Search
Close this search box.

Clinical applications of stem cell-derived exosomes – Signal Transduction and Targeted Therapy

  • Kimbrel, E. A. & Lanza, R. Next-generation stem cells – ushering in a new era of cell-based therapies. Nat. Rev. Drug. Discov. 19, 463–479 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Puri, M. C. & Nagy, A. Concise review: embryonic stem cells versus induced pluripotent stem cells: the game is on. Stem Cells. 30, 10–14 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ng, A. P. & Alexander, W. S. Haematopoietic stem cells: past, present and future. Cell Death Discov. 3, 17002 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Naji, A. et al. Biological functions of mesenchymal stem cells and clinical implications. Cell Mol. Life Sci. 76, 3323–3348 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tang, Y., Yu, P. & Cheng, L. Current progress in the derivation and therapeutic application of neural stem cells. Cell Death Dis. 8, e3108 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chambers, S. E. J. et al. Current concepts on endothelial stem cells definition, location, and markers. Stem Cells Transl. Med. 10, S54–S61 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoang, D. M. et al. Stem cell-based therapy for human diseases. Signal Transduct. Target Ther. 7, 272 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zakrzewski, W., Dobrzynski, M., Szymonowicz, M. & Rybak, Z. Stem cells: past, present, and future. Stem Cell Res. Ther. 10, 68 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, K. & Cheng, K. Stem cell-derived exosome versus stem cell therapy. Nat. Rev. Bioeng. 1, 608–609 (2023).

    Article 

    Google Scholar
     

  • Zhang, Y. et al. Exosome: A Review Of Its Classification, Isolation Techniques, Storage, Diagnostic And Targeted Therapy Applications. Int. J. Nanomed. 15, 6917–6934 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Vizoso, F. J. et al. Mesenchymal stem cell secretome: toward cell-free therapeutic strategies in regenerative medicine. Int. J. Mol. Sci. 18, 1852–1875 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ren, K. Exosomes in perspective: a potential surrogate for stem cell therapy. Odontology. 107, 271–284 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Hastuti, S. et al. hUMSC vs. hUMSC-Exosome: which one is better for epilepsy? Pharmaceuticals. 15, 1247–1261 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carr, N. J. The pathology of healing and repair. Surgery 40, 13–19 (2022).


    Google Scholar
     

  • Peshkova, M. et al. Targeting inflammation and regeneration: scaffolds, extracellular vesicles, and nanotechnologies as cell-free dual-target therapeutic strategies. Int. J. Mol. Sci. 23, 13796–13813 (2022).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Wang, H., Huber, C. C. & Li, X. P. Mesenchymal and neural stem cell-derived exosomes in treating alzheimeras disease. Bioengineering 10, 253–266 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, X. et al. Neural stem/progenitor cell-derived extracellular vesicles: a novel therapy for neurological diseases and beyond. MedComm 4, e214 (2023).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Norouzi-Barough, L., Shirian, S., Gorji, A. & Sadeghi, M. Therapeutic potential of mesenchymal stem cell-derived exosomes as a cell-free therapy approach for the treatment of skin, bone, and cartilage defects. Connect Tissue Res. 63, 83–96 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Doyle, L. M. & Wang, M. Z. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells. 8, 727–750 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pegtel, D. M. & Gould, S. J. Exosomes. Annu. Rev. Biochem. 88, 487–514 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gurung, S., Perocheau, D., Touramanidou, L. & Baruteau, J. The exosome journey: from biogenesis to uptake and intracellular signalling. Cell Commun. Signal. 19, 47 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y., Liu, Y., Liu, H. & Tang, W. H. Exosomes: biogenesis, biologic function and clinical potential. Cell Biosci. 9, 19 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gholami Farashah, M. S. et al. Bone marrow mesenchymal stem cell’s exosomes as key nanoparticles in osteogenesis and bone regeneration: specific capacity based on cell type. Mol. Biol. Rep. 49, 12203–12218 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qing, L., Chen, H., Tang, J. & Jia, X. Exosomes and their MicroRNA cargo: new players in peripheral nerve regeneration. Neurorehabilit. Neural Repair. 32, 765–776 (2018).

    Article 

    Google Scholar
     

  • Kwok, Z. H., Wang, C. & Jin, Y. Extracellular vesicle transportation and uptake by recipient cells: a critical process to regulate human diseases. Processes 9, 273–294 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kimiz-Gebologlu, I. & Oncel, S. S. Exosomes: large-scale production, isolation, drug loading efficiency, and biodistribution and uptake. J. Control Release 347, 533–543 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hamzah, R. N., Alghazali, K. M., Biris, A. S. & Griffin, R. J. Exosome traceability and cell source dependence on composition and cell-cell cross talk. Int. J. Mol. Sci. 22, 5346–5362 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, M. et al. Exosomes from different cells: characteristics, modifications, and therapeutic applications. Eur. J. Med. Chem. 207, 112784 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shan, X. et al. The biogenesis, biological functions, and applications of macrophage-derived exosomes. Front. Mol. Biosci. 8, 715461 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Y. et al. Macrophage-derived extracellular vesicles: diverse mediators of pathology and therapeutics in multiple diseases. Cell Death Dis. 11, 924 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, J., Wu, F. & Zhou, H. Macrophage-derived exosomes in cancers: biogenesis, functions and therapeutic applications. Immunol. Lett. 227, 102–108 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Elashiry, M., Elsayed, R. & Cutler, C. W. Exogenous and endogenous dendritic cell-derived exosomes: lessons learned for immunotherapy and disease pathogenesis. Cells. 11, 115–136 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pitt, J. M. et al. Dendritic cell-derived exosomes for cancer therapy. J Clin Investig. 126, 1224–1232 (2016).

    Article 
    PubMed Central 

    Google Scholar
     

  • Kok, V. C. & Yu, C. C. Cancer-derived exosomes: their role in cancer biology and biomarker development. Int. J. Nanomed. 15, 8019–8036 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Naseri, M. et al. Tumor-derived exosomes: the next generation of promising cell-free vaccines in cancer immunotherapy. Oncoimmunology 9, 1779991 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kluszczynska, K. et al. Methods for the determination of the purity of exosomes. Curr. Pharm. Des. 25, 4464–4485 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, B. et al. Application of exosomes as liquid biopsy in clinical diagnosis. Signal Transduct Target Ther. 5, 144 (2020).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Boukouris, S. & Mathivanan, S. Exosomes in bodily fluids are a highly stable resource of disease biomarkers. Proteomics Clin. Appl. 9, 358–367 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gurunathan, S. et al. Review of the isolation, characterization, biological function, and multifarious therapeutic approaches of exosomes. Cells. 8, 307–342 (2019).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Bei, H. P. et al. Bone-a-Petite: engineering exosomes towards Bone, osteochondral, and cartilage repair. Small. 17, e2101741 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Yang, X. X., Sun, C., Wang, L. & Guo, X. L. New insight into isolation, identification techniques and medical applications of exosomes. J. Control Release 308, 119–129 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kalluri, R. & LeBleu, V. S. The biology, function, and biomedical applications of exosomes. Science. 367, 640–654 (2020).

    Article 

    Google Scholar
     

  • Li, X. et al. Challenges and opportunities in exosome research-Perspectives from biology, engineering, and cancer therapy. APL Bioeng. 3, 011503 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khayambashi, P. et al. Hydrogel encapsulation of mesenchymal stem cells and their derived exosomes for tissue engineering. Int. J. Mol. Sci. 22, 684–698 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hussen, B. M. et al. Strategies to overcome the main challenges of the use of exosomes as drug carrier for cancer therapy. Cancer Cell Int. 22, 323 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shao, J., Zaro, J. & Shen, Y. Advances in exosome-based drug delivery and tumor targeting: from tissue distribution to intracellular fate. Int. J. Nanomed. 15, 9355–9371 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Tian, Y. et al. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials 35, 2383–2390 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Kim, M. S. et al. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine 12, 655–664 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ohno, S. et al. Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Mol. Ther. 21, 185–191 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alvarez-Erviti, L. et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol. 29, 341–345 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, Q. et al. Embryonic stem cells-derived exosomes endowed with targeting properties as chemotherapeutics delivery vehicles for glioblastoma therapy. Adv. Sci. 6, 1801899 (2019).

    Article 

    Google Scholar
     

  • Nakase, I. & Futaki, S. Combined treatment with a pH-sensitive fusogenic peptide and cationic lipids achieves enhanced cytosolic delivery of exosomes. Sci. Rep. 5, 10112 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, Y., Deng, W. & Klinke, D. J. 2nd Exosomes: improved methods to characterize their morphology, RNA content, and surface protein biomarkers. Analyst. 140, 6631–6642 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maas, S. L. et al. Possibilities and limitations of current technologies for quantification of biological extracellular vesicles and synthetic mimics. J. Control Release. 200, 87–96 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thery, C. et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell Vesicles. 7, 1535750 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Witwer, K. W. et al. Updating MISEV: evolving the minimal requirements for studies of extracellular vesicles. J. Extracell Vesicles. 10, e12182 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maroto, R. et al. Effects of storage temperature on airway exosome integrity for diagnostic and functional analyses. J. Extracell Vesicles. 6, 1359478 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yamashita, T., Takahashi, Y. & Takakura, Y. Possibility of exosome-based therapeutics and challenges in production of exosomes eligible for therapeutic application. Biol. Pharm. Bull. 41, 835–842 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bosch, S. et al. Trehalose prevents aggregation of exosomes and cryodamage. Sci. Rep. 6, 36162 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Charoenviriyakul, C., Takahashi, Y., Nishikawa, M. & Takakura, Y. Preservation of exosomes at room temperature using lyophilization. Int. J. Pharm. 553, 1–7 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kusuma, G. D. et al. To protect and to preserve: novel preservation strategies for extracellular vesicles. Front. Pharmacol. 9, 1199 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bahney, C. S. et al. Cellular biology of fracture healing. J. Orthop. Res. 37, 35–50 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Einhorn, T. A. & Gerstenfeld, L. C. Fracture healing: mechanisms and interventions. Nat. Rev. Rheumatol. 11, 45–54 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Yang, Z. et al. Exosomes: a friend or foe for osteoporotic fracture? Front. Endocrinol. 12, 679914 (2021).

    Article 

    Google Scholar
     

  • Furuta, T. et al. Mesenchymal stem cell-derived exosomes promote fracture healing in a mouse model. Stem Cells Transl. Med. 5, 1620–1630 (2016).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Zhang, L. et al. Exosomes from bone marrow mesenchymal stem cells enhance fracture healing through the promotion of osteogenesis and angiogenesis in a rat model of nonunion. Stem Cell Res. Ther. 11, 38 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jia, Y. et al. Exosomes secreted by young mesenchymal stem cells promote new bone formation during distraction osteogenesis in older rats. Calcif. Tissue Int. 106, 509–517 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jia, Y. et al. Exosomes secreted by endothelial progenitor cells accelerate bone regeneration during distraction osteogenesis by stimulating angiogenesis. Stem Cell Res. Ther. 10, 12 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Brien, K. et al. RNA delivery by extracellular vesicles in mammalian cells and its applications. Nat. Rev. Mol. Cell Biol. 21, 585–606 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, H., Zhang, J., Liu, X. & Li, Y. microRNA-136-5p from bone marrow mesenchymal stem cell-derived exosomes facilitates fracture healing by targeting LRP4 to activate the Wnt/beta-catenin pathway. Bone Joint Res. 10, 744–758 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, Y., Zhang, J., Li, Z. & Jia, G. Bone marrow mesenchymal stem cell-derived exosomal miR-25 regulates the ubiquitination and degradation of Runx2 by SMURF1 to promote fracture healing in mice. Front. Med. 7, 577578 (2020).

    Article 

    Google Scholar
     

  • Wang, Y. et al. Obesity regulates miR-467/HoxA10 axis on osteogenic differentiation and fracture healing by BMSC-derived exosome LncRNA H19. J. Cell Mol. Med. 25, 1712–1724 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Behera, J., Kumar, A., Voor, M. J. & Tyagi, N. Exosomal lncRNA-H19 promotes osteogenesis and angiogenesis through mediating Angpt1/Tie2-NO signaling in CBS-heterozygous mice. Theranostics. 11, 7715–7734 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang, B. et al. Dimethyloxaloylglycine-stimulated human bone marrow mesenchymal stem cell-derived exosomes enhance bone regeneration through angiogenesis by targeting the AKT/mTOR pathway. Stem Cell Res. Ther. 10, 335 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, G. D., Cheng, P., Liu, T. & Wang, Z. BMSC-derived exosomal miR-29a promotes angiogenesis and osteogenesis. Front. Cell Dev. Biol. 8, 608521 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, W. et al. Hypoxic mesenchymal stem cell-derived exosomes promote bone fracture healing by the transfer of miR-126. Acta Biomater. 103, 196–212 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Katz, J. N., Arant, K. R. & Loeser, R. F. Diagnosis and treatment of hip and knee osteoarthritis: a review. JAMA. 325, 568–578 (2021).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Martel-Pelletier, J. et al. Osteoarthritis. Nat. Rev. Dis. Primers. 2, 16072 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Wu, J. et al. miR-100-5p-abundant exosomes derived from infrapatellar fat pad MSCs protect articular cartilage and ameliorate gait abnormalities via inhibition of mTOR in osteoarthritis. Biomaterials 206, 87–100 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Y. et al. MSC-derived exosomes promote proliferation and inhibit apoptosis of chondrocytes via lncRNA-KLF3-AS1/miR-206/GIT1 axis in osteoarthritis. Cell Cycle. 17, 2411–2422 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kong, R. et al. Synovial mesenchymal stem cell-derived exosomal miR-320c enhances chondrogenesis by targeting ADAM19. Future Med. Chem. 14, 81–96 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mao, G. et al. Exosomes derived from miR-92a-3p-overexpressing human mesenchymal stem cells enhance chondrogenesis and suppress cartilage degradation via targeting WNT5A. Stem Cell Res. Ther. 9, 247 (2018).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Tao, S. C. et al. Exosomes derived from miR-140-5p-overexpressing human synovial mesenchymal stem cells enhance cartilage tissue regeneration and prevent osteoarthritis of the knee in a rat model. Theranostics 7, 180–195 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, R., Xu, B. & Xu, H. TGF-β1 promoted chondrocyte proliferation by regulating Sp1 through MSC-exosomes derived miR-135b. Cell Cycle 17, 2756–2765 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, Y. et al. Comparison of exosomes secreted by induced pluripotent stem cell-derived mesenchymal stem cells and synovial membrane-derived mesenchymal stem cells for the treatment of osteoarthritis. Stem Cell Res. Ther. 8, 64 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, K., Jiang, T., Chen, Y. & Mao, X. Mesenchymal stem cell-derived exosomes modulate chondrocyte glutamine metabolism to alleviate osteoarthritis progression. Mediat. Inflamm. 2021, 2979124 (2021).

    Article 

    Google Scholar
     

  • Huang, Y. et al. Bone marrow mesenchymal stem cell-derived exosomal miR-206 promotes osteoblast proliferation and differentiation in osteoarthritis by reducing Elf3. J. Cell Mol. Med. 25, 7734–7745 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, S. et al. MSC exosomes mediate cartilage repair by enhancing proliferation, attenuating apoptosis and modulating immune reactivity. Biomaterials. 156, 16–27 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tian, X. et al. Gingival mesenchymal stem cell-derived exosomes are immunosuppressive in preventing collagen-induced arthritis. J. Cell Mol. Med. 26, 693–708 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Cho, Y. et al. Disease-modifying therapeutic strategies in osteoarthritis: current status and future directions. Exp. Mol. Med. 53, 1689–1696 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ding, W. et al. Spinal cord injury: the global incidence, prevalence, and disability from the global burden of disease Study 2019. Spine 47, 1532–1540 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahuja, C. S. et al. Traumatic spinal cord injury. Nat. Rev. Dis. Primers. 3, 17018 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Ahuja, C. S. & Fehlings, M. Concise review: bridging the gap: novel neuroregenerative and neuroprotective strategies in spinal cord injury. Stem Cells Transl. Med. 5, 914–924 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, K. et al. Insulin-like growth factor-1 enhances neuroprotective effects of neural stem cell exosomes after spinal cord injury via an miR-219a-2-3p/YY1 mechanism. Aging 11, 12278–12294 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, L. & Han, P. Neural stem cell-derived exosomes suppress neuronal cell apoptosis by activating autophagy via miR-374-5p/STK-4 axis in spinal cord injury. J. Musculoskelet. Neuronal Interact. 22, 411–421 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shao, C. et al. Mesenchymal stem cell derived exosomes suppress neuronal cell ferroptosis Via lncGm36569/miR-5627-5p/FSP1 axis in acute spinal cord injury. Stem Cell Rev. Rep. 18, 1127–1142 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nakazaki, M. et al. Small extracellular vesicles released by infused mesenchymal stromal cells target M2 macrophages and promote TGF-beta upregulation, microvascular stabilization and functional recovery in a rodent model of severe spinal cord injury. J. Extracell Vesicles. 10, e12137 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, W. et al. Exosome-shuttled miR-216a-5p from hypoxic preconditioned mesenchymal stem cells repair traumatic spinal cord injury by shifting microglial M1/M2 polarization. J. Neuroinflamm. 17, 47 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Huang, J. H. et al. Extracellular vesicles derived from epidural fat-mesenchymal stem cells attenuate NLRP3 inflammasome activation and improve functional recovery after spinal cord injury. Neurochem. Res. 45, 760–771 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuan, F. et al. Endothelial progenitor cell-derived exosomes promote anti-inflammatory macrophages via SOCS3/JAK2/STAT3 axis and improve the outcome of spinal cord injury. J. Neuroinflamm. 20, 156 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Zhong, D. et al. Neural stem cell-derived exosomes facilitate spinal cord functional recovery after injury by promoting angiogenesis. Exp. Biol. Med. 245, 54–65 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Chen, J. et al. Exosomes derived from nerve stem cells loaded with FTY720 promote the recovery after spinal cord injury in rats by PTEN/AKT signal pathway. J. Immunol. Res. 2021, 8100298 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, S. et al. Versatile subtypes of pericytes and their roles in spinal cord injury repair, bone development and repair. Bone Res. 10, 30 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, Y. et al. Exosomes derived from bone marrow mesenchymal stem cells protect the injured spinal cord by inhibiting pericyte pyroptosis. Neural Regen. Res. 17, 194–202, (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lai, X. et al. miR-146a-5p-modified hUCMSC-derived exosomes facilitate spinal cord function recovery by targeting neurotoxic astrocytes. Stem Cell Res. Ther. 13, 487 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, S. et al. Exosomes derived from NGF-overexpressing bone marrow mesenchymal stem cell sheet promote spinal cord injury repair in a mouse model. Neurochem. Int. 157, 105339 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, W. et al. Exosomes derived from human placental mesenchymal stem cells enhanced the recovery of spinal cord injury by activating endogenous neurogenesis. Stem Cell Res. Ther. 12, 174 (2021).

    Article 
    PubMed Central 

    Google Scholar
     

  • Perez, N. E. et al. Neurogenic bladder physiology, pathogenesis, and management after spinal cord injury. J. Pers. Med. 12, 968–982 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vila Pouca, M. C. P., Parente, M. P. L., Jorge, R. M. N. & Ashton-Miller, J. A. Injuries in muscle-tendon-bone units: a systematic review considering the role of passive tissue fatigue. Orthop. J. Sports Med. 9, 23259671211020731 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thomopoulos, S., Parks, W. C., Rifkin, D. B. & Derwin, K. A. Mechanisms of tendon injury and repair. J. Orthop. Res. 33, 832–839 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakamura, Y. et al. Mesenchymal-stem-cell-derived exosomes accelerate skeletal muscle regeneration. FEBS Lett. 589, 1257–1265 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, S. H. et al. Extracellular vesicles of adipose-derived stem cells promote the healing of traumatized achilles tendons. Int. J. Mol. Sci. 22, 12373–12388 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brindisino, F. et al. Rotator cuff repair vs. nonoperative treatment: a systematic review with meta-analysis. J. Shoulder Elbow Surg. 30, 2648–2659 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, C. et al. Exosomes isolated from adipose-derived stem cells: a new cell-free approach to prevent the muscle degeneration associated with torn rotator cuffs. Am. J. Sports Med. 47, 3247–3255 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, C. et al. Adipose stem cell-derived exosomes decrease fatty infiltration and enhance rotator cuff healing in a rabbit model of chronic tears. Am. J. Sports Med. 48, 1456–1464 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Huang, Y. et al. Bone marrow mesenchymal stem cell-derived exosomes promote rotator cuff tendon-bone healing by promoting angiogenesis and regulating M1 macrophages in rats. Stem Cell Res. Ther. 11, 496 (2020).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Compston, J. E., McClung, M. R. & Leslie, W. D. Osteoporosis. Lancet 393, 364–376 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ren, L. et al. Adipose mesenchymal stem cell-derived exosomes ameliorate hypoxia/serum deprivation-induced osteocyte apoptosis and osteocyte-mediated osteoclastogenesis in vitro. Biochem. Biophys. Res. Commun. 508, 138–144 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Yang, B. C. et al. Human umbilical cord mesenchymal stem cell-derived exosomes act via the miR-1263/Mob1/Hippo signaling pathway to prevent apoptosis in disuse osteoporosis. Biochem. Biophys. Res. Commun. 524, 883–889 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yahao, G. & Xinjia, W. The role and mechanism of exosomes from umbilical cord mesenchymal stem cells in inducing osteogenesis and preventing osteoporosis. Cell Transplant. 30, 9636897211057465 (2021).

    Article 

    Google Scholar
     

  • Gordon, T. Peripheral nerve regeneration and muscle reinnervation. Int. J. Mol. Sci. 21, 8652–8675 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bucan, V. et al. Effect of exosomes from rat adipose-derived mesenchymal stem cells on neurite outgrowth and sciatic nerve regeneration after crush injury. Mol. Neurobiol. 56, 1812–1824 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, J. et al. Exosomes from human adipose-derived stem cells promote sciatic nerve regeneration via optimizing Schwann cell function. J. Cell Physiol. 234, 23097–23110 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Li, C. et al. Exosomes from LPS-preconditioned bone marrow MSCs accelerated peripheral nerve regeneration via M2 macrophage polarization: involvement of TSG-6/NF-kappaB/NLRP3 signaling pathway. Exp. Neurol. 356, 114139 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fine, N. et al. Intervertebral disc degeneration and osteoarthritis: a common molecular disease spectrum. Nat. Rev. Rheumatol. 19, 136–152 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Cheng, X. et al. Mesenchymal stem cells deliver exogenous miR-21 via exosomes to inhibit nucleus pulposus cell apoptosis and reduce intervertebral disc degeneration. J. Cell Mol. Med. 22, 261–276 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, Y. et al. Human embryonic stem-cell-derived exosomes repress NLRP3 inflammasome to alleviate pyroptosis in nucleus pulposus cells by transmitting miR-302c. Int. J. Mol. Sci. 24, 7664–7678 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, Y. et al. Exosomes derived from bone mesenchymal stem cells alleviate compression-induced nucleus pulposus cell apoptosis by inhibiting oxidative stress. Oxid. Med. Cell Longev. 2021, 2310025 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Petek, D., Hannouche, D. & Suva, D. Osteonecrosis of the femoral head: pathophysiology and current concepts of treatment. EFORT Open Rev. 4, 85–97 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, X. et al. Exosomes secreted from human-induced pluripotent stem cell-derived mesenchymal stem cells prevent osteonecrosis of the femoral head by promoting angiogenesis. Int. J. Biol. Sci. 13, 232–244 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zuo, R. et al. Exosomes derived from human CD34(+) stem cells transfected with miR-26a prevent glucocorticoid-induced osteonecrosis of the femoral head by promoting angiogenesis and osteogenesis. Stem Cell Res. Ther. 10, 321 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Campbell, B. C. V. & Khatri, P. Stroke. Lancet. 396, 129–142 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Campbell, B. C. V. et al. Ischaemic stroke. Nat. Rev. Dis. Primers. 5, 70 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Fisher, M. & Savitz, S. I. Pharmacological brain cytoprotection in acute ischaemic stroke — renewed hope in the reperfusion era. Nat. Rev. Neurol. 18, 193–202 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo, H. et al. miR-150-3p enhances neuroprotective effects of neural stem cell exosomes after hypoxic-ischemic brain injury by targeting CASP2. Neurosci. Lett. 779, 136635 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pan, J., Wu, T., Chen, B. & Wu, H. Exosomes derived from endothelial progenitor cells ameliorate glyoxylate deprivation (OGD)-induced neuronal apoptosis by delivering miR-221-3p. Histol. Histopathol. 38, 423–430 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Huang, R., Cheng, T. & Lai, X. Mechanism of ischemic brain injury repair by endothelial progenitor cell-derived exosomes. Mol. Med. Rep. 26, 269–278 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, G. et al. Exosomes derived from human neural stem cells stimulated by interferon gamma improve therapeutic ability in ischemic stroke model. J. Adv. Res. 24, 435–445 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kang, X. et al. Exosomes derived from hypoxic bone marrow mesenchymal stem cells rescue OGD-induced injury in neural cells by suppressing NLRP3 inflammasome-mediated pyroptosis. Exp. Cell Res. 405, 112635 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, W. Y. et al. Exosomes derived from human induced pluripotent stem cell-derived neural progenitor cells protect neuronal function under ischemic conditions. Neural Regen. Res. 16, 2064–2070, (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, X. et al. Stem cell-derived exosomes protect astrocyte cultures from in vitro ischemia and decrease injury as post-stroke intravenous therapy. Front. Cell Neurosci. 13, 394 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei, R. et al. Zeb2/Axin2-Enriched BMSC-Derived exosomes promote post-stroke functional recovery by enhancing neurogenesis and neural plasticity. J. Mol. Neurosci. 72, 69–81 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, J. et al. Exosomes from miRNA-126-modified endothelial progenitor cells alleviate brain injury and promote functional recovery after stroke. CNS Neurosci. Ther. 26, 1255–1265 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong, C. et al. Mesenchymal stem cell-derived exosomes improved cerebral infarction via transferring miR-23a-3p to activate microglia. Neuromol. Med. 24, 290–298 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Z. et al. Human umbilical cord mesenchymal stem cell-derived exosomal miR-146a-5p reduces microglial-mediated neuroinflammation via suppression of the IRAK1/TRAF6 signaling pathway after ischemic stroke. Aging 13, 3060–3079 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoon, E. J. et al. The neuroprotective effects of exosomes derived from TSG101-overexpressing human neural stem cells in a stroke model. Int. J. Mol. Sci. 23, 9532–9546 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tian, T. et al. Targeted delivery of neural progenitor cell-derived extracellular vesicles for anti-inflammation after cerebral ischemia. Theranostics 11, 6507–6521 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, G. et al. Induced neural stem/progenitor cell-derived extracellular vesicles promote recovery post-stroke. Clin. Transl. Med. 12, e936 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, Z. H. et al. Neural stem cell-derived exosome as a nano-sized carrier for BDNF delivery to a rat model of ischemic stroke. Neural Regen. Res. 18, 404–409, (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yerrapragada, S. M. et al. The protective effects of miR-210 modified endothelial progenitor cells released exosomes in hypoxia/reoxygenation injured neurons. Exp. Neurol. 358, 114211 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma, X. et al. Loading MiR-210 in endothelial progenitor cells derived exosomes boosts their beneficial effects on hypoxia/reoxygeneation-injured human endothelial cells via protecting mitochondrial function. Cell Physiol. Biochem. 46, 664–675 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pan, Q. et al. MiR-17-5p mediates the effects of ACE2-Enriched endothelial progenitor cell-derived exosomes on ameliorating cerebral ischemic injury in aged mice. Mol. Neurobiol. 60, 3534–3552 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, X. et al. Combination of EPC-EXs and NPC-EXs with miR-126 and miR-210 overexpression produces better therapeutic effects on ischemic stroke by protecting neurons through the Nox2/ROS and BDNF/TrkB pathways. Exp. Neurol. 359, 114235 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morotti, A. & Goldstein, J. N. Diagnosis and management of acute intracerebral hemorrhage. Emerg. Med. Clin. N. Am. 34, 883–899 (2016).

    Article 

    Google Scholar
     

  • Li, Y. et al. miR-137 boosts the neuroprotective effect of endothelial progenitor cell-derived exosomes in oxyhemoglobin-treated SH-SY5Y cells partially via COX2/PGE2 pathway. Stem Cell Res. Ther. 11, 330 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wiles, M. D. Management of traumatic brain injury: a narrative review of current evidence. Anaesthesia. 77, 102–112 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • McKee, A. C. & Daneshvar, D. H. The neuropathology of traumatic brain injury. Handb. Clin. Neurol. 127, 45–66 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Galgano, M. et al. Traumatic brain injury: current treatment strategies and future endeavors. Cell Transplant. 26, 1118–1130 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y. et al. Effect of exosomes derived from multipluripotent mesenchymal stromal cells on functional recovery and neurovascular plasticity in rats after traumatic brain injury. J. Neurosurg. 122, 856–867 (2015).

    Article 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y. et al. Systemic administration of cell-free exosomes generated by human bone marrow derived mesenchymal stem cells cultured under 2D and 3D conditions improves functional recovery in rats after traumatic brain injury. Neurochem. Int. 111, 69–81 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Moore, T. L. et al. Mesenchymal derived exosomes enhance recovery of motor function in a monkey model of cortical injury. Restor. Neurol. Neurosci. 37, 347–362 (2019).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Williams, A. M. et al. Mesenchymal stem cell-derived exosomes provide neuroprotection and improve long-term neurologic outcomes in a swine model of traumatic brain injury and hemorrhagic shock. J. Neurotrauma. 36, 54–60 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Chen, Y. et al. MSC-derived exosomes promote recovery from traumatic brain injury via microglia/macrophages in rat. Aging 12, 18274–18296 (2020).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Wen, L. et al. Exosomes derived from bone marrow mesenchymal stem cells inhibit neuroinflammation after traumatic brain injury. Neural Regen. Res. 17, 2717–2724, (2022).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Abedi, M., Hajinejad, M., Atabi, F. & Sahab-Negah, S. Exosome derived from human neural stem cells improves motor activity and neurogenesis in a traumatic brain injury model. Biomed. Res. Int. 2022, 6409346 (2022).

    Article 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y. et al. Mesenchymal stem cell-derived exosomes improve functional recovery in rats after traumatic brain injury: a dose-response and therapeutic window study. Neurorehabil. Neural Repair. 34, 616–626 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wallace, D. J. et al. Spinal cord injury and the human microbiome: beyond the brain-gut axis. Neurosurg. Focus. 46, E11 (2019).

    Article 

    Google Scholar
     

  • Kumar, S. et al. Transcriptional factors and protein biomarkers as target therapeutics in traumatic spinal cord and brain injury. Curr. Neuropharmacol. 18, 1092–1105 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mortezaee, K., Khanlarkhani, N., Beyer, C. & Zendedel, A. Inflammasome: its role in traumatic brain and spinal cord injury. J. Cell Physiol. 233, 5160–5169 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roselli, F., Karasu, E., Volpe, C. & Huber-Lang, M. Medusa’s head: the complement system in traumatic brain and spinal cord injury. J. Neurotrauma. 35, 226–240 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Putatunda, R., Bethea, J. R. & Hu, W. H. Potential immunotherapies for traumatic brain and spinal cord injury. Chin. J. Traumatol. 21, 125–136 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bains, M. & Hall, E. D. Antioxidant therapies in traumatic brain and spinal cord injury. Biochim. Biophys. Acta. 1822, 675–684 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuan, J. et al. Role of circular ribonucleic acids in the treatment of traumatic brain and spinal cord injury. Mol. Neurobiol. 57, 4296–4304 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, P. et al. MicroRNA-based therapeutics in central nervous system injuries. J. Cereb. Blood Flow Metab. 38, 1125–1148 (2018).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Wilson, D. M. 3rd et al. Hallmarks of neurodegenerative diseases. Cell. 186, 693–714 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Erkkinen, M. G., Kim, M. O. & Geschwind, M. D. Clinical neurology and epidemiology of the major neurodegenerative diseases. Cold Spring Harb Perspect. Biol. 10, 3118–3163 (2018).

    Article 

    Google Scholar
     

  • Breijyeh, Z. & Karaman, R. Comprehensive review on alzheimeras disease: causes and treatment. Molecules. 25, 5789–5816 (2020).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Hampel, H. et al. The amyloid-beta pathway in Alzheimer’s disease. Mol. Psychiatry. 26, 5481–5503 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elia, C. A. et al. Intracerebral injection of extracellular vesicles from mesenchymal stem cells exerts reduced abeta plaque burden in early stages of a preclinical model of Alzheimer’s disease. Cells. 8, 1059–1078 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, S. S., Jia, J. & Wang, Z. Mesenchymal stem cell-derived extracellular vesicles suppresses inos expression and ameliorates neural impairment in Alzheimer’s disease mice. J. Alzheimers Dis. 61, 1005–1013 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, B. et al. Impact of neural stem cell-derived extracellular vesicles on mitochondrial dysfunction, sirtuin 1 level, and synaptic deficits in Alzheimer’s disease. J. Neurochem. 154, 502–518 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huber, C. C. et al. Heat shock-induced extracellular vesicles derived from neural stem cells confer marked neuroprotection against oxidative stress and amyloid-beta-caused neurotoxicity. Mol. Neurobiol. 59, 7404–7412 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Y. A. et al. Mesenchymal stem cell-derived exosomes ameliorate Alzheimer’s disease pathology and improve cognitive deficits. Biomedicines. 9, 594–612 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zavatti, M. et al. Exosomes derived from human amniotic fluid mesenchymal stem cells preserve microglia and neuron cells from Abeta. Int. J. Mol. Sci. 23, 4967–4980 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ding, M. et al. Exosomes isolated from human umbilical cord mesenchymal stem cells alleviate neuroinflammation and reduce amyloid-beta deposition by modulating microglial activation in Alzheimer’s disease. Neurochem. Res. 43, 2165–2177 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reza-Zaldivar, E. E. et al. Mesenchymal stem cell-derived exosomes promote neurogenesis and cognitive function recovery in a mouse model of Alzheimer’s disease. Neural Regen. Res. 14, 1626–1634, (2019).

    Article 
    PubMed Central 

    Google Scholar
     

  • Sweeney, M. D., Sagare, A. P. & Zlokovic, B. V. Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat. Rev. Neurol. 14, 133–150 (2018).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Liu, Y., Huber, C. C. & Wang, H. Disrupted blood-brain barrier in 5xFAD mouse model of Alzheimer’s disease can be mimicked and repaired in vitro with neural stem cell-derived exosomes. Biochem. Biophys. Res. Commun. 525, 192–196 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Cui, G. H. et al. RVG-modified exosomes derived from mesenchymal stem cells rescue memory deficits by regulating inflammatory responses in a mouse model of Alzheimer’s disease. Immun. Ageing. 16, 10 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, G. et al. Neural stem cell-derived extracellular vesicles mitigate Alzheimer’s disease-like phenotypes in a preclinical mouse model. Signal Transduct. Target Ther. 8, 228 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marino, B. L. B. et al. Parkinson’s disease: a review from pathophysiology to treatment. Mini Rev, Med, Chem. 20, 754–767 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Poewe, W. et al. Parkinson disease. Nat. Rev. Dis. Primers. 3, 17013 (2017).

    Article 

    Google Scholar
     

  • Huang, D., Zhang, M. & Tan, Z. Bone marrow stem cell-exo-derived TSG-6 Attenuates 1-Methyl-4-Phenylpyridinium+-Induced Neurotoxicity via the STAT3/miR-7/NEDD4/LRRK2 Axis. J. Neuropathol. Exp. Neurol. 81, 621–634 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, E. J. et al. Human neural stem cell-derived extracellular vesicles protect against Parkinson’s disease pathologies. J. Nanobiotechnol. 20, 198 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Filippi, M. et al. Multiple sclerosis. Nat. Rev. Dis. Primers. 4, 43 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Dobson, R. & Giovannoni, G. Multiple sclerosis – a review. Eur. J. Neurol. 26, 27–40 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Z. et al. Exosomes derived from mesenchymal stem cells attenuate inflammation and demyelination of the central nervous system in EAE rats by regulating the polarization of microglia. Int. Immunopharmacol. 67, 268–280 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, J. et al. Exosomes derived from bone marrow mesenchymal stromal cells promote remyelination and reduce neuroinflammation in the demyelinating central nervous system. Exp. Neurol. 347, 113895 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qi, D. et al. HNSC exosome-derived MIAT improves cognitive disorders in rats with vascular dementia via the miR-34b-5p/CALB1 axis. Am. J. Transl. Res. 13, 10075–10093 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Branscome, H. et al. Retroviral infection of human neurospheres and use of stem Cell EVs to repair cellular damage. Sci. Rep. 12, 2019 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leavitt, R. J., Acharya, M. M., Baulch, J. E. & Limoli, C. L. Extracellular vesicle-derived miR-124 resolves radiation-induced brain injury. Cancer Res. 80, 4266–4277 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith, S. M. et al. Functional equivalence of stem cell and stem cell-derived extracellular vesicle transplantation to repair the irradiated brain. Stem Cells Transl. Med. 9, 93–105 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Long, Q. et al. Intranasal MSC-derived A1-exosomes ease inflammation, and prevent abnormal neurogenesis and memory dysfunction after status epilepticus. Proc. Natl. Acad. Sci. USA. 114, E3536–E3545 (2017).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Li, S. et al. Bone marrow mesenchymal stem cell-derived exosomes shuttling miR-150-5p alleviates mechanical allodynia in rats by targeting NOTCH2 in microglia. Mol. Med. 28, 133 (2022).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Ma, L. et al. Neural stem cell-derived exosomal netrin1 contributes to neuron differentiation of mesenchymal stem cells in therapy of spinal bifida aperta. Stem Cells Transl. Med. 11, 539–551 (2022).

    Article 
    PubMed Central 

    Google Scholar
     

  • Guo, H. et al. Bone marrow mesenchymal stem cells-derived exosomes improve injury of hippocampal neurons in rats with depression by upregulating microRNA-26a expression. Int. Immunopharmacol. 82, 106285 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Niu, Y., Wang, X., Li, M. & Niu, B. Exosomes from human umbilical cord Mesenchymal stem cells attenuates stress-induced hippocampal dysfunctions. Metab. Brain Dis. 35, 1329–1340 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Natale, F. et al. Neural stem cell-derived extracellular vesicles counteract insulin resistance-induced senescence of neurogenic niche. Stem Cells 40, 318–331 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Spinelli, M. et al. Neural stem cell-derived exosomes revert HFD-dependent memory impairment via CREB-BDNF Signalling. Int. J. Mol. Sci. 21, 8994–9008 (2020).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y. et al. Hypothalamic stem cells control ageing speed partly through exosomal miRNAs. Nature 548, 52–57 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kong, L. Y. et al. Mesenchymal stem cell-derived exosomes rescue oxygen-glucose deprivation-induced injury in endothelial cells. Curr. Neurovasc. Res. 17, 155–163 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Almadani, Y. H., Vorstenbosch, J., Davison, P. G. & Murphy, A. M. Wound healing: a comprehensive review. Semin. Plast Surg. 35, 141–144 (2021).

    Article 
    PubMed Central 

    Google Scholar
     

  • Rodrigues, M., Kosaric, N., Bonham, C. A., Gurtner, G. C. & Wound Healing: a cellular perspective. Physiol. Rev. 99, 665–706 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, M., Zhao, Y. & Zhang, Q. Human mesenchymal stem cell-derived exosomes accelerate wound healing of mice eczema. J. Dermatolog. Treat. 33, 1401–1405 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cho, B. S., Kim, J. O., Ha, D. H. & Yi, Y. W. Exosomes derived from human adipose tissue-derived mesenchymal stem cells alleviate atopic dermatitis. Stem Cell Res. Ther. 9, 187 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qiu, X. et al. Exosomes released from educated mesenchymal stem cells accelerate cutaneous wound healing via promoting angiogenesis. Cell Prolif. 53, e12830 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, M. et al. Exosomes derived from atorvastatin-pretreated MSC accelerate diabetic wound repair by enhancing angiogenesis via AKT/eNOS pathway. Stem Cell Res. Ther. 11, 350 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ding, J. et al. Exosomes derived from human bone marrow mesenchymal stem cells stimulated by deferoxamine accelerate cutaneous wound healing by promoting angiogenesis. Biomed. Res. Int. 2019, 9742765 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, X., Jiang, C. & Zhao, J. Human endothelial progenitor cells-derived exosomes accelerate cutaneous wound healing in diabetic rats by promoting endothelial function. J. Diabetes Complications. 30, 986–992 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, J. et al. Exosomes derived from human endothelial progenitor cells accelerate cutaneous wound healing by promoting angiogenesis through Erk1/2 signaling. Int. J. Biol. Sci. 12, 1472–1487 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, J. et al. miRNA-221-3p in endothelial progenitor cell-derived exosomes accelerates skin wound healing in diabetic mice. Diabetes Metab. Syndr. Obes. 13, 1259–1270 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, W. et al. Cell-free therapy based on adipose tissue stem cell-derived exosomes promotes wound healing via the PI3K/Akt signaling pathway. Exp. Cell Res. 370, 333–342 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y. et al. Adipose mesenchymal stem cell exosomes promote wound healing through accelerated keratinocyte migration and proliferation by activating the AKT/HIF-1alpha axis. J. Mol. Histol. 51, 375–383 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Kim, S., Lee, S. K., Kim, H. & Kim, T. M. Exosomes secreted from induced pluripotent stem cell-derived mesenchymal stem cells accelerate skin cell proliferation. Int. J. Mol. Sci. 19, 3119–3134 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He, L. et al. ADSC-Exos containing MALAT1 promotes wound healing by targeting miR-124 through activating Wnt/beta-catenin pathway. Biosci. Rep. 40, 549–561 (2020).

    Article 

    Google Scholar
     

  • Gao, S. et al. Exosomal miR-135a derived from human amnion mesenchymal stem cells promotes cutaneous wound healing in rats and fibroblast migration by directly inhibiting LATS2 expression. Stem Cell Res. Ther. 11, 56 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, P. et al. Endothelial progenitor cell derived exosomes mediated miR-182-5p delivery accelerate diabetic wound healing via down-regulating PPARG. Int. J. Med. Sci. 20, 468–481 (2023).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Zhao, G. et al. MSC-derived exosomes attenuate cell death through suppressing AIF nucleus translocation and enhance cutaneous wound healing. Stem Cell Res. Ther. 11, 174 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fang, S. et al. Umbilical cord-derived mesenchymal stem cell-derived exosomal MicroRNAs suppress myofibroblast differentiation by inhibiting the transforming growth Factor-β/SMAD2 pathway during wound healing. Stem Cells Transl. Med. 5, 1425–1439 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, J., Chen, Y., Huang, Y. & Su, Y. Human umbilical cord mesenchymal stem cell-derived exosomes suppress dermal fibroblasts-myofibroblats transition via inhibiting the TGF-beta1/Smad 2/3 signaling pathway. Exp. Mol. Pathol. 115, 104468 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, L. et al. Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts. Sci. Rep. 6, 32993 (2016).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Chen, B. et al. Human embryonic stem cell-derived exosomes promote pressure ulcer healing in aged mice by rejuvenating senescent endothelial cells. Stem Cell Res. Ther. 10, 142 (2019).

    Article 
    PubMed Central 

    Google Scholar
     

  • Bae, Y. U. et al. Embryonic stem cell-derived mmu-miR-291a-3p inhibits cellular senescence in human dermal fibroblasts through the TGF-beta Receptor 2 pathway. J. Gerontol. A 74, 1359–1367 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Bai, Y. et al. Adipose mesenchymal stem cell-derived exosomes stimulated by hydrogen peroxide enhanced skin flap recovery in ischemia-reperfusion injury. Biochem. Biophys. Res. Commun. 500, 310–317 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Y. et al. Exosomes derived from stem cells from apical papilla promote craniofacial soft tissue regeneration by enhancing Cdc42-mediated vascularization. Stem Cell Res. Ther. 12, 76 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, M. et al. Mesenchymal stem cell-derived exosomes ameliorate dermal fibrosis in a Murine model of Bleomycin-Induced Scleroderma. Stem Cells Dev. 30, 981–990 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Koken, G. Y., Abamor, E. S., Allahverdiyev, A. & Karaoz, E. Wharton Jelly derived mesenchymal stem Cell’s exosomes demonstrate significant antileishmanial and wound healing effects in combination with Aloe-Emodin: an in vitro study. J. Pharm. Sci. 111, 3232–3242 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao, L. et al. Neural progenitor cell-derived nanovesicles promote hair follicle growth via miR-100. J. Nanobiotechnol. 19, 20 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Oh, M. et al. Exosomes derived from human induced pluripotent stem cells ameliorate the aging of skin fibroblasts. Int. J. Mol. Sci. 19, 1715–1732 (2018).

    Article 
    PubMed Central 

    Google Scholar
     

  • Stravitz, R. T. & Kramer, D. J. Management of acute liver failure. Nat. Rev. Gastroenterol. Hepatol. 6, 542–553 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Lin, F. et al. Mesenchymal stem cells protect against ferroptosis via exosome-mediated stabilization of SLC7A11 in acute liver injury. Cell Death Dis. 13, 271 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shao, M. et al. Exosomes derived from human umbilical cord mesenchymal stem cells ameliorate IL-6-induced acute liver injury through miR-455-3p. Stem Cell Res. Ther. 11, 37 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kisseleva, T. & Brenner, D. Molecular and cellular mechanisms of liver fibrosis and its regression. Nat. Rev. Gastroenterol. Hepatol. 18, 151–166 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Ma, L. et al. Mesenchymal stem cell-originated exosomal circDIDO1 suppresses hepatic stellate cell activation by miR-141-3p/PTEN/AKT pathway in human liver fibrosis. Drug Deliv. 29, 440–453 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, N. et al. 3D hESC exosomes enriched with miR-6766-3p ameliorates liver fibrosis by attenuating activated stellate cells through targeting the TGFbetaRII-SMADS pathway. J .Nanobiotechnol. 19, 437 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Hirao, H., Nakamura, K. & Kupiec-Weglinski, J. W. Liver ischaemia-reperfusion injury: a new understanding of the role of innate immunity. Nat. Rev. Gastroenterol. Hepatol. 19, 239–256 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, B. et al. Bone marrow mesenchymal stem cell-derived hepatocyte-like cell exosomes reduce hepatic ischemia/reperfusion injury by enhancing autophagy. Stem Cells Dev. 29, 372–379 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Du, Y. et al. Exosomes from Human-Induced Pluripotent Stem Cell-Derived Mesenchymal Stromal Cells (hiPSC-MSCs) protect liver against hepatic ischemia/ reperfusion injury via activating sphingosine kinase and Sphingosine-1-Phosphate signaling pathway. Cell. Physiol. Biochem. 43, 611–625 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Venkat, P. et al. Therapeutic effects of CD133 + Exosomes on liver function after stroke in type 2 diabetic mice. Front. Neurosci. 17, 1061485 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boxhoorn, L. et al. Acute pancreatitis. Lancet 396, 726–734 (2020).

    Article 

    Google Scholar
     

  • Chen, M. et al. Exosomes from human induced pluripotent stem cells derived mesenchymal stem cells improved myocardial injury caused by severe acute pancreatitis through activating Akt/Nrf2/HO-1 axis. Cell Cycle. 21, 1578–1589 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Uccioli, L. et al. Critical limb ischemia: current challenges and future prospects. Vasc. Health Risk Manag. 14, 63–74 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Komaki, M. et al. Exosomes of human placenta-derived mesenchymal stem cells stimulate angiogenesis. Stem Cell Res. Ther. 8, 219 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gong, M. et al. Mesenchymal stem cells release exosomes that transfer miRNAs to endothelial cells and promote angiogenesis. Oncotarget 8, 45200–45212 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mathiyalagan, P. et al. Angiogenic Mechanisms of Human CD34(+) Stem Cell Exosomes in the Repair of Ischemic Hindlimb. Circ. Res. 120, 1466–1476 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ye, M. et al. Exosomes derived from human induced pluripotent stem cells-endothelia cells promotes postnatal angiogenesis in mice bearing ischemic limbs. Int. J. Biol. Sci. 15, 158–168 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lazar, A. & Morrissey, N. Recent advances in endovascular treatment of peripheral arterial disease. F1000Res. 9, 122–126 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Li, X. et al. Exosomes derived from endothelial progenitor cells attenuate vascular repair and accelerate reendothelialization by enhancing endothelial function. Cytotherapy. 18, 253–262 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, H. et al. Endothelial progenitor cell-derived exosomes facilitate vascular endothelial cell repair through shuttling miR-21-5p to modulate Thrombospondin-1 expression. Clin. Sci. 133, 1629–1644 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Hu, H., Jiang, C., Li, R. & Zhao, J. Comparison of endothelial cell- and endothelial progenitor cell-derived exosomes in promoting vascular endothelial cell repair. Int. J. Clin. Exp. Pathol. 12, 2793–2800 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kong, J. et al. Exosomes of endothelial progenitor cells inhibit neointima formation after carotid artery injury. J. Surg. Res. 232, 398–407 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thyoka, M. et al. Advanced necrotizing enterocolitis part 1: mortality. Eur. J. Pediatr. Surg. 22, 8–12 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McCulloh, C. J. et al. Treatment of experimental necrotizing enterocolitis with stem cell-derived exosomes. J. Pediatr. Surg. 53, 1215–1220 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moore, L. J. et al. Sepsis in general surgery: a deadly complication. Am. J. Surg. 198, 868–874 (2009).

    Article 

    Google Scholar
     

  • Zhou, Y. et al. Exosomes from endothelial progenitor cells improve the outcome of a murine model of sepsis. Mol. Ther. 26, 1375–1384 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Y. et al. Protective effect of endothelial progenitor cell-derived exosomal microRNA-382-3p on sepsis-induced organ damage and immune suppression in mice. Am. J. Transl. Res. 14, 6856–6873 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heusch, G. Myocardial ischaemia–reperfusion injury and cardioprotection in perspective. Nat. Rev. Cardiol. 17, 773–789 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Xing, X. et al. Adipose-derived mesenchymal stem cells-derived exosome-mediated microRNA-342-5p protects endothelial cells against atherosclerosis. Aging 12, 3880–3898 (2020).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Peng, Y. et al. Exosomal miR-25-3p from mesenchymal stem cells alleviates myocardial infarction by targeting pro-apoptotic proteins and EZH2. Cell Death Dis. 11, 317 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, L. et al. Exosomes secreted by hiPSC-derived cardiac cells improve recovery from myocardial infarction in swine. Sci. Transl. Med. 12, 317–331 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wen, Z. et al. Mesenchymal stem cell-derived exosomes ameliorate cardiomyocyte apoptosis in hypoxic conditions through microRNA144 by targeting the PTEN/AKT pathway. Stem Cell Res. Ther. 11, 36 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Santoso, M. R. et al. Exosomes from induced pluripotent stem cell-derived cardiomyocytes promote autophagy for myocardial repair. J. Am. Heart Assoc. 9, e014345 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Katsur, M. et al. Exosomes from neuronal stem cells may protect the heart from ischaemia/reperfusion injury via JAK1/2 and gp130. J. Cell. Mol. Med. 25, 4455–4465 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, G. et al. Mesenchymal stem cell-derived exosomal miR-143-3p suppresses myocardial ischemia-reperfusion injury by regulating autophagy. Life Sci. 280, 119742 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, F. et al. Bone marrow mesenchymal stem cell-derived exosomes attenuate cardiac hypertrophy and fibrosis in pressure overload induced remodeling. In Vitro Cell. Dev. Biol. Anim. 56, 567–576 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Khan, M. et al. Embryonic stem cell-derived exosomes promote endogenous repair mechanisms and enhance cardiac function following myocardial infarction. Circ. Res. 117, 52–64 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tavakoli Dargani, Z. & Singla, D. K. Embryonic stem cell-derived exosomes inhibit doxorubicin-induced TLR4-NLRP3-mediated cell death-pyroptosis. Am. J. Physiol. Heart Circ. Physiol. 317, H460–H471 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singla, D. K., Johnson, T. A. & Tavakoli Dargani, Z. Exosome treatment enhances anti-inflammatory M2 macrophages and reduces inflammation-induced pyroptosis in doxorubicin-induced cardiomyopathy. Cells. 8, 1224–1244 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pang, Y. et al. Embryonic stem cell-derived exosomes attenuate transverse aortic constriction induced heart failure by increasing angiogenesis. Front. Cardiovasc. Med. 8, 638771 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kervadec, A. et al. Cardiovascular progenitor-derived extracellular vesicles recapitulate the beneficial effects of their parent cells in the treatment of chronic heart failure. J. Heart Lung Transplant. 35, 795–807 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • El Harane, N. et al. Acellular therapeutic approach for heart failure: in vitro production of extracellular vesicles from human cardiovascular progenitors. Eur. Heart J. 39, 1835–1847 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H. et al. Exosomes secreted by endothelial cells derived from human induced pluripotent stem cells improve recovery from myocardial infarction in mice. Stem Cell. Res. Ther. 14, 278 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H. et al. Isolation of swine bone marrow Lin-/CD45-/CD133 + cells and cardio-protective effects of its exosomes. Stem Cell. Rev. Rep. 19, 213–229 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Angulski, A. B. B. et al. Systemic infusion of expanded CD133(+) cells and expanded CD133(+) cell-derived EVs for the treatment of ischemic cardiomyopathy in a rat model of AMI. Stem Cells Int. 2019, 4802578 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mackie, A. R. et al. Sonic hedgehog-modified human CD34+ cells preserve cardiac function after acute myocardial infarction. Circ. Res. 111, 312–321 (2012).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Ke, X. et al. Human endothelial progenitor cell-derived exosomes increase proliferation and angiogenesis in cardiac fibroblasts by promoting the mesenchymal-endothelial transition and reducing high mobility Group Box 1 protein B1 expression. DNA Cell Biol. 36, 1018–1028 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ke, X. et al. Exosomal miR-218-5p/miR-363-3p from endothelial progenitor cells ameliorate myocardial infarction by targeting the p53/JMY signaling pathway. Oxid. Med. Cell. Longev. 2021, 5529430 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yue, Y. et al. Interleukin-10 deficiency alters endothelial progenitor cell-derived exosome reparative effect on myocardial repair via integrin-linked kinase enrichment. Circ. Res. 126, 315–329 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Q. et al. Exosomal miR-17-5p from human embryonic stem cells prevents pulmonary fibrosis by targeting thrombospondin-2. Stem Cell. Res. Ther. 14, 234 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, Y. et al. Exosomes derived from induced pluripotent stem cells suppresses M2-type macrophages during pulmonary fibrosis via miR-302a-3p/TET1 axis. Int. Immunopharmacol. 99, 108075 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, P. et al. Endothelial progenitor cell-derived exosomes inhibit pulmonary artery smooth muscle cell in vitro proliferation and resistance to apoptosis by modulating the Mitofusin-2 and Ras-Raf-ERK1/2 signaling pathway. Eur. J. Pharmacol. 949, 175725 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, Y. et al. Exosomes from endothelial progenitor cells improve outcomes of the lipopolysaccharide-induced acute lung injury. Crit. Care. 23, 44 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, X. et al. Exosomes derived from endothelial progenitor cells ameliorate acute lung injury by transferring miR-126. Exp. Cell Res. 370, 13–23 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, X. et al. Exosomes secreted by endothelial progenitor cells improve the bioactivity of pulmonary microvascular endothelial cells exposed to hyperoxia in vitro. Ann. Transl. Med. 7, 254 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Montay-Gruel, P. et al. Extracellular vesicles for the treatment of radiation-induced normal tissue toxicity in the lung. Front. Oncol. 10, 602763 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Huang, R., Fu, P. & Ma, L. Kidney fibrosis: from mechanisms to therapeutic medicines. Signal. Transduct. Target Ther. 8, 129 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Y. et al. Bone marrow mesenchymal stem cell-derived exosomal microRNA-381-3p alleviates vascular calcification in chronic kidney disease by targeting NFAT5. Cell Death Dis. 13, 278 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Y. et al. Bone marrow mesenchymal stem cell-derived exosomes improve renal fibrosis via regulating Smurf 2/Smad 7. Front. Biosci. 27, 17 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Lu, Y. et al. Bone marrow mesenchymal stem cell-derived exosomes improve renal fibrosis by reducing the polarisation of M1 and M2 macrophages through the activation of EP2 receptors. IET Nanobiotechnol. 16, 14–24 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Kellum, J. A. et al. Acute kidney injury. Nat. Rev. Dis. Primers. 7, 52 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Lim, S. W. et al. Alleviation of renal ischemia/reperfusion injury by exosomes from induced pluripotent stem cell-derived mesenchymal stem cells. Korean J. Intern. Med. 37, 411–424 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y. et al. Endothelial progenitor cells-derived exosomal microRNA-21-5p alleviates sepsis-induced acute kidney injury by inhibiting RUNX1 expression. Cell Death Dis. 12, 335 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sheffield, A. M. & Smith, R. J. H. The epidemiology of deafness. Cold Spring Harb Perspect. Med. 9, 3258–3273 (2019).

    Article 

    Google Scholar
     

  • Tsai, S. C. et al. Umbilical cord mesenchymal stromal cell-derived exosomes rescue the loss of outer hair cells and repair cochlear damage in cisplatin-injected mice. Int. J. Mol. Sci. 22, 6664–6687 (2021).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Tabuchi, K. et al. Ischemia-reperfusion injury of the cochlea: pharmacological strategies for cochlear protection and implications of glutamate and reactive oxygen species. Curr Neuropharmacol. 8, 128–134 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hao, F. et al. Exosomes derived from microRNA-21 overexpressing neural progenitor cells prevent hearing loss from ischemia-reperfusion injury in mice via inhibiting the inflammatory process in the Cochlea. ACS Chem. Neurosci. 13, 2464–2472 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Chotigavanich, C. et al. Hypothyroidism after Hemithyroidectomy: the incidence and risk factors. J. Med. Assoc. Thai. 99, 77–83 (2016).


    Google Scholar
     

  • Degosserie, J. et al. Extracellular vesicles from endothelial progenitor cells promote thyroid follicle formation. J. Extracell. Vesicles. 7, 1487250 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Valesan, L. F. et al. Prevalence of temporomandibular joint disorders: a systematic review and meta-analysis. Clin. Oral. Investig. 25, 441–453 (2021).

    Article 

    Google Scholar
     

  • Zhang, S. et al. MSC exosomes alleviate temporomandibular joint osteoarthritis by attenuating inflammation and restoring matrix homeostasis. Biomaterials 200, 35–47 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Yang, Y. & Sun, X. Retinal ganglion cell death in glaucoma: advances and caveats. Curr. Eye Res. 48, 1–10 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mead, B. & Tomarev, S. Bone marrow-derived mesenchymal stem cells-derived exosomes promote survival of retinal ganglion cells through miRNA-dependent mechanisms. Stem Cells. Transl. Med. 6, 1273–1285 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van Gelder, R. N. et al. Regenerative and restorative medicine for eye disease. Nat. Med. 28, 1149–1156 (2022).

    Article 
    PubMed Central 

    Google Scholar
     

  • Bian, B. et al. Exosomes derived from neural progenitor cells preserve photoreceptors during retinal degeneration by inactivating microglia. J. Extracell. Vesicles. 9, 1748931 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ke, Y. et al. Human embryonic stem cell-derived extracellular vesicles alleviate retinal degeneration by upregulating Oct4 to promote retinal Muller cell retrodifferentiation via HSP90. Stem Cell. Res. Ther. 12, 21 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, Y. et al. Embryonic stem cells-derived exosomes enhance retrodifferentiation of retinal Muller cells by delivering BDNF protein to activate Wnt pathway. Immunobiology 227, 152211 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Park, U. C. et al. Subretinal versus intravitreal administration of human CD34+ bone marrow-derived stem cells in a rat model of inherited retinal degeneration. Ann. Transl. Med. 9, 1275 (2021).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Ong, E. S. & Jeng, B. H. Current and future therapies for persistent corneal epithelial defects and neurotrophic keratopathy. Curr. Opin. Ophthalmol. 32, 262–267 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, S. et al. Comparison of exosomes derived from induced pluripotent stem cells and mesenchymal stem cells as therapeutic nanoparticles for treatment of corneal epithelial defects. Aging 12, 19546–19562 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, J. et al. Role of immune cell diversity and heterogeneity in corneal graft survival: a systematic review and meta-analysis. J. Clin. Med. 10, 4667–4686 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jia, Z. et al. Mesenchymal stem cell derived exosomes-based immunological signature in a rat model of corneal allograft rejection therapy.Front. Biosci. 86, (2022).

  • Huang, Q. Y. et al. Therapeutic options for premature ovarian insufficiency: an updated review. Reprod. Biol. Endocrinol. 20, 28 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Na, J. & Kim, G. J. Recent trends in stem cell therapy for premature ovarian insufficiency and its therapeutic potential: a review. J. Ovarian Res. 13, 74 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Z. et al. Human umbilical cord mesenchymal stem cell-derived exosomes improve ovarian function and proliferation of premature ovarian insufficiency by regulating the hippo signaling pathway. Front. Endocrinol. 12, 711902 (2021).

    Article 

    Google Scholar
     

  • Zhang, L. et al. Human pluripotent stem cell-mesenchymal stem cell-derived exosomes promote ovarian granulosa cell proliferation and attenuate cell apoptosis induced by cyclophosphamide in a POI-like Mouse Model. Molecules. 28, 2112–2129 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ding, C. et al. Exosomal miRNA-17-5p derived from human umbilical cord mesenchymal stem cells improves ovarian function in premature ovarian insufficiency by regulating SIRT7. Stem Cells. 38, 1137–1148 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, M. et al. Bone marrow mesenchymal stem cell-derived exosomal miR-144-5p improves rat ovarian function after chemotherapy-induced ovarian failure by targeting PTEN. Lab. Investig. 100, 342–352 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Y. S., Lin, E. Y., Chiou, T. W. & Harn, H. J. Exosomes in clinical trial and their production in compliance with good manufacturing practice. Ci Ji Yi Xue Za Zhi. 32, 113–120 (2020).

    CAS 

    Google Scholar
     

  • Perocheau, D. et al. Clinical applications for exosomes: Are we there yet? Br. J. Pharmacol. 178, 2375–2392 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rezaie, J., Feghhi, M. & Etemadi, T. A review on exosomes application in clinical trials: perspective, questions, and challenges. Cell Commun. Signal. 20, 145 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, X. et al. Recent progress in exosome research: isolation, characterization and clinical applications. Cancer Gene Ther. 30, 1051–1065 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Santos, P. & Almeida, F. Exosome-based vaccines: history, current state, and clinical trials. Front. Immunol. 12, 711565 (2021).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Hao, Z. C. Stem cell-derived exosomes: a promising strategy for fracture healing. Cell Prolif. 50, 359–368 (2017).

    Article 

    Google Scholar
     

  • Yang, Z. L. et al. The role of exosomes and exosomal noncoding RNAs from different cell sources in spinal cord injury. Front. Cell. Neurosci. 16, 882306 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hade, M. D., Suire, C. N. & Suo, Z. Mesenchymal stem cell-derived exosomes: applications in regenerative medicine. Cells. 10, 1959–2006 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lou, G., Chen, Z., Zheng, M. & Liu, Y. Mesenchymal stem cell-derived exosomes as a new therapeutic strategy for liver diseases. Exp. Mol. Med. 49, e346 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krishnan, A., Muthusamy, S., Fernandez, F. B. & Kasoju, N. Mesenchymal stem cell-derived extracellular vesicles in the management of COVID19-associated lung injury: a review on publications, clinical trials and patent landscape. Tissue Eng. Regen. Med. 19, 659–673 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsioulos, G. et al. Insights into CD24 and exosome physiology and potential role in view of recent advances in COVID-19 therapeutics: a narrative review. Life. 12, 1472–1487 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoo, K. H. Possibility of exosome‑based coronavirus disease 2019 vaccine (Review). Mol. Med. Rep. 25, 3625–3633 (2022).


    Google Scholar
     

  • Yassine, S. & Alaaeddine, N. Mesenchymal stem cell exosomes and cancer: controversies and prospects. Adv. Biol. 6, e2101050 (2022).

    Article 

    Google Scholar
     

  • Vakhshiteh, F., Atyabi, F. & Ostad, S. N. Mesenchymal stem cell exosomes: a two-edged sword in cancer therapy. Int. J. Nanomed. 14, 2847–2859 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Lin, Z. et al. Mesenchymal stem cell-derived exosomes in cancer therapy resistance: recent advances and therapeutic potential. Mol. Cancer. 21, 179 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, Z., Zeng, S., Gong, Z. & Yan, Y. Exosome-based immunotherapy: a promising approach for cancer treatment. Mol. Cancer. 19, 160 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nam, G. H. et al. Emerging prospects of exosomes for cancer treatment: from conventional therapy to immunotherapy. Adv. Mater. 32, e2002440 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Kim, H. Recent advances in exosome-based drug delivery for cancer therapy. Cancers. 13, 4435–4457 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dai, J. et al. Exosomes: key players in cancer and potential therapeutic strategy. Signal. Transduct. Target Ther. 5, 145 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nie, L. et al. Directional induction of neural stem cells, a new therapy for neurodegenerative diseases and ischemic stroke. Cell Death Discov. 9, 215 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fernandez-Munoz, B., Garcia-Delgado, A. B., Arribas-Arribas, B. & Sanchez-Pernaute, R. Human neural stem cells for cell-based medicinal products. Cells. 10, 2377–2402 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shahbazi, E., Mirakhori, F., Ezzatizadeh, V. & Baharvand, H. Reprogramming of somatic cells to induced neural stem cells. Methods 133, 21–28 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Ma, Y. et al. Induced neural progenitor cells abundantly secrete extracellular vesicles and promote the proliferation of neural progenitors via extracellular signal-regulated kinase pathways. Neurobiol. Dis. 124, 322–334 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma, Y. et al. Induced neural progenitor cell-derived extracellular vesicles promote neural progenitor cell survival via extracellular signal-regulated kinase pathway. CNS Neurosci. Ther. 27, 1605–1609 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar