Search
Close this search box.

Cellular and molecular control of vertebrate somitogenesis – Nature Reviews Molecular Cell Biology

  • Hubaud, A. & Pourquié, O. Signalling dynamics in vertebrate segmentation. Nat. Rev. Mol. Cell Biol. 15, 709–721 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Bulman, M. P. et al. Mutations in the human delta homologue, DLL3, cause axial skeletal defects in spondylocostal dysostosis. Nat. Genet. 24, 438–441 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Sparrow, D. B., Guillén-Navarro, E., Fatkin, D. & Dunwoodie, S. L. Mutation of Hairy-and-Enhancer-of-Split-7 in humans causes spondylocostal dysostosis. Hum. Mol. Genet. 17, 3761–3766 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Whittock, N. V. et al. Mutated MESP2 causes spondylocostal dysostosis in humans. Am. J. Hum. Genet. 74, 1249–1254 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McInerney-Leo, A. M. et al. Compound heterozygous mutations in RIPPLY2 associated with vertebral segmentation defects. Hum. Mol. Genet. 24, 1234–1242 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Cornier, A. S. et al. Mutations in the MESP2 gene cause spondylothoracic dysostosis/Jarcho–Levin syndrome. Am. J. Hum. Genet. 82, 1334–1341 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sparrow, D. B. et al. A mechanism for gene-environment interaction in the etiology of congenital scoliosis. Cell 149, 295–306 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Bouman, A. et al. Homozygous DMRT2 variant associates with severe rib malformations in a newborn. Am. J. Med. Genet. A 176, 1216–1221 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Turnpenny, P. D. et al. Novel mutations in DLL3, a somitogenesis gene encoding a ligand for the Notch signalling pathway, cause a consistent pattern of abnormal vertebral segmentation in spondylocostal dysostosis. J. Med. Genet. 40, 333–339 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sparrow, D. B. et al. Autosomal dominant spondylocostal dysostosis is caused by mutation in TBX6. Hum. Mol. Genet. 22, 1625–1631 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Mohamed, J. Y. et al. Mutations in MEOX1, encoding mesenchyme homeobox 1, cause Klippel–Feil anomaly. Am. J. Hum. Genet. 92, 157–161 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bayrakli, F. et al. Mutation in MEOX1 gene causes a recessive Klippel–Feil syndrome subtype. BMC Genet. 14, 95 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sparrow, D. B. et al. Mutation of the LUNATIC FRINGE gene in humans causes spondylocostal dysostosis with a severe vertebral phenotype. Am. J. Hum. Genet. 78, 28–37 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Gomez, C. et al. Control of segment number in vertebrate embryos. Nature 454, 335–339 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gomez, C. & Pourquié, O. Developmental control of segment numbers in vertebrates. J. Exp. Zool. B Mol. Dev. Evol. 312, 533–544 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuan, C.-Y. K., Tannahill, D., Cook, G. M. W. & Keynes, R. J. Somite polarity and segmental patterning of the peripheral nervous system. Mech. Dev. 121, 1055–1068 (2004).

    PubMed 

    Google Scholar
     

  • Fleming, A., Kishida, M. G., Kimmel, C. B. & Keynes, R. J. Building the backbone: the development and evolution of vertebral patterning. Development 142, 1733–1744 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Scaal, M. Early development of the vertebral column. Semin. Cell Dev. Biol. 49, 83–91 (2016).

    PubMed 

    Google Scholar
     

  • Oates, A. C., Morelli, L. G. & Ares, S. Patterning embryos with oscillations: structure, function and dynamics of the vertebrate segmentation clock. Development 139, 625–639 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Diaz-Cuadros, M. & Pourquie, O. In vitro systems: a new window to the segmentation clock. Dev. Growth Differ. 63, 140–153 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lauschke, V. M., Tsiairis, C. D., François, P. & Aulehla, A. Scaling of embryonic patterning based on phase-gradient encoding. Nature 493, 101–105 (2013).

    ADS 
    PubMed 

    Google Scholar
     

  • Hubaud, A., Regev, I., Mahadevan, L. & Pourquié, O. Excitable dynamics and yap-dependent mechanical cues drive the segmentation clock. Cell 171, 668–682.e11 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simsek, M. F. & Özbudak, E. M. Spatial fold change of FGF signaling encodes positional information for segmental determination in zebrafish. Cell Rep. 24, 66–78.e8 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Matsumiya, M., Tomita, T., Yoshioka-Kobayashi, K., Isomura, A. & Kageyama, R. ES cell-derived presomitic mesoderm-like tissues for analysis of synchronized oscillations in the segmentation clock. Development 145, dev156836 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chu, L.-F. et al. An in vitro human segmentation clock model derived from embryonic stem cells. Cell Rep. 28, 2247–2255.e5 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matsuda, M. et al. Recapitulating the human segmentation clock with pluripotent stem cells. Nature 580, 124–129 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Diaz-Cuadros, M. et al. In vitro characterization of the human segmentation clock. Nature 580, 113–118 (2020). Together with references 25 and 26, this article establishes in vitro systems using human PSCs to identify the human segmentation clock.

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van den Brink, S. C. et al. Single-cell and spatial transcriptomics reveal somitogenesis in gastruloids. Nature 582, 405–409 (2020).

    ADS 
    PubMed 

    Google Scholar
     

  • Veenvliet, J. V. et al. Mouse embryonic stem cells self-organize into trunk-like structures with neural tube and somites. Science 370, eaba4937 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Sanaki-Matsumiya, M. et al. Periodic formation of epithelial somites from human pluripotent stem cells. Nat. Commun. 13, 2325 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miao, Y. et al. Reconstruction and deconstruction of human somitogenesis in vitro. Nature 614, 500–508 (2023). This article establishes two organoid models of human somite formation, called somitoid and segmentoid, and reveals that cell sorting underlies somite anteroposterior polarity patterning.

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yamanaka, Y. et al. Reconstituting human somitogenesis in vitro. Nature 614, 509–520 (2023). Here, the authors establish an organoid model of human somite formation called axioloid, characterize the model in detail and identify a crucial role of retinoic acid in somite epithelization in vitro.

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yaman, Y. I. & Ramanathan, S. Controlling human organoid symmetry breaking reveals signaling gradients drive segmentation clock waves. Cell 186, 497–512 (2023). This article reports the use of bioengineering tools to establish an organoid model of human trunk consisting of the neural tube and somites and delineates roles of signalling gradients in regulating the wave dynamics of clock oscillations.


    Google Scholar
     

  • Schoenwolf, G. C., Bleyl, S. B., Brauer, P. R. & Francis-West, P. H. Larsen’s Human Embryology E-Book (Elsevier Health Sciences, 2020).

  • Palmeirim, I., Henrique, D., Ish-Horowicz, D. & Pourquié, O. Avian hairy gene expression identifies a molecular clock linked to vertebrate segmentation and somitogenesis. Cell 91, 639–648 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • Masamizu, Y. et al. Real-time imaging of the somite segmentation clock: revelation of unstable oscillators in the individual presomitic mesoderm cells. Proc. Natl Acad. Sci. USA 103, 1313–1318 (2006).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aulehla, A. et al. A β-catenin gradient links the clock and wavefront systems in mouse embryo segmentation. Nat. Cell Biol. 10, 186 (2007).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Webb, A. B. et al. Persistence, period and precision of autonomous cellular oscillators from the zebrafish segmentation clock. eLife 5, e08438 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsiairis, C. D. & Aulehla, A. Self-organization of embryonic genetic oscillators into spatiotemporal wave patterns. Cell 164, 656–667 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sonnen, K. F. et al. Modulation of phase shift between wnt and Notch signaling oscillations controls mesoderm segmentation. Cell 172, 1079–1090.e12 (2018). The authors develop a microfluidic device to entrain oscillations of WNT and Notch signalling and propose that the phase relationship between clock sub-oscillators encodes positional information for segmental determination.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chal, J. et al. Differentiation of pluripotent stem cells to muscle fiber to model Duchenne muscular dystrophy. Nat. Biotechnol. 33, 962–969 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Iimura, T., Yang, X., Weijer, C. J. & Pourquié, O. Dual mode of paraxial mesoderm formation during chick gastrulation. Proc. Natl Acad. Sci. USA 104, 2744–2749 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tzouanacou, E., Wegener, A., Wymeersch, F. J., Wilson, V. & Nicolas, J.-F. Redefining the progression of lineage segregations during mammalian embryogenesis by clonal analysis. Dev. Cell 17, 365–376 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Gouti, M. et al. A gene regulatory network balances neural and mesoderm specification during vertebrate trunk development. Dev. Cell 41, 243–261.e7 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Attardi, A. et al. Neuromesodermal progenitors are a conserved source of spinal cord with divergent growth dynamics. Development 145, dev166728 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guillot, C., Djeffal, Y., Michaut, A., Rabe, B. & Pourquié, O. Dynamics of primitive streak regression controls the fate of neuromesodermal progenitors in the chicken embryo. eLife 10, e64819 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aulehla, A. et al. Wnt3a plays a major role in the segmentation clock controlling somitogenesis. Dev. Cell 4, 395–406 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Chapman, S. C., Brown, R., Lees, L., Schoenwolf, G. C. & Lumsden, A. Expression analysis of chick Wnt and frizzled genes and selected inhibitors in early chick patterning. Dev. Dyn. 229, 668–676 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Dubrulle, J. & Pourquié, O. fgf8 mRNA decay establishes a gradient that couples axial elongation to patterning in the vertebrate embryo. Nature 427, 419–422 (2004).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Streit, A. & Stern, C. D. Establishment and maintenance of the border of the neural plate in the chick: involvement of FGF and BMP activity. Mech. Dev. 82, 51–66 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Robertson, E. J. Dose-dependent Nodal/Smad signals pattern the early mouse embryo. Semin. Cell Dev. Biol. 32, 73–79 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Zinski, J., Tajer, B. & Mullins, M. C. TGF-β family signaling in early vertebrate development. Cold Spring Harb. Perspect. Biol. 10, a033274 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Loh, K. M. et al. Mapping the pairwise choices leading from pluripotency to human bone, heart, and other mesoderm cell types. Cell 166, 451–467 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakajima, T. et al. Modeling human somite development and fibrodysplasia ossificans progressiva with induced pluripotent stem cells. Development 145, dev165431 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xi, H. et al. In vivo human somitogenesis guides somite development from hPSCs. Cell Rep. 18, 1573–1585 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beccari, L. et al. Multi-axial self-organization properties of mouse embryonic stem cells into gastruloids. Nature 562, 272–276 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Moris, N. et al. An in vitro model of early anteroposterior organization during human development. Nature 582, 410–415 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Budjan, C. et al. Paraxial mesoderm organoids model development of human somites. eLife 11, e68925 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gribaudo, S. et al. Self-organizing models of human trunk organogenesis recapitulate spinal cord and spine co-morphogenesis. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01956-9 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Anand, G. M. et al. Controlling organoid symmetry breaking uncovers an excitable system underlying human axial elongation. Cell 186, 497–512.e23 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karzbrun, E. et al. Human neural tube morphogenesis in vitro by geometric constraints. Nature 599, 268–272 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gjorevski, N. et al. Tissue geometry drives deterministic organoid patterning. Science 375, eaaw9021 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Soroldoni, D. et al. Genetic oscillations. A doppler effect in embryonic pattern formation. Science 345, 222–225 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Delaune, E. A., François, P., Shih, N. P. & Amacher, S. L. Single-cell-resolution imaging of the impact of Notch signaling and mitosis on segmentation clock dynamics. Dev. Cell 23, 995–1005 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pourquié, O. A brief history of the segmentation clock. Dev. Biol. 485, 24–36 (2022).

    PubMed 

    Google Scholar
     

  • Matsuda, M. et al. Species-specific segmentation clock periods are due to differential biochemical reaction speeds. Science 369, 1450–1455 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Diaz-Cuadros, M. et al. Metabolic regulation of species-specific developmental rates. Nature 613, 550–557 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lázaro, J. et al. A stem cell zoo uncovers intracellular scaling of developmental tempo across mammals. Cell Stem Cell 30, 907–908 (2023).


    Google Scholar
     

  • Krol, A. J. et al. Evolutionary plasticity of segmentation clock networks. Development 138, 2783–2792 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prince, V. E. et al. Zebrafish lunatic fringe demarcates segmental boundaries. Mech. Dev. 105, 175–180 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • McGrew, M. J., Dale, J. K., Fraboulet, S. & Pourquié, O. The lunatic fringe gene is a target of the molecular clock linked to somite segmentation in avian embryos. Curr. Biol. 8, 979–982 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • Forsberg, H., Crozet, F. & Brown, N. A. Waves of mouse lunatic fringe expression, in four-hour cycles at two-hour intervals, precede somite boundary formation. Curr. Biol. 8, 1027–1030 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • Aulehla, A. & Johnson, R. L. Dynamic expression of lunatic fringe suggests a link between Notch signaling and an autonomous cellular oscillator driving somite segmentation. Dev. Biol. 207, 49–61 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Dale, J. K. et al. Periodic Notch inhibition by lunatic fringe underlies the chick segmentation clock. Nature 421, 275–278 (2003).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Evrard, Y. A., Lun, Y., Aulehla, A., Gan, L. & Johnson, R. L. Lunatic fringe is an essential mediator of somite segmentation and patterning. Nature 394, 377–381 (1998).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Morales, A. V., Yasuda, Y. & Ish-Horowicz, D. Periodic lunatic fringe expression is controlled during segmentation by a cyclic transcriptional enhancer responsive to Notch signaling. Dev. Cell 3, 63–74 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Sanchez, P. G. L. et al. Arnold tongue entrainment reveals dynamical principles of the embryonic segmentation clock. eLife 11, e79575 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maroto, M., Dale, J. K., Dequéant, M.-L., Petit, A.-C. & Pourquié, O. Synchronised cycling gene oscillations in presomitic mesoderm cells require cell-cell contact. Int. J. Dev. Biol. 49, 309–315 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Lewis, J. Autoinhibition with transcriptional delay. Curr. Biol. 13, 1398–1408 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Hirata, H. et al. Oscillatory expression of the bHLH factor Hes1 regulated by a negative feedback loop. Science 298, 840–843 (2002).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bessho, Y., Hirata, H., Masamizu, Y. & Kageyama, R. Periodic repression by the bHLH factor Hes7 is an essential mechanism for the somite segmentation clock. Genes Dev. 17, 1451–1456 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harima, Y., Takashima, Y., Ueda, Y., Ohtsuka, T. & Kageyama, R. Accelerating the tempo of the segmentation clock by reducing the number of introns in the Hes7 gene. Cell Rep. 3, 1–7 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Hirata, H. et al. Instability of Hes7 protein is crucial for the somite segmentation clock. Nat. Genet. 36, 750–754 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Takashima, Y., Ohtsuka, T., González, A., Miyachi, H. & Kageyama, R. Intronic delay is essential for oscillatory expression in the segmentation clock. Proc. Natl Acad. Sci. USA 108, 3300–3305 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ay, A., Knierer, S., Sperlea, A., Holland, J. & Özbudak, E. M. Short-lived Her proteins drive robust synchronized oscillations in the zebrafish segmentation clock. Development 140, 3244–3253 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Schröter, C. et al. Topology and dynamics of the zebrafish segmentation clock core circuit. PLoS Biol. 10, e1001364 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dale, J. K. et al. Oscillations of the snail genes in the presomitic mesoderm coordinate segmental patterning and morphogenesis in vertebrate somitogenesis. Dev. Cell 10, 355–366 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Zinani, O. Q. H., Keseroğlu, K., Ay, A. & Özbudak, E. M. Pairing of segmentation clock genes drives robust pattern formation. Nature 589, 431–436 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Venzin, O. F. & Oates, A. C. What are you synching about? Emerging complexity of Notch signaling in the segmentation clock. Dev. Biol. 460, 40–54 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Yoshioka-Kobayashi, K. et al. Coupling delay controls synchronized oscillation in the segmentation clock. Nature 580, 119–123 (2020). This article establishes a live imaging system of clock oscillations with single-cell resolution in the mouse embryo and identifies a coupling delay control mechanism by Lfng in maintaining synchronized clock oscillations.

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, Y. J. et al. Notch signalling and the synchronization of the somite segmentation clock. Nature 408, 475–479 (2000).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Horikawa, K., Ishimatsu, K., Yoshimoto, E., Kondo, S. & Takeda, H. Noise-resistant and synchronized oscillation of the segmentation clock. Nature 441, 719–723 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mara, A., Schroeder, J., Chalouni, C. & Holley, S. A. Priming, initiation and synchronization of the segmentation clock by deltaD and deltaC. Nat. Cell Biol. 9, 523–530 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Herrgen, L. et al. Intercellular coupling regulates the period of the segmentation clock. Curr. Biol. 20, 1244–1253 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Okubo, Y. et al. Lfng regulates the synchronized oscillation of the mouse segmentation clock via trans-repression of Notch signalling. Nat. Commun. 3, 1141 (2012).

    ADS 
    PubMed 

    Google Scholar
     

  • Bone, R. A. et al. Spatiotemporal oscillations of Notch1, Dll1 and NICD are coordinated across the mouse PSM. Development 141, 4806–4816 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shimojo, H. et al. Oscillatory control of delta-like1 in cell interactions regulates dynamic gene expression and tissue morphogenesis. Genes Dev. 30, 102–116 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Geffers, I. et al. Divergent functions and distinct localization of the Notch ligands DLL1 and DLL3 vivo. J. Cell Biol. 178, 465–476 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ladi, E. et al. The divergent DSL ligand Dll3 does not activate Notch signaling but cell autonomously attenuates signaling induced by other DSL ligands. J. Cell Biol. 170, 983–992 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wright, G. J. et al. DeltaC and DeltaD interact as Notch ligands in the zebrafish segmentation clock. Development 138, 2947–2956 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Oates, A. C. Waiting on the fringe: cell autonomy and signaling delays in segmentation clocks. Curr. Opin. Genet. Dev. 63, 61–70 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Liao, B.-K., Jörg, D. J. & Oates, A. C. Faster embryonic segmentation through elevated delta–Notch signalling. Nat. Commun. 7, 11861 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morelli, L. G. et al. Delayed coupling theory of vertebrate segmentation. HFSP J. 3, 55–66 (2009).

    PubMed 

    Google Scholar
     

  • Kim, W. et al. The period of the somite segmentation clock is sensitive to Notch activity. Mol. Biol. Cell 22, 3541–3549 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wiedermann, G. et al. A balance of positive and negative regulators determines the pace of the segmentation clock. eLife 4, e05842 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carrieri, F. A. et al. CDK1 and CDK2 regulate NICD1 turnover and the periodicity of the segmentation clock. EMBO Rep. 20, e46436 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takagi, A., Isomura, A., Yoshioka-Kobayashi, K. & Kageyama, R. Dynamic delta-like1 expression in presomitic mesoderm cells during somite segmentation. Gene Expr. Patterns 35, 119094 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Ay, A. et al. Spatial gradients of protein-level time delays set the pace of the traveling segmentation clock waves. Development 141, 4158–4167 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ishimatsu, K., Takamatsu, A. & Takeda, H. Emergence of traveling waves in the zebrafish segmentation clock. Development 137, 1595–1599 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Gibb, S. et al. Interfering with Wnt signalling alters the periodicity of the segmentation clock. Dev. Biol. 330, 21–31 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keskin, S. et al. Noise in the vertebrate segmentation clock is boosted by time delays but tamed by Notch signaling. Cell Rep. 23, 2175–2185.e4 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferjentsik, Z. et al. Notch is a critical component of the mouse somitogenesis oscillator and is essential for the formation of the somites. PLoS Genet. 5, e1000662 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Falk, H. J., Tomita, T., Mönke, G., McDole, K. & Aulehla, A. Imaging the onset of oscillatory signaling dynamics during mouse embryo gastrulation. Development 149, dev200083 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Riedel-Kruse, I. H., Müller, C. & Oates, A. C. Synchrony dynamics during initiation, failure, and rescue of the segmentation clock. Science 317, 1911–1915 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Aulehla, A. & Pourquié, O. Signaling gradients during paraxial mesoderm development. Cold Spring Harb. Perspect. Biol. 2, a000869 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Niederreither, K., McCaffery, P., Dräger, U. C., Chambon, P. & Dollé, P. Restricted expression and retinoic acid-induced downregulation of the retinaldehyde dehydrogenase type 2 (RALDH-2) gene during mouse development. Mech. Dev. 62, 67–78 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • Sakai, Y. et al. The retinoic acid-inactivating enzyme CYP26 is essential for establishing an uneven distribution of retinoic acid along the anterio-posterior axis within the mouse embryo. Genes Dev. 15, 213–225 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oginuma, M. et al. Intracellular pH controls WNT downstream of glycolysis in amniote embryos. Nature 584, 98–101 (2020). This paper identifies that glycolysis regulates WNT signalling in the tailbud by modulating intracellular pH and describes cascades of regulation that links gradients of FGF, glycolysis and WNT signalling along the PSM.

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bulusu, V. et al. Spatiotemporal analysis of a glycolytic activity gradient linked to mouse embryo mesoderm development. Dev. Cell 40, 331–341.e4 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oginuma, M. et al. A gradient of glycolytic activity coordinates FGF and Wnt signaling during elongation of the body axis in amniote embryos. Dev. Cell 40, 342–353.e10 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miyazawa, H. et al. Glycolytic flux-signaling controls mouse embryo mesoderm development. eLife 11, e83299 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Niwa, Y. et al. The initiation and propagation of Hes7 oscillation are cooperatively regulated by Fgf and Notch signaling in the somite segmentation clock. Dev. Cell 13, 298–304 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Kawamura, A. et al. Zebrafish hairy/enhancer of split protein links FGF signaling to cyclic gene expression in the periodic segmentation of somites. Genes Dev. 19, 1156–1161 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gibb, S., Maroto, M. & Dale, J. K. The segmentation clock mechanism moves up a Notch. Trends Cell Biol. 20, 593–600 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wahl, M. B., Deng, C., Lewandoski, M. & Pourquié, O. FGF signaling acts upstream of the NOTCH and WNT signaling pathways to control segmentation clock oscillations in mouse somitogenesis. Development 134, 4033–4041 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Anderson, M. J., Magidson, V., Kageyama, R. & Lewandoski, M. Fgf4 maintains Hes7 levels critical for normal somite segmentation clock function. eLife 9, e55608 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dequéant, M.-L. et al. A complex oscillating network of signaling genes underlies the mouse segmentation clock. Science 314, 1595–1598 (2006).

    ADS 
    PubMed 

    Google Scholar
     

  • Niwa, Y. et al. Different types of oscillations in Notch and Fgf signaling regulate the spatiotemporal periodicity of somitogenesis. Genes Dev. 25, 1115–1120 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simsek, M. F. et al. Periodic inhibition of Erk activity drives sequential somite segmentation. Nature 613, 153–159 (2022). This article demonstrates the oscillatory dynamics of phosphorylated Erk gradient in zebrafish, shows that periodic FGF inhibition is sufficient to bring about sequential segmentation without the segmentation clock and proposes a segmentation model whereby the oscillatory clock serves as an upstream input to the wavefront.

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stulberg, M. J., Lin, A., Zhao, H. & Holley, S. A. Crosstalk between Fgf and Wnt signaling in the zebrafish tailbud. Dev. Biol. 369, 298–307 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cooke, J. & Zeeman, E. C. A clock and wavefront model for control of the number of repeated structures during animal morphogenesis. J. Theor. Biol. 58, 455–476 (1976).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dubrulle, J., McGrew, M. J. & Pourquié, O. FGF signaling controls somite boundary position and regulates segmentation clock control of spatiotemporal hox gene activation. Cell 106, 219–232 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • Sawada, A. et al. Fgf/MAPK signalling is a crucial positional cue in somite boundary formation. Development 128, 4873–4880 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • Dunty, W. C. Jr et al. Wnt3a/beta-catenin signaling controls posterior body development by coordinating mesoderm formation and segmentation. Development 135, 85–94 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Naiche, L. A., Holder, N. & Lewandoski, M. FGF4 and FGF8 comprise the wavefront activity that controls somitogenesis. Proc. Natl Acad. Sci. USA 108, 4018–4023 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bajard, L. et al. Wnt-regulated dynamics of positional information in zebrafish somitogenesis. Development 141, 1381–1391 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Akiyama, R., Masuda, M., Tsuge, S., Bessho, Y. & Matsui, T. An anterior limit of FGF/Erk signal activity marks the earliest future somite boundary in zebrafish. Development 141, 1104–1109 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Sawada, A. et al. Zebrafish Mesp family genes, mesp-a and mesp-b are segmentally expressed in the presomitic mesoderm, and Mesp-b confers the anterior identity to the developing somites. Development 127, 1691–1702 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Saga, Y., Hata, N., Koseki, H. & Taketo, M. M. Mesp2: a novel mouse gene expressed in the presegmented mesoderm and essential for segmentation initiation. Genes Dev. 11, 1827–1839 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • Saga, Y. The mechanism of somite formation in mice. Curr. Opin. Genet. Dev. 22, 331–338 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Yasuhiko, Y. et al. Tbx6-mediated Notch signaling controls somite-specific Mesp2 expression. Proc. Natl Acad. Sci. USA 103, 3651–3656 (2006).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oginuma, M., Niwa, Y., Chapman, D. L. & Saga, Y. Mesp2 and Tbx6 cooperatively create periodic patterns coupled with the clock machinery during mouse somitogenesis. Development 135, 2555–2562 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Takahashi, Y. et al. Mesp2 initiates somite segmentation through the Notch signalling pathway. Nat. Genet. 25, 390–396 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Morimoto, M., Takahashi, Y., Endo, M. & Saga, Y. The Mesp2 transcription factor establishes segmental borders by suppressing Notch activity. Nature 435, 354–359 (2005).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Morimoto, M. et al. The negative regulation of Mesp2 by mouse Ripply2 is required to establish the rostro-caudal patterning within a somite. Development 134, 1561–1569 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Takahashi, J. et al. Analysis of Ripply1/2-deficient mouse embryos reveals a mechanism underlying the rostro-caudal patterning within a somite. Dev. Biol. 342, 134–145 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, W., Ajima, R., Ninomiya, Y. & Saga, Y. Segmental border is defined by Ripply2-mediated Tbx6 repression independent of Mesp2. Dev. Biol. 400, 105–117 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Moreno, T. A., Jappelli, R., Izpisúa Belmonte, J. C. & Kintner, C. Retinoic acid regulation of the Mesp–Ripply feedback loop during vertebrate segmental patterning. Dev. Biol. 315, 317–330 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wanglar, C., Takahashi, J., Yabe, T. & Takada, S. Tbx protein level critical for clock-mediated somite positioning is regulated through interaction between Tbx and Ripply. PLoS ONE 9, e107928 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yabe, T., Hoshijima, K., Yamamoto, T. & Takada, S. Quadruple zebrafish mutant reveals different roles of Mesp genes in somite segmentation between mouse and zebrafish. Development 143, 2842–2852 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kinoshita, H. et al. Functional roles of the Ripply-mediated suppression of segmentation gene expression at the anterior presomitic mesoderm in zebrafish. Mech. Dev. 152, 21–31 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Ban, H. et al. Transcriptional autoregulation of zebrafish tbx6 is required for somite segmentation. Development 146, dev177063 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Yabe, T., Uriu, K. & Takada, S. Ripply suppresses Tbx6 to induce dynamic-to-static conversion in somite segmentation. Nat. Commun. 14, 2115 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roy, M. N., Prince, V. E. & Ho, R. K. Heat shock produces periodic somitic disturbances in the zebrafish embryo. Mech. Dev. 85, 27–34 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Elsdale, T., Pearson, M. & Whitehead, M. Abnormalities in somite segmentation following heat shock to Xenopus embryos. Development 35, 625–635 (1976).

    CAS 

    Google Scholar
     

  • Primmett, D. R., Norris, W. E., Carlson, G. J., Keynes, R. J. & Stern, C. D. Periodic segmental anomalies induced by heat shock in the chick embryo are associated with the cell cycle. Development 105, 119–130 (1989).

    CAS 
    PubMed 

    Google Scholar
     

  • Goldbeter, A., Gonze, D. & Pourquié, O. Sharp developmental thresholds defined through bistability by antagonistic gradients of retinoic acid and FGF signaling. Dev. Dyn. 236, 1495–1508 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Boareto, M., Tomka, T. & Iber, D. Positional information encoded in the dynamic differences between neighboring oscillators during vertebrate segmentation. Cell Dev. 168, 203737 (2021).

    CAS 

    Google Scholar
     

  • Shih, N. P., François, P., Delaune, E. A. & Amacher, S. L. Dynamics of the slowing segmentation clock reveal alternating two-segment periodicity. Development 142, 1785–1793 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cotterell, J., Robert-Moreno, A. & Sharpe, J. A local, self-organizing reaction–diffusion model can explain somite patterning in embryos. Cell Syst. 1, 257–269 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Aoyama, H. & Asamoto, K. The developmental fate of the rostral/caudal half of a somite for vertebra and rib formation: experimental confirmation of the resegmentation theory using chick–quail chimeras. Mech. Dev. 99, 71–82 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Keynes, R. J. & Stern, C. D. Segmentation in the vertebrate nervous system. Nature 310, 786–789 (1984).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Aoyama, H. & Asamoto, K. Determination of somite cells: independence of cell differentiation and morphogenesis. Development 104, 15–28 (1988).

    CAS 
    PubMed 

    Google Scholar
     

  • Nakajima, Y., Morimoto, M., Takahashi, Y., Koseki, H. & Saga, Y. Identification of Epha4 enhancer required for segmental expression and the regulation by Mesp2. Development 133, 2517–2525 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Koizumi, K. et al. The role of presenilin 1 during somite segmentation. Development 128, 1391–1402 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • Oginuma, M. et al. The oscillation of Notch activation, but not its boundary, is required for somite border formation and rostral–caudal patterning within a somite. Development 137, 1515–1522 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Sasaki, N., Kiso, M., Kitagawa, M. & Saga, Y. The repression of Notch signaling occurs via the destabilization of mastermind-like 1 by Mesp2 and is essential for somitogenesis. Development 138, 55–64 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Bussen, M. et al. The T-box transcription factor Tbx18 maintains the separation of anterior and posterior somite compartments. Genes Dev. 18, 1209–1221 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hughes, D. S. T., Keynes, R. J. & Tannahill, D. Extensive molecular differences between anterior- and posterior-half-sclerotomes underlie somite polarity and spinal nerve segmentation. BMC Dev. Biol. 9, 30 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schrägle, J., Huang, R., Christ, B. & Pröls, F. Control of the temporal and spatial Uncx4.1 expression in the paraxial mesoderm of avian embryos. Anat. Embryol. 208, 323–332 (2004).


    Google Scholar
     

  • Farin, H. F., Mansouri, A., Petry, M. & Kispert, A. T-box protein Tbx18 interacts with the paired box protein Pax3 in the development of the paraxial mesoderm. J. Biol. Chem. 283, 25372–25380 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Feller, J., Schneider, A., Schuster-Gossler, K. & Gossler, A. Noncyclic Notch activity in the presomitic mesoderm demonstrates uncoupling of somite compartmentalization and boundary formation. Genes Dev. 22, 2166–2171 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burgess, R., Rawls, A., Brown, D., Bradley, A. & Olson, E. N. Requirement of the paraxis gene for somite formation and musculoskeletal patterning. Nature 384, 570–573 (1996).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Nomura-Kitabayashi, A. et al. Hypomorphic Mesp allele distinguishes establishment of rostrocaudal polarity and segment border formation in somitogenesis. Development 129, 2473–2481 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Dias, A. S., de Almeida, I., Belmonte, J. M., Glazier, J. A. & Stern, C. D. Somites without a clock. Science 343, 791–795 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Horikawa, K., Radice, G., Takeichi, M. & Chisaka, O. Adhesive subdivisions intrinsic to the epithelial somites. Dev. Biol. 215, 182–189 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Bessho, Y. et al. Dynamic expression and essential functions of Hes7 in somite segmentation. Genes. Dev. 15, 2642–2647 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sari, D. W. K. et al. Time-lapse observation of stepwise regression of Erk activity in zebrafish presomitic mesoderm. Sci. Rep. 8, 4335 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Naganathan, S. R. & Oates, A. C. Patterning and mechanics of somite boundaries in zebrafish embryos. Semin. Cell Dev. Biol. 107, 170–178 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Barrios, A. et al. Eph/Ephrin signaling regulates the mesenchymal-to-epithelial transition of the paraxial mesoderm during somite morphogenesis. Curr. Biol. 13, 1571–1582 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Watanabe, T., Sato, Y., Saito, D., Tadokoro, R. & Takahashi, Y. EphrinB2 coordinates the formation of a morphological boundary and cell epithelialization during somite segmentation. Proc. Natl Acad. Sci. USA 106, 7467–7472 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jülich, D., Mould, A. P., Koper, E. & Holley, S. A. Control of extracellular matrix assembly along tissue boundaries via integrin and Eph/Ephrin signaling. Development 136, 2913–2921 (2009).

    PubMed 

    Google Scholar
     

  • Koshida, S. et al. Integrin-α5-dependent fibronectin accumulation for maintenance of somite boundaries in zebrafish embryos. Dev. Cell 8, 587–598 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Nakaya, Y., Kuroda, S., Katagiri, Y. T., Kaibuchi, K. & Takahashi, Y. Mesenchymal-epithelial transition during somitic segmentation is regulated by differential roles of Cdc42 and Rac1. Dev. Cell 7, 425–438 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Martins, G. G. et al. Dynamic 3D cell rearrangements guided by a fibronectin matrix underlie somitogenesis. PLoS ONE 4, e7429 (2009).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rifes, P. et al. Redefining the role of ectoderm in somitogenesis: a player in the formation of the fibronectin matrix of presomitic mesoderm. Development 134, 3155–3165 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Rifes, P. & Thorsteinsdóttir, S. Extracellular matrix assembly and 3D organization during paraxial mesoderm development in the chick embryo. Dev. Biol. 368, 370–381 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Rowton, M. et al. Regulation of mesenchymal-to-epithelial transition by PARAXIS during somitogenesis. Dev. Dyn. 242, 1332–1344 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Sánchez, R. S. & Sánchez, S. S. Paraxis is required for somite morphogenesis and differentiation in Xenopus laevis. Dev. Dyn. 244, 973–987 (2015).

    PubMed 

    Google Scholar
     

  • Jülich, D. et al. Cross-scale integrin regulation organizes ECM and tissue topology. Dev. Cell 34, 33–44 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chal, J., Guillot, C. & Pourquié, O. PAPC couples the segmentation clock to somite morphogenesis by regulating N-cadherin-dependent adhesion. Development 144, 664–676 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McMillen, P., Chatti, V., Jülich, D. & Holley, S. A. A sawtooth pattern of cadherin 2 stability mechanically regulates somite morphogenesis. Curr. Biol. 26, 542–549 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rhee, J., Takahashi, Y., Saga, Y., Wilson-Rawls, J. & Rawls, A. The protocadherin papc is involved in the organization of the epithelium along the segmental border during mouse somitogenesis. Dev. Biol. 254, 248–261 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Nelemans, B. K. A., Schmitz, M., Tahir, H., Merks, R. M. H. & Smit, T. H. Somite division and new boundary formation by mechanical strain. iScience 23, 100976 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adhyapok, P. et al. A mechanical model of early somite segmentation. iScience 24, 102317 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Naganathan, S. R., Popović, M. & Oates, A. C. Left-right symmetry of zebrafish embryos requires somite surface tension. Nature 605, 516–521 (2022). Here, the authors demonstrate that initially imprecise somites are progressively adjusted by surface tension to achieve bilateral symmetry in zebrafish and show that the adjustment is independent of the molecular clock, highlighting roles of mechanics in achieving precise tissue shapes.

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Vilhais-Neto, G. C. et al. Rere controls retinoic acid signalling and somite bilateral symmetry. Nature 463, 953–957 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ishimatsu, K. et al. Size-reduced embryos reveal a gradient scaling-based mechanism for zebrafish somite formation. Development 145, dev161257 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eckalbar, W. L., Fisher, R. E., Rawls, A. & Kusumi, K. Scoliosis and segmentation defects of the vertebrae. Wiley Interdiscip. Rev. Dev. Biol. 1, 401–423 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Alexander, P. G. & Tuan, R. S. Role of environmental factors in axial skeletal dysmorphogenesis. Birth Defects Res. C. Embryo Today 90, 118–132 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Offiah, A. et al. Pilot assessment of a radiologic classification system for segmentation defects of the vertebrae. Am. J. Med. Genet. A 152A, 1357–1371 (2010).

    PubMed 

    Google Scholar
     

  • Hou, D., Kang, N., Yin, P. & Hai, Y. Abnormalities associated with congenital scoliosis in high-altitude geographic regions. Int. Orthop. 42, 575–581 (2018).

    PubMed 

    Google Scholar