lechene, C. & Grantham, J. J. Renal epithelial cyst formation and enlargement in vitro: Dependence on cAMP. Proc. Natl. Acad. Sci. U. S. A. 86, 6007–6011. https://doi.org/10.1073/pnas.86.15.6007 (1989).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Masyuk, T. V., Masyuk, A. I., Torres, V. E., Harris, P. C. & Larusso, N. F. Octreotide inhibits hepatic cystogenesis in a rodent model of polycystic liver disease by reducing cholangiocyte adenosine 3’,5’-cyclic monophosphate. Gastroenterology 132, 1104–1116. https://doi.org/10.1053/j.gastro.2006.12.039 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rosenberg, M. L. et al. Total and extracellular vesicle cAMP contents in urine are associated with autosomal dominant polycystic kidney disease (ADPKD) progression. Life (Basel) https://doi.org/10.3390/life13091817 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gattone, V. H. 2nd., Wang, X., Harris, P. C. & Torres, V. E. Inhibition of renal cystic disease development and progression by a vasopressin V2 receptor antagonist. Nat. Med. 9, 1323–1326. https://doi.org/10.1038/nm935 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Suwabe, T., Barrera, F. J., Rodriguez-Gutierrez, R., Ubara, Y. & Hogan, M. C. Somatostatin analog therapy effectiveness on the progression of polycystic kidney and liver disease: A systematic review and meta-analysis of randomized clinical trials. PLoS One 16, e0257606. https://doi.org/10.1371/journal.pone.0257606 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ponticelli, C., Moroni, G. & Reggiani, F. Autosomal dominant polycystic kidney disease: Is there a role for autophagy?. Int. J. Mol. Sci. https://doi.org/10.3390/ijms241914666 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, P., Sieben, C. J., Xu, X., Harris, P. C. & Lin, X. Autophagy activators suppress cystogenesis in an autosomal dominant polycystic kidney disease model. Hum. Mol. Genet. 26, 158–172. https://doi.org/10.1093/hmg/ddw376 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Criollo, A. et al. Polycystin-2-dependent control of cardiomyocyte autophagy. J. Mol. Cell Cardiol. 118, 110–121. https://doi.org/10.1016/j.yjmcc.2018.03.002 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pena-Oyarzun, D. et al. PKD2/polycystin-2 induces autophagy by forming a complex with BECN1. Autophagy 17, 1714–1728. https://doi.org/10.1080/15548627.2020.1782035 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Belibi, F. et al. Hypoxia-inducible factor-1alpha (HIF-1alpha) and autophagy in polycystic kidney disease (PKD). Am. J. Physiol. Renal Physiol. 300, F1235-1243. https://doi.org/10.1152/ajprenal.00348.2010 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, E. J. et al. Autophagy induction promotes renal cyst growth in polycystic kidney disease. EBioMedicine 60, 102986. https://doi.org/10.1016/j.ebiom.2020.102986 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peintner, L. et al. Loss of PKD1/polycystin-1 impairs lysosomal activity in a CAPN (calpain)-dependent manner. Autophagy 17, 2384–2400. https://doi.org/10.1080/15548627.2020.1826716 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lager, D. J., Qian, Q., Bengal, R. J., Ishibashi, M. & Torres, V. E. The pck rat: A new model that resembles human autosomal dominant polycystic kidney and liver disease. Kidney Int. 59, 126–136. https://doi.org/10.1046/j.1523-1755.2001.00473.x (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Waanders, E. et al. Cysts of PRKCSH mutated polycystic liver disease patients lack hepatocystin but express Sec63p. Histochem. Cell Biol. 129, 301–310. https://doi.org/10.1007/s00418-008-0381-3 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiao, L., Wang, C. & Yang, Z. Hepatocellular apoptosis in polycystic liver disease. Liver Int. 28, 1315–1317. https://doi.org/10.1111/j.1478-3231.2008.01780.x (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Fan, L. X. et al. Smac-mimetic-induced epithelial cell death reduces the growth of renal cysts. J. Am. Soc. Nephrol. 24, 2010–2022. https://doi.org/10.1681/ASN.2013020176 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goilav, B., Satlin, L. M. & Wilson, P. D. Pathways of apoptosis in human autosomal recessive and autosomal dominant polycystic kidney diseases. Pediatr. Nephrol. 23, 1473–1482. https://doi.org/10.1007/s00467-008-0851-9 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Holditch, S. J. et al. A study of sirolimus and mTOR kinase inhibitor in a hypomorphic Pkd1 mouse model of autosomal dominant polycystic kidney disease. Am. J. Physiol. Renal. Physiol. 317, F187–F196. https://doi.org/10.1152/ajprenal.00051.2019 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Woo, D. Apoptosis and loss of renal tissue in polycystic kidney diseases. N. Engl. J. Med. 333, 18–25. https://doi.org/10.1056/NEJM199507063330104 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nowak, K. L. et al. Vascular dysfunction, oxidative stress, and inflammation in autosomal dominant polycystic kidney disease. Clin. J. Am. Soc. Nephrol. 13, 1493–1501. https://doi.org/10.2215/CJN.05850518 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Latest Intelligence