Colorimetric and electrochemical analysis of DNAzyme-LAMP amplicons for the detection of Escherichia coli in food matrices

  • CDC. E. coli Outbreak Linked to Romaine Lettuce; (2020). https://archive.cdc.gov/www_cdc_gov/ecoli/2019/o157h7-11-19

  • Jeddi, M. Z. et al. Microbial evaluation of fresh, minimally-processed vegetables and bagged sprouts from chain supermarkets. J. Health Popul. Nutr. 32, 391–399 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Atidégla, S. C., Huat, J., Agbossou, E. K., Saint-Macary, H. & Glèlè Kakai, R. Vegetable contamination by the fecal bacteria of poultry manure: Case study of gardening sites in Southern Benin. Int. J. Food Sci. 2016 (4767453). https://doi.org/10.1155/2016/4767453 (2016).

  • Maikai, B. & Akubo, D. Coliform count and isolation of Escherichia coli in fresh fruits and vegetables sold at retail outlets in Samaru, Kaduna State, Nigeria. Nig Vet. J. 39, 327–337. https://doi.org/10.4314/nvj.v39i4.5 (2018).

    Article 

    Google Scholar
     

  • Ghimire, A. et al. Microbial and parasitic contamination of fresh raw vegetable samples and detection of the Bla TEM and bla CTX-M genes from E. Coli isolates. Agriculture 10, 341. https://doi.org/10.3390/agriculture10080341 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Bohaychuk, V. et al. A microbiological survey of selected Alberta-grown fresh produce from farmers’ markets in Alberta, Canada. J. Food Prot. 72, 415–420. https://doi.org/10.4315/0362-028x-72.2.415 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vital P. G., DimasuayK. G. B., WidmerK. W. & Rivera, W. L. Microbiological quality of fresh produce from open air markets and supermarkets in the Philippines. Sci. World. 2014 (219534). https://doi.org/10.1155/2014/219534 (2014).

  • Pan, F. et al. Cross-sectional survey of indicator and pathogenic bacteria on vegetables sold from Asian vendors at farmers’ markets in Northern California. J. Food Prot. 78, 602–608. https://doi.org/10.4315/0362-028X.JFP-14-095 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Akoachere, J. F. T. K., Tatsinkou, B. F. & Nkengfack, J. M. Bacterial and parasitic contaminants of salad vegetables sold in markets in Fako Division, Cameroon and evaluation of hygiene and handling practices of vendors. BMC Res. Notes. 11, 1–7. https://doi.org/10.1186/s13104-018-3175-2 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Ntuli, V., Njage, P. M. K. & Buys, E. M. Characterization of Escherichia coli and other Enterobacteriaceae in producer-distributor bulk milk. J. Dairy. Sci. 99, 9534–9549. https://doi.org/10.3168/jds.2016-11403 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Adjrah, Y. et al. Socio-economic profile of street food vendors and microbiological quality of ready-to-eat salads in Lomé. Int. Food Res. J. 20, 1835–1840 (2013).


    Google Scholar
     

  • Victor, N. et al. Microbiological quality of selected dried fruits and vegetables in Maseru, Lesotho. Afr. J. Microbiol. Res. 11, 185–193. https://doi.org/10.5897/AJMR2016.8130 (2017).

    Article 

    Google Scholar
     

  • Holvoet, K., Sampers, I., Callens, B., Dewulf, J. & Uyttendaele, M. Moderate prevalence of antimicrobial resistance in Escherichia coli isolates from lettuce, irrigation water, and soil. Appl. Environ. Microbiol. 79, 6677–6683. https://doi.org/10.1128/AEM.01995-13 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • World Health Organization. WHO Estimates of the Global Burden of Foodborne Diseases: Foodborne Disease Burden Epidemiology Reference Group 2007–2015 (World Health Organization, 2015).

  • Parsons, B. D., Zelyas, N., Berenger, B. M. & Chui, L. Detection characterization, and typing of Shiga toxin-producing Escherichia coli. Front. Microbiol. 7, 478. https://doi.org/10.3389/fmicb.2016.00478 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Notomi, T. et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 28 https://doi.org/10.1093/nar/28.12.e63 (2000).

  • Nagamine, K., Hase, T. & Notomi, T. Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol. Cell. Probes. 16, 223–229. https://doi.org/10.1006/mcpr.2002.0415 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Soroka, M., Wasowicz, B. & Rymaszewska, A. Loop-mediated isothermal amplification (LAMP): The better sibling of PCR? Cells 10, 1931. https://doi.org/10.3390/cells10081931 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oliveira, B. B. V. & Baptista, B. Isothermal amplification of nucleic acids: The race for the Next Gold Standard. Front. Sens. 2, 752600. https://doi.org/10.3389/fsens.2021.752600 (2021).

    Article 

    Google Scholar
     

  • Lakshmi, B. A. & Kim, S. Recent trends in the utilization of LAMP for the diagnosis of viruses, bacteria, and allergens in food. Recent. Developments Appl. Microbiol. Biochem. 27, 291–297. https://doi.org/10.1016/B978-0-12-821406-0.00027-8 (2021).

    Article 

    Google Scholar
     

  • Stratakos, A. C., Linton, M., Millington, S. & Grant, I. R. A loop-mediated isothermal amplification method for rapid direct detection and differentiation of nonpathogenic and verocytotoxigenic Escherichia coli in beef and bovine faeces. J. Appl. Microbiol. 122, 817–828. https://doi.org/10.1111/jam.13381 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, F., Jiang, L. & Ge, B. Loop-mediated isothermal amplification assays for detecting shiga toxin-producing Escherichia coli in ground beef and human stools. J. Clin. Microbiol. 50, 91–97. https://doi.org/10.1128/jcm.05612-11 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, F., Yang, Q., Qu, Y., Meng, J. & Ge, B. Evaluation of a loop-mediated isothermal amplification suite for the rapid, reliable, and robust detection of Shiga toxin-producing Escherichia coli in produce. Appl. Environ. Microbiol. 80, 2516–2525. https://doi.org/10.1128/aem.04203-13 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takano, C. et al. Development of a Novel Loop-mediated isothermal amplification method to detect Guiana extended-spectrum (GES) β-Lactamase genes in Pseudomonas aeruginosa. Front. Microbiol. 10, 25. https://doi.org/10.3389/fmicb.2019.00025 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, S. & Ge, B. Development of a toxr-based loop-mediated isothermal amplification assay for detecting Vibrio parahaemolyticus. BMC Microbiol. 10 https://doi.org/10.1186/1471-2180-10-41 (2010).

  • SICASYS. Spotxel® Reader: Plate Reader & Microarray Image Analysis, (2021). https://www.sicasys.de/spotxel-reader/

  • Ali, E. E., Chew, L. & Yap, K. Y. L. Evolution and current status of mhealth research: A systematic review. BMJ INNOV. 2, 33–40. https://doi.org/10.1136/bmjinnov-2015-000096 (2016).

    Article 

    Google Scholar
     

  • Ma, X. M. et al. Self-assembled microfiber-like biohydrogel for ultrasensitive whole-cell electrochemical biosensing in microdroplets. Anal. Chem. 95, 2628–2632. https://doi.org/10.1021/acs.analchem.2c05155 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blair, E. O. & Corrigan, D. K. A review of microfabricated electrochemical biosensors for DNA detection. Biosens 134, 57–67. https://doi.org/10.1016/j.bios.2019.03.055 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Qi, H., Yue, S., Bi, S., Ding, C. & Song, W. Isothermal exponential amplification techniques: From basic principles to applications in electrochemical biosensors. Biosens 110, 207–217. https://doi.org/10.1016/j.bios.2018.03.065 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, Z. et al. Advancements in electrochemical biosensing for respiratory virus detection: A review. Trends Analyt Chem. 139, 116253. https://doi.org/10.1016/j.trac.2021.116253 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hsieh, K., Patterson, A. S., Ferguson, B. S., Plaxco, K. W. & Soh, H. T. Rapid, sensitive, and quantitative detection of pathogenic DNA at the point of care through microfluidic electrochemical quantitative loop-mediated isothermal amplification. Angew. Chem. Int. Ed. Engl. 51, 4896–4900. https://doi.org/10.1002/anie.201109115 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pandey, R. et al. Electrochemical DNAzyme-based biosensors for disease diagnosis. Biosens 224, 114983. https://doi.org/10.1016/j.bios.2022.114983 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wu, Y., Ali, S. & White, R. J. Use of electrocatalysis for differentiating DNA polymorphisms and enhancing the sensitivity of electrochemical nucleic acid-based sensors with covalent redox tags—part II. ACS Sens. 5, 3842–3849. https://doi.org/10.1021/acssensors.0c02363 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rabti, A., Zayani, R., Meftah, M., Salhi, I. & Raouafi, N. Impedimetric DNA E-biosensor for multiplexed sensing of Escherichia coli and its virulent f17 strains. Microchim. Acta. 187, 1–9. https://doi.org/10.1007/s00604-020-04614-y (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wasiewska, L. A. et al. Electrochemical nucleic acid-based sensors for detection of Escherichia coli and Shiga toxin‐producing E. Coli—Review of the recent developments. Compr. Rev. Food Sci. Food Saf. 22, 1839–1863. https://doi.org/10.1111/1541-4337.13132 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Y., Lu, B., Tang, Y., Du, Y. & Li, B. Real-time gene analysis based on a portable electrochemical microfluidic system. Electrochem. Commun. 111, 106665. https://doi.org/10.1016/j.elecom.2020.106665 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zambry, N. S. et al. A label-free electrochemical DNA biosensor used a printed circuit board gold electrode (PCBGE) to detect SARS-CoV-2 without amplification. Lab. Chip. 23, 1622–1636. https://doi.org/10.1039/D2LC01159J (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fu, Y. et al. A LAMP-based ratiometric electrochemical sensing for ultrasensitive detection of Group B Streptococci with improved stability and accuracy. Sens. Actuators B Chem. 321, 128502. https://doi.org/10.1016/j.snb.2020.128502 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kampeera, J. et al. Point-of-care rapid detection of Vibrio parahaemolyticus in seafood using loop-mediated isothermal amplification and graphene-based screen-printed electrochemical sensor. Biosens 132, 271–278. https://doi.org/10.1016/j.bios.2019.02.060 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Fu, J., Chiang, E. L. C., Medriano, C. A. D., Li, L. & Bae, S. Rapid quantification of fecal indicator bacteria in water using the most probable number-loop-mediated isothermal amplification (MPN-LAMP) approach on a polymethyl methacrylate (PMMA) microchip. Water Res. 199, 117172. https://doi.org/10.1016/j.watres.2021.117172 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mori, Y., Nagamine, K., Tomita, N. & Notomi, T. Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation. Biochem 289, 150–154. https://doi.org/10.1006/bbrc.2001.5921 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Tomita, N., Mori, Y., Kanda, H. & Notomi, T. Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nat. Protoc. 3, 877–882. https://doi.org/10.1038/nprot.2008.57 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goto, M., Honda, E., Ogura, A., Nomoto, A. & Hanaki, K. Colorimetric detection of loop-mediated isothermal amplification reaction by using hydroxy naphthol blue. BioTechniques 46, 167–172. https://doi.org/10.2144/000113072 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Szobi, A. et al. Vivid COVID-19 LAMP is an ultrasensitive, quadruplexed test using LNA-modified primers and a zinc ion and 5-Br-PAPS colorimetric detection system. Commun. Biol. 6, 233. https://doi.org/10.1038/s42003-023-04612-9 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choi, G., Moehling, T. J. & Meagher, R. J. Advances in RT-LAMP for COVID-19 testing and diagnosis. Expert Rev. Mol. Diagn. 23, 1–21. https://doi.org/10.1080/14737159.2023.2169071 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Z., Yao, C., Wang, Y. & Yang, C. A G-quadruplex DNAzyme-based LAMP biosensing platform for a novel colorimetric detection of Listeria monocytogenes. Anal. Methods. 10, 848–854. https://doi.org/10.1039/C7AY02908J (2018).

    Article 

    Google Scholar
     

  • Zhu, L. et al. A facile cascade signal amplification strategy using DNAzyme loop-mediated isothermal amplification for the ultrasensitive colorimetric detection of Salmonella. Sens. Actuators B Chem. 242, 880–888. https://doi.org/10.1016/j.snb.2016.09.169 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Song, J. et al. Smartphone-based SARS-CoV-2 and variants detection system using colorimetric DNAzyme reaction triggered by Loop-mediated isothermal amplification (LAMP) with clustered regularly interspaced short palindromic repeats (CRISPR). ACS Nano. 16, 11300–11314. https://doi.org/10.1021/acsnano.2c04840 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poimenidou, S. V. et al. Effect of single or combined chemical and natural antimicrobial interventions on Escherichia coli O157: H7, total microbiota and color of packaged spinach and lettuce. Int. J. Food Microbiol.. 220, 6–18. https://doi.org/10.1016/j.ijfoodmicro.2015.12.013 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Silverman, S. K. & Catalytic, D. N. A. Scope, applications, and biochemistry of deoxyribozymes. Trends Biochem. Sci. 41, 595–609. https://doi.org/10.1016/j.tibs.2016.04.010 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Travascio, P., Li, Y. & Sen, D. DNA-enhanced peroxidase activity of a DNA-aptamer-hemin complex. Chem. Biol. 5, 505–517. https://doi.org/10.1016/s1074-5521(98)90006-0 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marangoni, J. M., Ng, K. K. S. & Emadi, A. Strategies for the voltammetric detection of loop-mediated isothermal amplification. Micromachines 14, 472. https://doi.org/10.3390/mi14020472 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hatate, K. et al. Electrochemical detection of serum antibodies against mycobacterium avium subspecies paratuberculosis. Front. Vet. Sci. 8, 642833. https://doi.org/10.3389/fvets.2021.642833 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, S. C., Chen, K. T. & Jou, A. F. J. Polydopamine-gold composite-based electrochemical biosensor using dual-amplification strategy for detecting pancreatic cancer-associated microRNA. Biosens 173, 112815. https://doi.org/10.1016/j.bios.2020.112815 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Gao, X. et al. Construction of a dual-model aptasensor based on G-quadruplexes generated via rolling circle amplification for visual/sensitive detection of kanamycin. Sci. Total Environ. 839, 156276. https://doi.org/10.1016/j.scitotenv.2022.156276 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, Y. L., Gao, Z. F., Luo, H. Q. & Li, N. B. Sensitive detection of HIV gene by coupling exonuclease III-assisted target recycling and guanine nanowire amplification. Sens. Actuators B Chem. 238, 1017–1023. https://doi.org/10.1016/j.snb.2016.07.144 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yu, Y. et al. Ultrasensitive electrochemical detection of avian influenza A (H7N9) virus DNA based on isothermal exponential amplification coupled with hybridization chain reaction of DNAzyme nanowires. Biosens 64, 566–571. https://doi.org/10.1016/j.bios.2014.09.080 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, R. et al. A label-free electrochemical platform for the detection of antibiotics based on cascade enzymatic amplification coupled with a split G-quadruplex DNAzyme. Analyst 144, 4995–5002. https://doi.org/10.1039/C9AN00857H (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Guan, Z. et al. Dual targets-induced specific hemin/G-quadruplex assemblies for label-free electrochemical detection capable of distinguishing Salmonella and its common serotype in food samples. Biosens 236, 115438. https://doi.org/10.1016/j.bios.2023.115438 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Yang, Z. et al. Ultrasensitive detection of methicillin-resistant Staphylococcus aureus using a T7 exonuclease-assisted PAM-free dual CRISPR-Cas12a biosensor. Sens. Actuators B Chem. 396, 134568. https://doi.org/10.1016/j.snb.2023.134568 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Zheng, T. et al. A portable, battery-powered photoelectrochemical aptasesor for field environment monitoring of E. Coli O157:H7. Sens. Actuators B Chem. 346 https://doi.org/10.1016/j.snb.2021.130520 (2021).

  • Dangerfield, T. L., Paik, I., Bhadra, S., Johnson, K. A. & Ellington, A. D. Kinetics of elementary steps in loop-mediated isothermal amplification (LAMP) show that strand invasion during initiation is rate-limiting. Nucleic Acids Res. 51, 488–499. https://doi.org/10.1093/nar/gkac1221 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mirazizi, F. et al. Rapid and direct spectrophotometric method for kinetics studies and routine assay of peroxidase based on aniline diazo substrates. J. Enzyme Inhib. Med. Chem. 31, 1162–1169. https://doi.org/10.3109/14756366.2015.1103234 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chang, T. et al. Activity enhancement of G-Quadruplex/Hemin DNAzyme by flanking d(CCC). Chem. Eur. J. 22, 4015–4021. https://doi.org/10.1002/chem.201504797 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bergua, J. F. et al. Low-cost, user-friendly, all-integrated smartphone-based microplate reader for optical-based biological and chemical analyses. Anal. Chem. 94, 1271–1285. https://doi.org/10.1021/acs.analchem.1c04491 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mirhosseini, S. et al. A digital image colorimetry system based on smart devices for immediate and simultaneous determination of enzyme-linked immunosorbent assays. Sci. Rep. 14, 2587. https://doi.org/10.1038/s41598-024-52931-6 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sivapalasingam, S., Friedman, C. R., Cohen, L. & Tauxe, R. V. Fresh produce: A growing cause of outbreaks of foodborne illness in the United States, 1973 through 1997. J. Food Prot. 67, 2342–2353. https://doi.org/10.4315/0362-028x-67.10.2342 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Cheng, F. F. et al. Target-triggered triple isothermal cascade amplification strategy for ultrasensitive microRNA-21 detection at sub-attomole level. Biosens 85, 891–896. https://doi.org/10.1016/j.bios.2016.06.008 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Yuan, Y. et al. A signal cascade amplification strategy based on RT-PCR triggering of a G-quadruplex DNAzyme for a novel electrochemical detection of viable Cronobacter sakazakii. Analyst 145, 4477–4483. https://doi.org/10.1039/D0AN00270D (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Q., Yao, C., Yang, C., Liu, Z. & Wan, S. Development of an in-situ signal amplified electrochemical assay for detection of Listeria monocytogenes with label-free strategy. Food Chem. 358, 129894. https://doi.org/10.1016/j.foodchem.2021.129894 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Broughton, J. P. et al. CRISPR–Cas12-based detection of SARS-CoV-2. Nat. Biotechnol. 38, 870–874. https://doi.org/10.1038/s41587-020-0513-4 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goode, J. A., Rushworth, J. V. H. & Millner, P. A. Biosensor regeneration: A review of common techniques and outcomes. Langmuir 31, 6267–6276. https://doi.org/10.1021/la503533g (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weagant, S. D., Jinneman, K. C., Yoshitomi, K. J., Zapata, R. & Fedio, W. M. Optimization and evaluation of a modified enrichment procedure combined with immunomagnetic separation for detection of E. Coli O157:H7 from artificially contaminated alfalfa sprouts. Int. J. Food Microbiol. 149, 209–217. https://doi.org/10.1016/j.ijfoodmicro.2011.06.008 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Dai, D., Holder, D., Raskin, L. & Xi, C. Separation of the bacterial species, Escherichia coli, from mixed-species microbial communities for transcriptome analysis. BMC Microbiol. 11, 1–8. https://doi.org/10.1186/1471-2180-11-59 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Xiao, B. et al. Integrating microneedle DNA extraction to hand-held microfluidic colorimetric LAMP chip system for meat adulteration detection. Food Chem. 411, 135508. https://doi.org/10.1016/j.foodchem.2023.135508 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kshirsagar, A. et al. Handheld purification-free nucleic acid testing device for point-of-need detection of Malaria from whole blood. ACS Sens. 8, 673–683. https://doi.org/10.1021/acssensors.2c02169 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhuvanendran Nair Gourikutty, S., Chang, C. P. & Puiu, P. D. Microfluidic immunomagnetic cell separation from whole blood. J. Chromatogr. B. 1011, 77–88. https://doi.org/10.1016/j.jchromb.2015.12.016 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Guo, P. L. et al. Combination of dynamic magnetophoretic separation and stationary magnetic trap for highly sensitive and selective detection of Salmonella typhimurium in complex matrix. Biosens 74, 628–636. https://doi.org/10.1016/j.bios.2015.07.019 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Hardinge, P. & Murray, J. A. Full dynamic range quantification using loop-mediated amplification (LAMP) by combining analysis of amplification timing and variance between replicates at low copy number. Sci. Rep. 10 https://doi.org/10.1038/s41598-020-57473-1 (2020).

  • Aoi, Y., Hosogai, M. & Tsuneda, S. Real-time quantitative LAMP (loop-mediated isothermal amplification of DNA) as a simple method for monitoring ammonia-oxidizing bacteria. J. Biotechnol. 125, 484–491. https://doi.org/10.1016/j.jbiotec.2006.04.007 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Francois, P. et al. Robustness of a loop-mediated isothermal amplification reaction for diagnostic applications. FEMS IMMUNOL. MED. MIC. 62, 41–48. https://doi.org/10.1111/j.1574-695X.2011.00785.x (2011).

    Article 
    CAS 

    Google Scholar
     

  • Peng, H. et al. DNAzyme-mediated assays for amplified detection of nucleic acids and proteins. Anal. Chem. 90, 190–207. https://doi.org/10.1021/acs.analchem.7b04926 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng, X., Liu, X., Bing, T., Cao, Z. & Shangguan, D. General peroxidase activity of G-quadruplex-hemin complexes and its application in ligand screening. Biochem 48, 7817–7823. https://doi.org/10.1021/bi9006786 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Dogan, B. et al. Adherent and invasive Escherichia coli are associated with persistent bovine mastitis. Vet. Microbiol. 116, 270–282. https://doi.org/10.1016/j.vetmic.2006.04.023 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hogan, J., Bogacz, V., Aslam, M. & Smith, K. Efficacy of an Escherichia coli J5 bacterin administered to primigravid heifers. J. Dairy. Sci. 82, 939–943. https://doi.org/10.3168/jds.S0022-0302(99)75312-9 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gelalcha, B. D., Gelgie, A. E. & Kerro Dego, O. Prevalence and antimicrobial resistance profiles of extended-spectrum beta-lactamase-producing Escherichia coli in East Tennessee dairy farms. Front. Vet. Sci. 10, 1260433. https://doi.org/10.3389/fvets.2023.1260433 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gelalcha, B. D., Mohammed, R. I. & Gelgie, A. E. Kerro Dego, O. Molecular epidemiology and pathogenomics of extended-spectrum beta-lactamase producing-Escherichia coli and-Klebsiella pneumoniae isolates from bulk tank milk in Tennessee, USA. Front. Microbiol. 14, 1283165. https://doi.org/10.3389/fmicb.2023.1283165 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marshall, K. E. et al. Lessons learned from a decade of investigations of Shiga toxin–producing Escherichia coli outbreaks linked to leafy greens, United States and Canada. Emerg. Infect. Dis. 26, 2319–2328. https://doi.org/10.3201/eid2610.191418 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miller, N. D., Davidson, P. M. & D’Souza, D. H. Real-time reverse-transcriptase PCR for Salmonella Typhimurium detection from lettuce and tomatoes. LWT 44, 1088–1097 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Kase, J. A., Borenstein, S., Blodgett, R. J. & Feng, P. C. H. Microbial quality of bagged baby spinach and romaine lettuce: Effects of top versus bottom sampling. J. Food Prot. 75, 132–136. https://doi.org/10.4315/0362-028X.JFP-11-097 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Ogunremi, D. et al. A new whole genome culture-independent diagnostic test (WG-CIDT) for rapid detection of salmonella in lettuce. Front. Microbiol. 11, 602. https://doi.org/10.3389/fmicb.2020.00602 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luciani, M. et al. Rapid detection and isolation of Escherichia coli O104:H4 from milk using monoclonal antibody-coated magnetic beads. Front. Microbiol. 7, 942. https://doi.org/10.3389/fmicb.2016.00942 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tietje, C. & Brouder, A. Handbook of Transnational Economic Governance Regimes (eds. Christian, B. & Tietje, A.) (Brill, Ninhoff, 2005).