Combinatorial optimization of the hybrid cellulase complex structure designed from modular libraries – Scientific Reports

  • Tavagnacco, L. et al. Sugar-binding sites on the surface of the carbohydrate-binding module of CBH I from Trichoderma reesei. Carbohydr. Res. 346, 839–846 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bayer, E. A., Belaich, J. P., Shoham, Y. & Lamed, R. The cellulosomes: Multienzyme machines for degradation of plant cell wall polysaccharides. Annu. Rev. Microbiol. 58, 521–554 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Doi, R. H. & Kosugi, A. Cellulosomes: Plant-cell-wall-degrading enzyme complexes. Nat. Rev. Microbiol. 2, 541–551 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Demain, A. L., Newcomb, M. & D, H. W. Cellulase, Clostridia, and Ethanol. Thermophys. Aeromech. 22, 177–184 (2015).


    Google Scholar
     

  • Fierobe, et al. Degradation of Cellulose Substrates by Cellulosome Chimeras: Substrate targeting Versus proximity of enzyme components. J. Biol. Chem. 277, 49621–49630 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • You, C., Zhang, X. Z., Sathitsuksanoh, N., Lynd, L. R. & Percival Zhang, Y. H. Enhanced microbial utilization of recalcitrant cellulose by an ex vivo cellulosome-microbe complex. Appl. Environ. Microbiol. 78, 1437–1444 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thongekkaew, J., Ikeda, H., Masaki, K. & Iefuji, H. Fusion of cellulose binding domain from Trichoderma reesei CBHI to Cryptococcus sp. S-2 cellulase enhances its binding affinity and its cellulolytic activity to insoluble cellulosic substrates. Enzyme Microb. Technol. 52, 241–246 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Poole, D. M., Durrant, A. J., Hazlewood, G. P. & Gilbert, H. J. Characterization of hybrid proteins consisting of the catalytic domains of Clostridium and Ruminococcus endoglucanases, fused to Pseudomonas non-catalytic cellulose-binding domains. Biochem. J. 279, 787–792 (1991).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heyman, A. et al. Multiple display of catalytic modules on a protein scaffold: Nano-fabrication of enzyme particles. J. Biotechnol. 131, 433–439 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mitsuzawa, S. et al. The rosettazyme: A synthetic cellulosome. J. Biotechnol. 143, 139–144 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kahn, A. et al. Creation of a functional hyperthermostable designer cellulosome. Biotechnol. Biofuels 12, 1–15 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Mingardon, F. et al. Heterologous production, assembly, and secretion of a minicellulosome by Clostridium acetobutylicum ATCC 824. Appl. Environ. Microbiol. 71, 1215–1222 (2005).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arai, T. et al. Synthesis of Clostridium cellulovorans minicellulosomes by intercellular complementation. Proc. Natl. Acad. Sci. U. S. A. 104, 1456–1460 (2007).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khoshnevisan, K. et al. Immobilization of cellulase enzyme on superparamagnetic nanoparticles and determination of its activity and stability. Chem. Eng. J. 171, 669–673 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Selvam, K. et al. Activity and stability of bacterial cellulase immobilized on magnetic nanoparticles. Cuihua Xuebao/Chinese J. Catal. 37, 1891–1898 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Cho, E. J. et al. Co-immobilization of three cellulases on Au-doped magnetic silica nanoparticles for the degradation of cellulose. Chem. Commun. 48, 886–888 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Califano, V. & Costantini, A. Immobilization of cellulolytic enzymes in mesostructured silica materials. Catalysts 10, 1–31 (2020).

    Article 

    Google Scholar
     

  • Lu, L. et al. Artificial Cellulosome Complex from the Self-Assembly of Ni-NTA-Functionalized Polymeric Micelles and Cellulases. ChemBioChem 20, 1394–1399 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nakazawa, H. et al. Hybrid nanocellulosome design from cellulase modules on nanoparticles: Synergistic effect of catalytically divergent cellulase modules on cellulose degradation activity. ACS Catal. 3, 1342–1348 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Kim, D. M. et al. A nanocluster design for the construction of artificial cellulosomes. Catal. Sci. Technol. 2, 499–503 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Kim, D. M. et al. Enhancement of cellulolytic enzyme activity by clustering cellulose binding domains on nanoscaffolds. Small 7, 656–664 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Finn, R. D. et al. Pfam: The protein families database. Nucleic Acids Res. 42, 222–230 (2014).

    Article 

    Google Scholar
     

  • Rose, P. W. et al. The RCSB protein data bank: integrative view of protein, gene and 3D structural information. Nucleic Acids Res. 45, 271–281 (2016).


    Google Scholar
     

  • Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M. & Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucl. Acids Res. 42, 490–495 (2014).

    Article 

    Google Scholar
     

  • William, S. A. et al. Heterologous expression of Trichoderma reesei 1,4-b-D-Glucan cellobiohydrolase (Cel7A). Am. Chem. Soc. Chapter 23, 403–437 (2003).


    Google Scholar
     

  • Nakazawa, H., Todokoro, R., Ishigaki, Y., Kumagai, I. & Umetsu, M. In-one-pot-at-a-time ligation for high-throughput construction of a protein expression vector library. Chem. Lett. 42, 424–426 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Mechaly, A. et al. Cohesin-dockerin interaction in cellulosome assembly: A single hydroxyl group of a dockerin domain distinguishes between nonrecognition and high affinity recognition. J. Biol. Chem. 276, 9883–9888 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Takimoto, A. et al. Encapsulation of cellulase with mesoporous silica (SBA-15). Microporous Mesoporous Mater. 116, 601–606 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Hartono, S. B. et al. Functionalized mesoporous silica with very large pores for cellulase immobilization. J. Phys. Chem. C 114, 8353–8362 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Chen, B. et al. Synthesis of mesoporous silica with different pore sizes for cellulase immobilization: Pure physical adsorption. New J. Chem. 41, 9338–9345 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Venditto, I. et al. Family 46 carbohydrate-binding modules contribute to the enzymatic hydrolysis of xyloglucan and β-1,3–1,4-glucans through distinct mechanisms. J. Biol. Chem. 290, 10572–10586 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park, S. et al. Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol. Biofuels. 3, 10 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Diyanat, S., Homaei, A. & Mosaddegh, E. Immobilization of Penaeus vannamei protease on ZnO nanoparticles for long-term use. Int. J. Biol. Macromol. 118, 92–98 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Welseth, C.S. TAPPI, 35, 228-233 (1952)