Chromatin remodelling in damaged intestinal crypts orchestrates redundant TGFβ and Hippo signalling to drive regeneration

  • Barker, N. et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003–1007 (2007).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Tao, S. et al. Wnt activity and basal niche position sensitize intestinal stem and progenitor cells to DNA damage. EMBO J. 36, 2920–2921 (2017).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Nusse, Y. M. et al. Parasitic helminths induce fetal-like reversion in the intestinal stem cell niche. Nature 562, 109–113 (2018).

    Article 

    Google Scholar
     

  • Ayyaz, A. et al. Single-cell transcriptomes of the regenerating intestine reveal a revival stem cell. Nature 569, 121–125 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • de Sousa e Melo, F. & de Sauvage, F. J. Cellular plasticity in intestinal homeostasis and disease. Cell Stem Cell 24, 54–64 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Ohara, T. E., Colonna, M. & Stappenbeck, T. S. Adaptive differentiation promotes intestinal villus recovery. Dev. Cell 57, 166–179.e6 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Karo-Atar, D. et al. Helminth-induced reprogramming of the stem cell compartment inhibits type 2 immunity. J. Exp. Med. 219, e20212311 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Goldsmith, J. R. et al. TNFAIP8 controls murine intestinal stem cell homeostasis and regeneration by regulating microbiome-induced Akt signaling. Nat. Commun. 11, 2591 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Andersen, C. L. et al. Clusterin expression in normal mucosa and colorectal cancer. Mol. Cell Proteom. 6, 1039–1048 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Chen, X. et al. Clusterin as a biomarker in murine and human intestinal neoplasia. Proc. Natl Acad. Sci. USA 100, 9530–9535 (2003).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Yui, S. et al. YAP/TAZ-dependent reprogramming of colonic epithelium links ECM remodeling to tissue regeneration. Cell Stem Cell 22, 35–49.e7 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Morral, C. et al. p53 promotes revival stem cells in the regenerating intestine after severe radiation injury. Nat. Commun. 15, 3018 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e29 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Heuberger, J. et al. Shp2/MAPK signaling controls goblet/paneth cell fate decisions in the intestine. Proc. Natl Acad. Sci. USA 111, 3472–3477 (2014).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wallaeys, C., Garcia‐Gonzalez, N. & Libert, C. Paneth cells as the cornerstones of intestinal and organismal health: a primer. EMBO Mol. Med. 15, e16427 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Treveil, A. et al. Regulatory network analysis of paneth cell and goblet cell enriched gut organoids using transcriptomics approaches. Mol. Omics 16, 39–58 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kim, C. K. et al. Krüppel-like factor 5 regulates stemness, lineage specification, and regeneration of intestinal epithelial stem cells. Cell Mol. Gastroenterol. Hepatol. 9, 587–609 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • van Es, J. H. et al. Wnt signalling induces maturation of paneth cells in intestinal crypts. Nat. Cell Biol. 7, 381–386 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Ishibashi, F. et al. Contribution of ATOH1+ cells to the homeostasis, repair, and tumorigenesis of the colonic epithelium. Stem Cell Rep. 10, 27–42 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Tomic, G. et al. Phospho-regulation of ATOH1 Is required for plasticity of secretory progenitors and tissue regeneration. Cell Stem Cell 23, 27–42 (2018).

    Article 

    Google Scholar
     

  • Wester, R. A. et al. Retinoic acid signaling drives differentiation toward the absorptive lineage in colorectal cancer. iScience 24, 103444 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Hickey, J. W. et al. Organization of the human intestine at single-cell resolution. Nature 619, 572–584 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lopez, R. et al. Deep generative modeling for single-cell transcriptomics. Nat. Methods 15, 1053–1058 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Street, K. et al. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMG Genomics 19, 477 (2018).

    Article 

    Google Scholar
     

  • Moor, A. E. et al. Spatial reconstruction of single enterocytes uncovers broad zonation along the intestinal villus axis. Cell 175, 1156–1167.e15 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chen, L. et al. TGFB1 induces fetal reprogramming and enhances intestinal regeneration. Cell Stem Cell 30, 1520–1537.e8 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Hayashi, S., Lewis, P., Pevny, L. & McMahon, A. P. Efficient gene modulation in mouse epiblast using a Sox2Cre transgenic mouse strain. Mech. Dev. 119, 93–97 (2002).

    Article 

    Google Scholar
     

  • Hayashi, H. et al. The MAD-related protein Smad7 associates with the TGFβ receptor and functions as an antagonist of TGFβ signaling. Cell 89, 1165–1173 (1997).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Tian, H. et al. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature 478, 255–259 (2011).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Serra, D. et al. Self-organization and symmetry breaking in intestinal organoid development. Nature 569, 66–72 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ko, T. C., Beauchamp, R. D., Townsend, C. M., Thompson, E. A. & Thompson, J. C. Transforming growth factor-β inhibits rat intestinal cell growth by regulating cell cycle specific gene expression. Am. J. Surg. 167, 14–20 (1994).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yin, X. et al. Niche-independent high-purity cultures of Lgr5+ intestinal stem cells and their progeny. Nat. Methods 11, 106–112 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • El Marjou, F. et al. Tissue-specific and inducible Cre-mediated recombination in the gut epithelium. Genesis 39, 186–193 (2004).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Levéen, P. et al. Induced disruption of the transforming growth factor beta type II receptor gene in mice causes a lethal inflammatory disorder that is transplantable. Blood 100, 560–568 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Li, M. et al. Mothers against decapentaplegic-related protein 2 expression in avian granulosa cells is up-regulated by transforming growth factor β during ovarian follicular development. Endocrinology 138, 3659–3665 (1997).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Guillermin, O. et al. Wnt and Src signals converge on YAP‐TEAD to drive intestinal regeneration. EMBO J. 40, e105770 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Gregorieff, A., Liu, Y., Inanlou, M. R., Khomchuk, Y. & Wrana, J. L. Yap-dependent reprogramming of Lgr5+ stem cells drives intestinal regeneration and cancer. Nature 526, 715–718 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Barry, E. R. et al. Restriction of intestinal stem cell expansion and the regenerative response by YAP. Nature 493, 106–110 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Haber, A. L. et al. A single-cell survey of the small intestinal epithelium. Nature 551, 333–339 (2017).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Cai, J. et al. The Hippo signaling pathway restricts the oncogenic potential of an intestinal regeneration program. Genes Dev. 24, 2383–2388 (2010).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Sanman, L. E. et al. Transit-amplifying cells coordinate changes in intestinal epithelial cell-type composition. Dev. Cell 56, 356–365.e9 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Stuart, T., Srivastava, A., Madad, S., Lareau, C. A. & Satija, R. Single-cell chromatin state analysis with Signac. Nat. Methods 18, 1333–1341 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • McGinnis, C. S., Murrow, L. M. & Gartner, Z. J. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst. 8, 329–337.e4 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Van den Berge, K. et al. Trajectory-based differential expression analysis for single-cell sequencing data. Nat. Commun. 11, 1201 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sato, T. et al. Single Lgr5 stem cells build crypt–villus structures in vitro without a mesenchymal niche. Nature 459, 262–265 (2009).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Gregorieff, A. et al. Expression pattern of Wnt signaling components in the adult intestine. Gastroenterology 129, 626–638 (2005).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Caldwell, L. & Patel, S. Custom revSC analysis files for Fink et al. 2024, in Nature Cell Biology. Zenodo https://doi.org/10.5281/zenodo.13315436 (2024).