Tavagnacco, L. et al. Sugar-binding sites on the surface of the carbohydrate-binding module of CBH I from Trichoderma reesei. Carbohydr. Res. 346, 839–846 (2011).
Bayer, E. A., Belaich, J. P., Shoham, Y. & Lamed, R. The cellulosomes: Multienzyme machines for degradation of plant cell wall polysaccharides. Annu. Rev. Microbiol. 58, 521–554 (2004).
Doi, R. H. & Kosugi, A. Cellulosomes: Plant-cell-wall-degrading enzyme complexes. Nat. Rev. Microbiol. 2, 541–551 (2004).
Demain, A. L., Newcomb, M. & D, H. W. Cellulase, Clostridia, and Ethanol. Thermophys. Aeromech. 22, 177–184 (2015).
Fierobe, et al. Degradation of Cellulose Substrates by Cellulosome Chimeras: Substrate targeting Versus proximity of enzyme components. J. Biol. Chem. 277, 49621–49630 (2002).
You, C., Zhang, X. Z., Sathitsuksanoh, N., Lynd, L. R. & Percival Zhang, Y. H. Enhanced microbial utilization of recalcitrant cellulose by an ex vivo cellulosome-microbe complex. Appl. Environ. Microbiol. 78, 1437–1444 (2012).
Thongekkaew, J., Ikeda, H., Masaki, K. & Iefuji, H. Fusion of cellulose binding domain from Trichoderma reesei CBHI to Cryptococcus sp. S-2 cellulase enhances its binding affinity and its cellulolytic activity to insoluble cellulosic substrates. Enzyme Microb. Technol. 52, 241–246 (2013).
Poole, D. M., Durrant, A. J., Hazlewood, G. P. & Gilbert, H. J. Characterization of hybrid proteins consisting of the catalytic domains of Clostridium and Ruminococcus endoglucanases, fused to Pseudomonas non-catalytic cellulose-binding domains. Biochem. J. 279, 787–792 (1991).
Heyman, A. et al. Multiple display of catalytic modules on a protein scaffold: Nano-fabrication of enzyme particles. J. Biotechnol. 131, 433–439 (2007).
Mitsuzawa, S. et al. The rosettazyme: A synthetic cellulosome. J. Biotechnol. 143, 139–144 (2009).
Kahn, A. et al. Creation of a functional hyperthermostable designer cellulosome. Biotechnol. Biofuels 12, 1–15 (2019).
Mingardon, F. et al. Heterologous production, assembly, and secretion of a minicellulosome by Clostridium acetobutylicum ATCC 824. Appl. Environ. Microbiol. 71, 1215–1222 (2005).
Arai, T. et al. Synthesis of Clostridium cellulovorans minicellulosomes by intercellular complementation. Proc. Natl. Acad. Sci. U. S. A. 104, 1456–1460 (2007).
Khoshnevisan, K. et al. Immobilization of cellulase enzyme on superparamagnetic nanoparticles and determination of its activity and stability. Chem. Eng. J. 171, 669–673 (2011).
Selvam, K. et al. Activity and stability of bacterial cellulase immobilized on magnetic nanoparticles. Cuihua Xuebao/Chinese J. Catal. 37, 1891–1898 (2016).
Cho, E. J. et al. Co-immobilization of three cellulases on Au-doped magnetic silica nanoparticles for the degradation of cellulose. Chem. Commun. 48, 886–888 (2012).
Califano, V. & Costantini, A. Immobilization of cellulolytic enzymes in mesostructured silica materials. Catalysts 10, 1–31 (2020).
Lu, L. et al. Artificial Cellulosome Complex from the Self-Assembly of Ni-NTA-Functionalized Polymeric Micelles and Cellulases. ChemBioChem 20, 1394–1399 (2019).
Nakazawa, H. et al. Hybrid nanocellulosome design from cellulase modules on nanoparticles: Synergistic effect of catalytically divergent cellulase modules on cellulose degradation activity. ACS Catal. 3, 1342–1348 (2013).
Kim, D. M. et al. A nanocluster design for the construction of artificial cellulosomes. Catal. Sci. Technol. 2, 499–503 (2012).
Kim, D. M. et al. Enhancement of cellulolytic enzyme activity by clustering cellulose binding domains on nanoscaffolds. Small 7, 656–664 (2011).
Finn, R. D. et al. Pfam: The protein families database. Nucleic Acids Res. 42, 222–230 (2014).
Rose, P. W. et al. The RCSB protein data bank: integrative view of protein, gene and 3D structural information. Nucleic Acids Res. 45, 271–281 (2016).
Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M. & Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucl. Acids Res. 42, 490–495 (2014).
William, S. A. et al. Heterologous expression of Trichoderma reesei 1,4-b-D-Glucan cellobiohydrolase (Cel7A). Am. Chem. Soc. Chapter 23, 403–437 (2003).
Nakazawa, H., Todokoro, R., Ishigaki, Y., Kumagai, I. & Umetsu, M. In-one-pot-at-a-time ligation for high-throughput construction of a protein expression vector library. Chem. Lett. 42, 424–426 (2013).
Mechaly, A. et al. Cohesin-dockerin interaction in cellulosome assembly: A single hydroxyl group of a dockerin domain distinguishes between nonrecognition and high affinity recognition. J. Biol. Chem. 276, 9883–9888 (2001).
Takimoto, A. et al. Encapsulation of cellulase with mesoporous silica (SBA-15). Microporous Mesoporous Mater. 116, 601–606 (2008).
Hartono, S. B. et al. Functionalized mesoporous silica with very large pores for cellulase immobilization. J. Phys. Chem. C 114, 8353–8362 (2010).
Chen, B. et al. Synthesis of mesoporous silica with different pore sizes for cellulase immobilization: Pure physical adsorption. New J. Chem. 41, 9338–9345 (2017).
Venditto, I. et al. Family 46 carbohydrate-binding modules contribute to the enzymatic hydrolysis of xyloglucan and β-1,3–1,4-glucans through distinct mechanisms. J. Biol. Chem. 290, 10572–10586 (2015).
Park, S. et al. Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol. Biofuels. 3, 10 (2010).
Diyanat, S., Homaei, A. & Mosaddegh, E. Immobilization of Penaeus vannamei protease on ZnO nanoparticles for long-term use. Int. J. Biol. Macromol. 118, 92–98 (2018).
Welseth, C.S. TAPPI, 35, 228-233 (1952)
- SEO Powered Content & PR Distribution. Get Amplified Today.
- PlatoData.Network Vertical Generative Ai. Empower Yourself. Access Here.
- PlatoAiStream. Web3 Intelligence. Knowledge Amplified. Access Here.
- PlatoESG. Carbon, CleanTech, Energy, Environment, Solar, Waste Management. Access Here.
- PlatoHealth. Biotech and Clinical Trials Intelligence. Access Here.
- Source: https://www.nature.com/articles/s41598-024-73541-2