Chromosome-level genome assembly and annotation of the Patagonian toothfish Dissostichus eleginoides

  • Fischer, W. & Hureau, J. C. Southern Ocean: Fishing Areas 48, 58 and 88 (CCAMLR Convention Area). Vol. 1 (Food and agriculture organization of the United nations, 1985).

  • DeWitt, H., Heemstra, P. & Gon, O. Nototheniidae. Fishes of the southern ocean. JLB Smith Institute of Ichthyology, Grahamstown, 279–331 (1990).

  • Eastman, J. T. Antarctic fish biology: evolution in a unique environment. (Academic Press, 2013).

  • Policansky, D. Southernmost Fauna: Antarctic Fish Biology. Evolution in a Unique Environment. Joseph T. Eastman. Illustrations and graphics by Danette Pratt. Photographs by William Winn. Academic Press, San Diego, CA, 1993. xiv, 322 pp., illus. 74.95or£57.;AntarcticFishandFisheries.Karl-HermannKock.CambridgeUniversityPress,NewYork,1992.xvi,359pp.,illus. 1 10 or£ 60. Studies in Polar Research.; History and Atlas of the Fishes of the Antarctic Ocean. Richard Gordon Miller. With contributions by Philip A. Hastings and Josette Gourley. Foresta Institute of Ocean and Mountain Studies, Tucson, AZ, 1993. xx, 792 pp., illus. 95;laminatedcover, 78. Science 264, 1002–1004 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Clover, C. The end of the line: how overfishing is changing the world and what we eat. (Univ of California Press, 2008).

  • Brandão, A. & Butterworth, D. S. A proposed management procedure for the toothfish (Dissostichus eleginoides) resource in the Prince Edward Islands vicinity. (2009).

  • Seung Jae Lee, J. K., Choi, E., Jo, E. & Cho, M. Hyun Park. The Application of Genome Research to Development of Aquaculture. Journal of Marine Life Science 6, 47–57 (2021).


    Google Scholar
     

  • Lee, S. J. et al. A chromosome-level reference genome of the Antarctic blackfin icefish Chaenocephalus aceratus. Scientific Data 10, 657 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ryder, D. et al. De novo assembly and annotation of the Patagonian toothfish (Dissostichus eleginoides) genome. BMC genomics 25, 233 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, S. J. et al. Chromosomal assembly of the Antarctic toothfish (Dissostichus mawsoni) genome using third-generation DNA sequencing and Hi-C technology. Zoological research 42, 124 (2021).

    Article 

    Google Scholar
     

  • NCBI Sequence Read Archive http://identifiers.org/ncbi/insdc.sra:SRP524971 (2024).

  • Chin, C.-S. et al. Phased diploid genome assembly with single-molecule real-time sequencing. Nature methods 13, 1050–1054 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PloS one 9, e112963 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv preprint arXiv:1303.3997 (2013).

  • Durand, N. C. et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell systems 3, 95–98 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dudchenko, O. et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356, 92–95 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dudchenko, O. et al. The Juicebox Assembly Tools module facilitates de novo assembly of mammalian genomes with chromosome-length scaffolds for under $1000. BioRxiv, 254797 (2018).

  • Ghigliotti, L. et al. The two giant sister species of the Southern Ocean, Dissostichus eleginoides and Dissostichus mawsoni, differ in karyotype and chromosomal pattern of ribosomal RNA genes. Polar Biology 30, 625–634 (2007).

    Article 

    Google Scholar
     

  • Bao, Z. & Eddy, S. R. Automated de novo identification of repeat sequence families in sequenced genomes. Genome research 12, 1269–1276 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Price, A. L., Jones, N. C. & Pevzner, P. A. De novo identification of repeat families in large genomes. Bioinformatics 21, i351–i358 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Benson, G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic acids research 27, 573–580 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dimmer, E. C. et al. The UniProt-GO annotation database in 2011. Nucleic acids research 40, D565–D570 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ou, S. & Jiang, N. LTR_retriever: a highly accurate and sensitive program for identification of long terminal repeat retrotransposons. Plant physiology 176, 1410–1422 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ellinghaus, D., Kurtz, S. & Willhoeft, U. LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC bioinformatics 9, 1–14 (2008).

    Article 

    Google Scholar
     

  • Xu, Z. & Wang, H. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic acids research 35, W265–W268 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haas, B. J. et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome biology 9, 1–22 (2008).

    Article 

    Google Scholar
     

  • Lomsadze, A., Ter-Hovhannisyan, V., Chernoff, Y. O. & Borodovsky, M. Gene identification in novel eukaryotic genomes by self-training algorithm. Nucleic acids research 33, 6494–6506 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stanke, M., Schöffmann, O., Morgenstern, B. & Waack, S. Gene prediction in eukaryotes with a generalized hidden Markov model that uses hints from external sources. BMC bioinformatics 7, 1–11 (2006).

    Article 

    Google Scholar
     

  • Consortium, U. UniProt: a worldwide hub of protein knowledge. Nucleic acids research 47, D506–D515 (2019).

    Article 

    Google Scholar
     

  • Bruna, T., Lomsadze, A. & Borodovsky, M. GeneMark-EP and-EP+: automatic eukaryotic gene prediction supported by spliced aligned proteins. bioRxiv, 2019.2012. 2031.891218 (2020).

  • Haas, B. J. et al. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic acids research 31, 5654–5666 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Geib, S. M. et al. Genome Annotation Generator: a simple tool for generating and correcting WGS annotation tables for NCBI submission. Gigascience 7, giy018 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chan, P. P. & Lowe, T. M. tRNAscan-SE: searching for tRNA genes in genomic sequences. (Springer, 2019).

  • Marchler-Bauer, A. et al. CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic acids research 39, D225–D229 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. Journal of molecular biology 215, 403–410 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236–1240 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bryant, D. M. et al. A tissue-mapped axolotl de novo transcriptome enables identification of limb regeneration factors. Cell reports 18, 762–776 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Almagro Armenteros, J. J. et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nature biotechnology 37, 420–423 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Möller, S., Croning, M. D. & Apweiler, R. Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics 17, 646–653 (2001).

    Article 
    PubMed 

    Google Scholar
     

  • Conesa, A. et al. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21, 3674–3676 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, L., Stoeckert, C. J. & Roos, D. S. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome research 13, 2178–2189 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome biology 20, 1–14 (2019).

    Article 

    Google Scholar
     

  • Katoh, K., Asimenos, G. & Toh, H. Multiple alignment of DNA sequences with MAFFT. Bioinformatics for DNA sequence analysis, 39–64 (2009).

  • Britton, T., Anderson, C. L., Jacquet, D., Lundqvist, S. & Bremer, K. Estimating divergence times in large phylogenetic trees. Systematic biology 56, 741–752 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Kumar, S., Stecher, G., Suleski, M. & Hedges, S. B. TimeTree: a resource for timelines, timetrees, and divergence times. Molecular biology and evolution 34, 1812–1819 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han, M. V., Thomas, G. W., Lugo-Martinez, J. & Hahn, M. W. Estimating gene gain and loss rates in the presence of error in genome assembly and annotation using CAFE 3. Molecular biology and evolution 30, 1987–1997 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kurtz, S. et al. Versatile and open software for comparing large genomes. Genome biology 5, 1–9 (2004).

    Article 

    Google Scholar
     

  • Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome research 19, 1639–1645 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park, H. Genebank https://identifiers.org/insdc.gca:GCA_031216635.1 (2023).

  • Jae Lee, S., et al Genebank https://identifiers.org/insdc.gca:GCA_011823955.1 (2021).

  • Nicodemus-Johnson, J., Silic, S., Ghigliotti, L., Pisano, E. & Cheng, C.-H. C. Assembly of the antifreeze glycoprotein/trypsinogen-like protease genomic locus in the Antarctic toothfish Dissostichus mawsoni (Norman). Genomics 98, 194–201 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, L., DeVries, A. L. & Cheng, C.-H. C. Evolution of antifreeze glycoprotein gene from a trypsinogen gene in Antarctic notothenioid fish. Proceedings of the National Academy of Sciences 94, 3811–3816 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chen, L., DeVries, A. L. & Cheng, C.-H. C. Convergent evolution of antifreeze glycoproteins in Antarctic notothenioid fish and Arctic cod. Proceedings of the National Academy of Sciences 94, 3817–3822 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kim, B. M. et al. Antarctic blackfin icefish genome reveals adaptations to extreme environments. Nat Ecol Evol 3, 469–478, https://doi.org/10.1038/s41559-019-0812-7 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Rhie, A., Walenz, B. P., Koren, S. & Phillippy, A. M. Merqury: reference-free quality, completeness, and phasing assessment for genome assemblies. Genome biology 21, 1–27 (2020).

    Article 

    Google Scholar