
CDC. E. coli Outbreak Linked to Romaine Lettuce; (2020). https://archive.cdc.gov/www_cdc_gov/ecoli/2019/o157h7-11-19
Jeddi, M. Z. et al. Microbial evaluation of fresh, minimally-processed vegetables and bagged sprouts from chain supermarkets. J. Health Popul. Nutr. 32, 391–399 (2014).
Atidégla, S. C., Huat, J., Agbossou, E. K., Saint-Macary, H. & Glèlè Kakai, R. Vegetable contamination by the fecal bacteria of poultry manure: Case study of gardening sites in Southern Benin. Int. J. Food Sci. 2016 (4767453). https://doi.org/10.1155/2016/4767453 (2016).
Maikai, B. & Akubo, D. Coliform count and isolation of Escherichia coli in fresh fruits and vegetables sold at retail outlets in Samaru, Kaduna State, Nigeria. Nig Vet. J. 39, 327–337. https://doi.org/10.4314/nvj.v39i4.5 (2018).
Ghimire, A. et al. Microbial and parasitic contamination of fresh raw vegetable samples and detection of the Bla TEM and bla CTX-M genes from E. Coli isolates. Agriculture 10, 341. https://doi.org/10.3390/agriculture10080341 (2020).
Bohaychuk, V. et al. A microbiological survey of selected Alberta-grown fresh produce from farmers’ markets in Alberta, Canada. J. Food Prot. 72, 415–420. https://doi.org/10.4315/0362-028x-72.2.415 (2009).
Vital P. G., DimasuayK. G. B., WidmerK. W. & Rivera, W. L. Microbiological quality of fresh produce from open air markets and supermarkets in the Philippines. Sci. World. 2014 (219534). https://doi.org/10.1155/2014/219534 (2014).
Pan, F. et al. Cross-sectional survey of indicator and pathogenic bacteria on vegetables sold from Asian vendors at farmers’ markets in Northern California. J. Food Prot. 78, 602–608. https://doi.org/10.4315/0362-028X.JFP-14-095 (2015).
Akoachere, J. F. T. K., Tatsinkou, B. F. & Nkengfack, J. M. Bacterial and parasitic contaminants of salad vegetables sold in markets in Fako Division, Cameroon and evaluation of hygiene and handling practices of vendors. BMC Res. Notes. 11, 1–7. https://doi.org/10.1186/s13104-018-3175-2 (2018).
Ntuli, V., Njage, P. M. K. & Buys, E. M. Characterization of Escherichia coli and other Enterobacteriaceae in producer-distributor bulk milk. J. Dairy. Sci. 99, 9534–9549. https://doi.org/10.3168/jds.2016-11403 (2016).
Adjrah, Y. et al. Socio-economic profile of street food vendors and microbiological quality of ready-to-eat salads in Lomé. Int. Food Res. J. 20, 1835–1840 (2013).
Victor, N. et al. Microbiological quality of selected dried fruits and vegetables in Maseru, Lesotho. Afr. J. Microbiol. Res. 11, 185–193. https://doi.org/10.5897/AJMR2016.8130 (2017).
Holvoet, K., Sampers, I., Callens, B., Dewulf, J. & Uyttendaele, M. Moderate prevalence of antimicrobial resistance in Escherichia coli isolates from lettuce, irrigation water, and soil. Appl. Environ. Microbiol. 79, 6677–6683. https://doi.org/10.1128/AEM.01995-13 (2013).
World Health Organization. WHO Estimates of the Global Burden of Foodborne Diseases: Foodborne Disease Burden Epidemiology Reference Group 2007–2015 (World Health Organization, 2015).
Parsons, B. D., Zelyas, N., Berenger, B. M. & Chui, L. Detection characterization, and typing of Shiga toxin-producing Escherichia coli. Front. Microbiol. 7, 478. https://doi.org/10.3389/fmicb.2016.00478 (2016).
Notomi, T. et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 28 https://doi.org/10.1093/nar/28.12.e63 (2000).
Nagamine, K., Hase, T. & Notomi, T. Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol. Cell. Probes. 16, 223–229. https://doi.org/10.1006/mcpr.2002.0415 (2002).
Soroka, M., Wasowicz, B. & Rymaszewska, A. Loop-mediated isothermal amplification (LAMP): The better sibling of PCR? Cells 10, 1931. https://doi.org/10.3390/cells10081931 (2021).
Oliveira, B. B. V. & Baptista, B. Isothermal amplification of nucleic acids: The race for the Next Gold Standard. Front. Sens. 2, 752600. https://doi.org/10.3389/fsens.2021.752600 (2021).
Lakshmi, B. A. & Kim, S. Recent trends in the utilization of LAMP for the diagnosis of viruses, bacteria, and allergens in food. Recent. Developments Appl. Microbiol. Biochem. 27, 291–297. https://doi.org/10.1016/B978-0-12-821406-0.00027-8 (2021).
Stratakos, A. C., Linton, M., Millington, S. & Grant, I. R. A loop-mediated isothermal amplification method for rapid direct detection and differentiation of nonpathogenic and verocytotoxigenic Escherichia coli in beef and bovine faeces. J. Appl. Microbiol. 122, 817–828. https://doi.org/10.1111/jam.13381 (2017).
Wang, F., Jiang, L. & Ge, B. Loop-mediated isothermal amplification assays for detecting shiga toxin-producing Escherichia coli in ground beef and human stools. J. Clin. Microbiol. 50, 91–97. https://doi.org/10.1128/jcm.05612-11 (2012).
Wang, F., Yang, Q., Qu, Y., Meng, J. & Ge, B. Evaluation of a loop-mediated isothermal amplification suite for the rapid, reliable, and robust detection of Shiga toxin-producing Escherichia coli in produce. Appl. Environ. Microbiol. 80, 2516–2525. https://doi.org/10.1128/aem.04203-13 (2014).
Takano, C. et al. Development of a Novel Loop-mediated isothermal amplification method to detect Guiana extended-spectrum (GES) β-Lactamase genes in Pseudomonas aeruginosa. Front. Microbiol. 10, 25. https://doi.org/10.3389/fmicb.2019.00025 (2019).
Chen, S. & Ge, B. Development of a toxr-based loop-mediated isothermal amplification assay for detecting Vibrio parahaemolyticus. BMC Microbiol. 10 https://doi.org/10.1186/1471-2180-10-41 (2010).
SICASYS. Spotxel® Reader: Plate Reader & Microarray Image Analysis, (2021). https://www.sicasys.de/spotxel-reader/
Ali, E. E., Chew, L. & Yap, K. Y. L. Evolution and current status of mhealth research: A systematic review. BMJ INNOV. 2, 33–40. https://doi.org/10.1136/bmjinnov-2015-000096 (2016).
Ma, X. M. et al. Self-assembled microfiber-like biohydrogel for ultrasensitive whole-cell electrochemical biosensing in microdroplets. Anal. Chem. 95, 2628–2632. https://doi.org/10.1021/acs.analchem.2c05155 (2023).
Blair, E. O. & Corrigan, D. K. A review of microfabricated electrochemical biosensors for DNA detection. Biosens 134, 57–67. https://doi.org/10.1016/j.bios.2019.03.055 (2019).
Qi, H., Yue, S., Bi, S., Ding, C. & Song, W. Isothermal exponential amplification techniques: From basic principles to applications in electrochemical biosensors. Biosens 110, 207–217. https://doi.org/10.1016/j.bios.2018.03.065 (2018).
Zhao, Z. et al. Advancements in electrochemical biosensing for respiratory virus detection: A review. Trends Analyt Chem. 139, 116253. https://doi.org/10.1016/j.trac.2021.116253 (2021).
Hsieh, K., Patterson, A. S., Ferguson, B. S., Plaxco, K. W. & Soh, H. T. Rapid, sensitive, and quantitative detection of pathogenic DNA at the point of care through microfluidic electrochemical quantitative loop-mediated isothermal amplification. Angew. Chem. Int. Ed. Engl. 51, 4896–4900. https://doi.org/10.1002/anie.201109115 (2012).
Pandey, R. et al. Electrochemical DNAzyme-based biosensors for disease diagnosis. Biosens 224, 114983. https://doi.org/10.1016/j.bios.2022.114983 (2022).
Wu, Y., Ali, S. & White, R. J. Use of electrocatalysis for differentiating DNA polymorphisms and enhancing the sensitivity of electrochemical nucleic acid-based sensors with covalent redox tags—part II. ACS Sens. 5, 3842–3849. https://doi.org/10.1021/acssensors.0c02363 (2020).
Rabti, A., Zayani, R., Meftah, M., Salhi, I. & Raouafi, N. Impedimetric DNA E-biosensor for multiplexed sensing of Escherichia coli and its virulent f17 strains. Microchim. Acta. 187, 1–9. https://doi.org/10.1007/s00604-020-04614-y (2020).
Wasiewska, L. A. et al. Electrochemical nucleic acid-based sensors for detection of Escherichia coli and Shiga toxin‐producing E. Coli—Review of the recent developments. Compr. Rev. Food Sci. Food Saf. 22, 1839–1863. https://doi.org/10.1111/1541-4337.13132 (2023).
Liu, Y., Lu, B., Tang, Y., Du, Y. & Li, B. Real-time gene analysis based on a portable electrochemical microfluidic system. Electrochem. Commun. 111, 106665. https://doi.org/10.1016/j.elecom.2020.106665 (2020).
Zambry, N. S. et al. A label-free electrochemical DNA biosensor used a printed circuit board gold electrode (PCBGE) to detect SARS-CoV-2 without amplification. Lab. Chip. 23, 1622–1636. https://doi.org/10.1039/D2LC01159J (2023).
Fu, Y. et al. A LAMP-based ratiometric electrochemical sensing for ultrasensitive detection of Group B Streptococci with improved stability and accuracy. Sens. Actuators B Chem. 321, 128502. https://doi.org/10.1016/j.snb.2020.128502 (2020).
Kampeera, J. et al. Point-of-care rapid detection of Vibrio parahaemolyticus in seafood using loop-mediated isothermal amplification and graphene-based screen-printed electrochemical sensor. Biosens 132, 271–278. https://doi.org/10.1016/j.bios.2019.02.060 (2019).
Fu, J., Chiang, E. L. C., Medriano, C. A. D., Li, L. & Bae, S. Rapid quantification of fecal indicator bacteria in water using the most probable number-loop-mediated isothermal amplification (MPN-LAMP) approach on a polymethyl methacrylate (PMMA) microchip. Water Res. 199, 117172. https://doi.org/10.1016/j.watres.2021.117172 (2021).
Mori, Y., Nagamine, K., Tomita, N. & Notomi, T. Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation. Biochem 289, 150–154. https://doi.org/10.1006/bbrc.2001.5921 (2001).
Tomita, N., Mori, Y., Kanda, H. & Notomi, T. Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nat. Protoc. 3, 877–882. https://doi.org/10.1038/nprot.2008.57 (2008).
Goto, M., Honda, E., Ogura, A., Nomoto, A. & Hanaki, K. Colorimetric detection of loop-mediated isothermal amplification reaction by using hydroxy naphthol blue. BioTechniques 46, 167–172. https://doi.org/10.2144/000113072 (2009).
Szobi, A. et al. Vivid COVID-19 LAMP is an ultrasensitive, quadruplexed test using LNA-modified primers and a zinc ion and 5-Br-PAPS colorimetric detection system. Commun. Biol. 6, 233. https://doi.org/10.1038/s42003-023-04612-9 (2023).
Choi, G., Moehling, T. J. & Meagher, R. J. Advances in RT-LAMP for COVID-19 testing and diagnosis. Expert Rev. Mol. Diagn. 23, 1–21. https://doi.org/10.1080/14737159.2023.2169071 (2023).
Liu, Z., Yao, C., Wang, Y. & Yang, C. A G-quadruplex DNAzyme-based LAMP biosensing platform for a novel colorimetric detection of Listeria monocytogenes. Anal. Methods. 10, 848–854. https://doi.org/10.1039/C7AY02908J (2018).
Zhu, L. et al. A facile cascade signal amplification strategy using DNAzyme loop-mediated isothermal amplification for the ultrasensitive colorimetric detection of Salmonella. Sens. Actuators B Chem. 242, 880–888. https://doi.org/10.1016/j.snb.2016.09.169 (2017).
Song, J. et al. Smartphone-based SARS-CoV-2 and variants detection system using colorimetric DNAzyme reaction triggered by Loop-mediated isothermal amplification (LAMP) with clustered regularly interspaced short palindromic repeats (CRISPR). ACS Nano. 16, 11300–11314. https://doi.org/10.1021/acsnano.2c04840 (2022).
Poimenidou, S. V. et al. Effect of single or combined chemical and natural antimicrobial interventions on Escherichia coli O157: H7, total microbiota and color of packaged spinach and lettuce. Int. J. Food Microbiol.. 220, 6–18. https://doi.org/10.1016/j.ijfoodmicro.2015.12.013 (2016).
Silverman, S. K. & Catalytic, D. N. A. Scope, applications, and biochemistry of deoxyribozymes. Trends Biochem. Sci. 41, 595–609. https://doi.org/10.1016/j.tibs.2016.04.010 (2016).
Travascio, P., Li, Y. & Sen, D. DNA-enhanced peroxidase activity of a DNA-aptamer-hemin complex. Chem. Biol. 5, 505–517. https://doi.org/10.1016/s1074-5521(98)90006-0 (1998).
Marangoni, J. M., Ng, K. K. S. & Emadi, A. Strategies for the voltammetric detection of loop-mediated isothermal amplification. Micromachines 14, 472. https://doi.org/10.3390/mi14020472 (2023).
Hatate, K. et al. Electrochemical detection of serum antibodies against mycobacterium avium subspecies paratuberculosis. Front. Vet. Sci. 8, 642833. https://doi.org/10.3389/fvets.2021.642833 (2021).
Chen, S. C., Chen, K. T. & Jou, A. F. J. Polydopamine-gold composite-based electrochemical biosensor using dual-amplification strategy for detecting pancreatic cancer-associated microRNA. Biosens 173, 112815. https://doi.org/10.1016/j.bios.2020.112815 (2021).
Gao, X. et al. Construction of a dual-model aptasensor based on G-quadruplexes generated via rolling circle amplification for visual/sensitive detection of kanamycin. Sci. Total Environ. 839, 156276. https://doi.org/10.1016/j.scitotenv.2022.156276 (2022).
Huang, Y. L., Gao, Z. F., Luo, H. Q. & Li, N. B. Sensitive detection of HIV gene by coupling exonuclease III-assisted target recycling and guanine nanowire amplification. Sens. Actuators B Chem. 238, 1017–1023. https://doi.org/10.1016/j.snb.2016.07.144 (2017).
Yu, Y. et al. Ultrasensitive electrochemical detection of avian influenza A (H7N9) virus DNA based on isothermal exponential amplification coupled with hybridization chain reaction of DNAzyme nanowires. Biosens 64, 566–571. https://doi.org/10.1016/j.bios.2014.09.080 (2015).
Zhang, R. et al. A label-free electrochemical platform for the detection of antibiotics based on cascade enzymatic amplification coupled with a split G-quadruplex DNAzyme. Analyst 144, 4995–5002. https://doi.org/10.1039/C9AN00857H (2019).
Guan, Z. et al. Dual targets-induced specific hemin/G-quadruplex assemblies for label-free electrochemical detection capable of distinguishing Salmonella and its common serotype in food samples. Biosens 236, 115438. https://doi.org/10.1016/j.bios.2023.115438 (2023).
Yang, Z. et al. Ultrasensitive detection of methicillin-resistant Staphylococcus aureus using a T7 exonuclease-assisted PAM-free dual CRISPR-Cas12a biosensor. Sens. Actuators B Chem. 396, 134568. https://doi.org/10.1016/j.snb.2023.134568 (2023).
Zheng, T. et al. A portable, battery-powered photoelectrochemical aptasesor for field environment monitoring of E. Coli O157:H7. Sens. Actuators B Chem. 346 https://doi.org/10.1016/j.snb.2021.130520 (2021).
Dangerfield, T. L., Paik, I., Bhadra, S., Johnson, K. A. & Ellington, A. D. Kinetics of elementary steps in loop-mediated isothermal amplification (LAMP) show that strand invasion during initiation is rate-limiting. Nucleic Acids Res. 51, 488–499. https://doi.org/10.1093/nar/gkac1221 (2023).
Mirazizi, F. et al. Rapid and direct spectrophotometric method for kinetics studies and routine assay of peroxidase based on aniline diazo substrates. J. Enzyme Inhib. Med. Chem. 31, 1162–1169. https://doi.org/10.3109/14756366.2015.1103234 (2016).
Chang, T. et al. Activity enhancement of G-Quadruplex/Hemin DNAzyme by flanking d(CCC). Chem. Eur. J. 22, 4015–4021. https://doi.org/10.1002/chem.201504797 (2016).
Bergua, J. F. et al. Low-cost, user-friendly, all-integrated smartphone-based microplate reader for optical-based biological and chemical analyses. Anal. Chem. 94, 1271–1285. https://doi.org/10.1021/acs.analchem.1c04491 (2022).
Mirhosseini, S. et al. A digital image colorimetry system based on smart devices for immediate and simultaneous determination of enzyme-linked immunosorbent assays. Sci. Rep. 14, 2587. https://doi.org/10.1038/s41598-024-52931-6 (2024).
Sivapalasingam, S., Friedman, C. R., Cohen, L. & Tauxe, R. V. Fresh produce: A growing cause of outbreaks of foodborne illness in the United States, 1973 through 1997. J. Food Prot. 67, 2342–2353. https://doi.org/10.4315/0362-028x-67.10.2342 (2004).
Cheng, F. F. et al. Target-triggered triple isothermal cascade amplification strategy for ultrasensitive microRNA-21 detection at sub-attomole level. Biosens 85, 891–896. https://doi.org/10.1016/j.bios.2016.06.008 (2016).
Yuan, Y. et al. A signal cascade amplification strategy based on RT-PCR triggering of a G-quadruplex DNAzyme for a novel electrochemical detection of viable Cronobacter sakazakii. Analyst 145, 4477–4483. https://doi.org/10.1039/D0AN00270D (2020).
Chen, Q., Yao, C., Yang, C., Liu, Z. & Wan, S. Development of an in-situ signal amplified electrochemical assay for detection of Listeria monocytogenes with label-free strategy. Food Chem. 358, 129894. https://doi.org/10.1016/j.foodchem.2021.129894 (2021).
Broughton, J. P. et al. CRISPR–Cas12-based detection of SARS-CoV-2. Nat. Biotechnol. 38, 870–874. https://doi.org/10.1038/s41587-020-0513-4 (2020).
Goode, J. A., Rushworth, J. V. H. & Millner, P. A. Biosensor regeneration: A review of common techniques and outcomes. Langmuir 31, 6267–6276. https://doi.org/10.1021/la503533g (2015).
Weagant, S. D., Jinneman, K. C., Yoshitomi, K. J., Zapata, R. & Fedio, W. M. Optimization and evaluation of a modified enrichment procedure combined with immunomagnetic separation for detection of E. Coli O157:H7 from artificially contaminated alfalfa sprouts. Int. J. Food Microbiol. 149, 209–217. https://doi.org/10.1016/j.ijfoodmicro.2011.06.008 (2011).
Dai, D., Holder, D., Raskin, L. & Xi, C. Separation of the bacterial species, Escherichia coli, from mixed-species microbial communities for transcriptome analysis. BMC Microbiol. 11, 1–8. https://doi.org/10.1186/1471-2180-11-59 (2011).
Xiao, B. et al. Integrating microneedle DNA extraction to hand-held microfluidic colorimetric LAMP chip system for meat adulteration detection. Food Chem. 411, 135508. https://doi.org/10.1016/j.foodchem.2023.135508 (2023).
Kshirsagar, A. et al. Handheld purification-free nucleic acid testing device for point-of-need detection of Malaria from whole blood. ACS Sens. 8, 673–683. https://doi.org/10.1021/acssensors.2c02169 (2023).
Bhuvanendran Nair Gourikutty, S., Chang, C. P. & Puiu, P. D. Microfluidic immunomagnetic cell separation from whole blood. J. Chromatogr. B. 1011, 77–88. https://doi.org/10.1016/j.jchromb.2015.12.016 (2016).
Guo, P. L. et al. Combination of dynamic magnetophoretic separation and stationary magnetic trap for highly sensitive and selective detection of Salmonella typhimurium in complex matrix. Biosens 74, 628–636. https://doi.org/10.1016/j.bios.2015.07.019 (2015).
Hardinge, P. & Murray, J. A. Full dynamic range quantification using loop-mediated amplification (LAMP) by combining analysis of amplification timing and variance between replicates at low copy number. Sci. Rep. 10 https://doi.org/10.1038/s41598-020-57473-1 (2020).
Aoi, Y., Hosogai, M. & Tsuneda, S. Real-time quantitative LAMP (loop-mediated isothermal amplification of DNA) as a simple method for monitoring ammonia-oxidizing bacteria. J. Biotechnol. 125, 484–491. https://doi.org/10.1016/j.jbiotec.2006.04.007 (2006).
Francois, P. et al. Robustness of a loop-mediated isothermal amplification reaction for diagnostic applications. FEMS IMMUNOL. MED. MIC. 62, 41–48. https://doi.org/10.1111/j.1574-695X.2011.00785.x (2011).
Peng, H. et al. DNAzyme-mediated assays for amplified detection of nucleic acids and proteins. Anal. Chem. 90, 190–207. https://doi.org/10.1021/acs.analchem.7b04926 (2018).
Cheng, X., Liu, X., Bing, T., Cao, Z. & Shangguan, D. General peroxidase activity of G-quadruplex-hemin complexes and its application in ligand screening. Biochem 48, 7817–7823. https://doi.org/10.1021/bi9006786 (2009).
Dogan, B. et al. Adherent and invasive Escherichia coli are associated with persistent bovine mastitis. Vet. Microbiol. 116, 270–282. https://doi.org/10.1016/j.vetmic.2006.04.023 (2006).
Hogan, J., Bogacz, V., Aslam, M. & Smith, K. Efficacy of an Escherichia coli J5 bacterin administered to primigravid heifers. J. Dairy. Sci. 82, 939–943. https://doi.org/10.3168/jds.S0022-0302(99)75312-9 (1999).
Gelalcha, B. D., Gelgie, A. E. & Kerro Dego, O. Prevalence and antimicrobial resistance profiles of extended-spectrum beta-lactamase-producing Escherichia coli in East Tennessee dairy farms. Front. Vet. Sci. 10, 1260433. https://doi.org/10.3389/fvets.2023.1260433 (2023).
Gelalcha, B. D., Mohammed, R. I. & Gelgie, A. E. Kerro Dego, O. Molecular epidemiology and pathogenomics of extended-spectrum beta-lactamase producing-Escherichia coli and-Klebsiella pneumoniae isolates from bulk tank milk in Tennessee, USA. Front. Microbiol. 14, 1283165. https://doi.org/10.3389/fmicb.2023.1283165 (2023).
Marshall, K. E. et al. Lessons learned from a decade of investigations of Shiga toxin–producing Escherichia coli outbreaks linked to leafy greens, United States and Canada. Emerg. Infect. Dis. 26, 2319–2328. https://doi.org/10.3201/eid2610.191418 (2020).
Miller, N. D., Davidson, P. M. & D’Souza, D. H. Real-time reverse-transcriptase PCR for Salmonella Typhimurium detection from lettuce and tomatoes. LWT 44, 1088–1097 (2011).
Kase, J. A., Borenstein, S., Blodgett, R. J. & Feng, P. C. H. Microbial quality of bagged baby spinach and romaine lettuce: Effects of top versus bottom sampling. J. Food Prot. 75, 132–136. https://doi.org/10.4315/0362-028X.JFP-11-097 (2012).
Ogunremi, D. et al. A new whole genome culture-independent diagnostic test (WG-CIDT) for rapid detection of salmonella in lettuce. Front. Microbiol. 11, 602. https://doi.org/10.3389/fmicb.2020.00602 (2020).
Luciani, M. et al. Rapid detection and isolation of Escherichia coli O104:H4 from milk using monoclonal antibody-coated magnetic beads. Front. Microbiol. 7, 942. https://doi.org/10.3389/fmicb.2016.00942 (2016).
Tietje, C. & Brouder, A. Handbook of Transnational Economic Governance Regimes (eds. Christian, B. & Tietje, A.) (Brill, Ninhoff, 2005).
- SEO Powered Content & PR Distribution. Get Amplified Today.
- PlatoData.Network Vertical Generative Ai. Empower Yourself. Access Here.
- PlatoAiStream. Web3 Intelligence. Knowledge Amplified. Access Here.
- PlatoESG. Carbon, CleanTech, Energy, Environment, Solar, Waste Management. Access Here.
- PlatoHealth. Biotech and Clinical Trials Intelligence. Access Here.
- Source: https://www.nature.com/articles/s41598-024-80392-4