Search
Close this search box.

Cell cycle-dependent activation of proneural transcription factor expression and reactive gliosis in rat Müller glia – Scientific Reports

  • Lenkowski, J. R. & Raymond, P. A. Müller glia: Stem cells for generation and regeneration of retinal neurons in teleost fish. Prog. Retin Eye Res. 40, 94–123. https://doi.org/10.1016/j.preteyeres.2013.12.007 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Bringmann, A. et al. Müller cells in the healthy and diseased retina. Prog. Retin Eye Res. 25, 397–424. https://doi.org/10.1016/j.preteyeres.2006.05.003 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Karl, M. O. et al. Stimulation of neural regeneration in the mouse retina. Proc. Natl. Acad. Sci. USA 105, 19508–19513. https://doi.org/10.1073/pnas.0807453105 (2008).

    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Löffler, K., Schäfer, P., Völkner, M., Holdt, T. & Karl, M. O. Age-dependent Müller glia neurogenic competence in the mouse retina. Glia 63, 1809–1824. https://doi.org/10.1002/glia.22846 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Hamon, A. et al. Linking YAP to Müller glia quiescence exit in the degenerative retina. Cell Rep. 27, 1712-1725 e1716. https://doi.org/10.1016/j.celrep.2019.04.045 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rueda, E. M. et al. The Hippo pathway blocks mammalian retinal Müller glial cell reprogramming. Cell Rep 27(1637–1649), e1636. https://doi.org/10.1016/j.celrep.2019.04.047 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Pollak, J. et al. ASCL1 reprograms mouse Müller glia into neurogenic retinal progenitors. Development 140, 2619–2631. https://doi.org/10.1242/dev.091355 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ueki, Y. et al. Transgenic expression of the proneural transcription factor Ascl1 in Müller glia stimulates retinal regeneration in young mice. Proc. Natl. Acad. Sci. USA 112, 13717–13722. https://doi.org/10.1073/pnas.1510595112 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Jorstad, N. L. et al. Stimulation of functional neuronal regeneration from Müller glia in adult mice. Nature 548, 103–107. https://doi.org/10.1038/nature23283 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Hoang, T. et al. Gene regulatory networks controlling vertebrate retinal regeneration. Science https://doi.org/10.1126/science.abb8598 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Palazzo, I. et al. NFkB-signaling promotes glial reactivity and suppresses Müller glia-mediated neuron regeneration in the mammalian retina. Glia 70, 1380–1401. https://doi.org/10.1002/glia.24181 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thummel, R., Kassen, S. C., Montgomery, J. E., Enright, J. M. & Hyde, D. R. Inhibition of Müller glial cell division blocks regeneration of the light-damaged zebrafish retina. Dev. Neurobiol. 68, 392–408. https://doi.org/10.1002/dneu.20596 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thomas, J. L., Ranski, A. H., Morgan, G. W. & Thummel, R. Reactive gliosis in the adult zebrafish retina. Exp. Eye Res. 143, 98–109. https://doi.org/10.1016/j.exer.2015.09.017 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Joly, S., Pernet, V., Samardzija, M. & Grimm, C. Pax6-positive Müller glia cells express cell cycle markers but do not proliferate after photoreceptor injury in the mouse retina. Glia 59, 1033–1046. https://doi.org/10.1002/glia.21174 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Suga, A., Sadamoto, K., Fujii, M., Mandai, M. & Takahashi, M. Proliferation potential of Müller glia after retinal damage varies between mouse strains. PloS One 9, e94556. https://doi.org/10.1371/journal.pone.0094556 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Nomura-Komoike, K., Saitoh, F., Komoike, Y. & Fujieda, H. DNA damage response in proliferating Müller glia in the mammalian retina. Invest. Ophthalmol. Vis. Sci. 57, 1169–1182. https://doi.org/10.1167/iovs.15-18101 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kato, M., Sudou, N., Nomura-Komoike, K., Iida, T. & Fujieda, H. Age- and cell cycle-related expression patterns of transcription factors and cell cycle regulators in Müller glia. Sci. Rep. 12, 19584. https://doi.org/10.1038/s41598-022-23855-w (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Nomura-Komoike, K., Saitoh, F. & Fujieda, H. Phosphatidylserine recognition and Rac1 activation are required for Müller glia proliferation, gliosis and phagocytosis after retinal injury. Sci. Rep. 10, 1488. https://doi.org/10.1038/s41598-020-58424-6 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Malumbres, M. & Barbacid, M. Mammalian cyclin-dependent kinases. Trends Biochem. Sci. 30, 630–641. https://doi.org/10.1016/j.tibs.2005.09.005 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hagting, A., Karlsson, C., Clute, P., Jackman, M. & Pines, J. MPF localization is controlled by nuclear export. EMBO J. 17, 4127–4138. https://doi.org/10.1093/emboj/17.14.4127 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bertrand, N., Castro, D. S. & Guillemot, F. Proneural genes and the specification of neural cell types. Nat. Rev. Neurosci. 3, 517–530. https://doi.org/10.1038/nrn874 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tomita, K., Nakanishi, S., Guillemot, F. & Kageyama, R. Mash1 promotes neuronal differentiation in the retina. Genes Cells 1, 765–774. https://doi.org/10.1111/j.1365-2443.1996.tb00016.x (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Akagi, T. et al. Requirement of multiple basic helix-loop-helix genes for retinal neuronal subtype specification. J. Biol. Chem. 279, 28492–28498. https://doi.org/10.1074/jbc.M400871200 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Matter-Sadzinski, L., Puzianowska-Kuznicka, M., Hernandez, J., Ballivet, M. & Matter, J. M. A bHLH transcriptional network regulating the specification of retinal ganglion cells. Development 132, 3907–3921. https://doi.org/10.1242/dev.01960 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brzezinski, J. A., Kim, E. J., Johnson, J. E. & Reh, T. A. Ascl1 expression defines a subpopulation of lineage-restricted progenitors in the mammalian retina. Development 138, 3519–3531. https://doi.org/10.1242/dev.064006 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fausett, B. V., Gumerson, J. D. & Goldman, D. The proneural basic helix-loop-helix gene ascl1a is required for retina regeneration. J. Neurosci. 28, 1109–1117. https://doi.org/10.1523/JNEUROSCI.4853-07.2008 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ramachandran, R., Fausett, B. V. & Goldman, D. Ascl1a regulates Müller glia dedifferentiation and retinal regeneration through a Lin-28-dependent, let-7 microRNA signalling pathway. Nat. Cell Biol. 12, 1101–1107. https://doi.org/10.1038/ncb2115 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schäfer, P. & Karl, M. O. Prospective purification and characterization of Müller glia in the mouse retina regeneration assay. Glia 65, 828–847. https://doi.org/10.1002/glia.23130 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Nelson, B. R. et al. Genome-wide analysis of Müller glial differentiation reveals a requirement for Notch signaling in postmitotic cells to maintain the glial fate. PloS One 6, e22817. https://doi.org/10.1371/journal.pone.0022817 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Castro, D. S. et al. A novel function of the proneural factor Ascl1 in progenitor proliferation identified by genome-wide characterization of its targets. Genes Dev. 25, 930–945. https://doi.org/10.1101/gad.627811 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yi, S. H. et al. Mash1 and neurogenin 2 enhance survival and differentiation of neural precursor cells after transplantation to rat brains via distinct modes of action. Mol. Ther. 16, 1873–1882. https://doi.org/10.1038/mt.2008.189 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lacomme, M., Liaubet, L., Pituello, F. & Bel-Vialar, S. NEUROG2 drives cell cycle exit of neuronal precursors by specifically repressing a subset of cyclins acting at the G1 and S phases of the cell cycle. Mol. Cell Biol. 32, 2596–2607. https://doi.org/10.1128/MCB.06745-11 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fisher, D. & Mechali, M. Vertebrate HoxB gene expression requires DNA replication. EMBO J. 22, 3737–3748. https://doi.org/10.1093/emboj/cdg352 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pop, R. et al. A key commitment step in erythropoiesis is synchronized with the cell cycle clock through mutual inhibition between PU.1 and S-phase progression. PLoS Biol. https://doi.org/10.1371/journal.pbio.1000484 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tusi, B. K. et al. Population snapshots predict early haematopoietic and erythroid hierarchies. Nature 555, 54–60. https://doi.org/10.1038/nature25741 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Tsubouchi, T. & Fisher, A. G. Reprogramming and the pluripotent stem cell cycle. Curr. Top. Dev. Biol. 104, 223–241. https://doi.org/10.1016/B978-0-12-416027-9.00007-3 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, B., Pfeiffer, M. J., Schwarzer, C., Arauzo-Bravo, M. J. & Boiani, M. DNA replication is an integral part of the mouse oocyte’s reprogramming machinery. PloS One 9, e97199. https://doi.org/10.1371/journal.pone.0097199 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Nashun, B., Hill, P. W. & Hajkova, P. Reprogramming of cell fate: Epigenetic memory and the erasure of memories past. EMBO J. 34, 1296–1308. https://doi.org/10.15252/embj.201490649 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Todd, L. et al. Efficient stimulation of retinal regeneration from Müller glia in adult mice using combinations of proneural bHLH transcription factors. Cell Rep. 37, 109857. https://doi.org/10.1016/j.celrep.2021.109857 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gallina, D., Todd, L. & Fischer, A. J. A comparative analysis of Müller glia-mediated regeneration in the vertebrate retina. Exp. Eye Res. 123, 121–130. https://doi.org/10.1016/j.exer.2013.06.019 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lahne, M., Li, J., Marton, R. M. & Hyde, D. R. Actin-cytoskeleton- and Rock-mediated INM are required for photoreceptor regeneration in the adult zebrafish retina. J. Neurosci. 35, 15612–15634. https://doi.org/10.1523/JNEUROSCI.5005-14.2015 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ul Quraish, R., Sudou, N., Nomura-Komoike, K., Sato, F. & Fujieda, H. p27(KIP1) loss promotes proliferation and phagocytosis but prevents epithelial-mesenchymal transition in RPE cells after photoreceptor damage. Mol. Vis. 22, 1103–1121 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simon, M. V., Prado Spalm, F. H., Politi, L. E. & Rotstein, N. P. Sphingosine-1-Phosphate is a crucial signal for migration of retina Müller glial clls. Invest. Ophthalmol. Vis. Sci. 56, 5808–5815. https://doi.org/10.1167/iovs.14-16195 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schneider, L. et al. DNA damage in mammalian neural stem cells leads to astrocytic differentiation mediated by BMP2 signaling through JAK-STAT. Stem Cell Rep. 1, 123–138. https://doi.org/10.1016/j.stemcr.2013.06.004 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Schneider, L. Survival of neural stem cells undergoing DNA damage-induced astrocytic differentiation in self-renewal-promoting conditions in vitro. PloS One 9, e87228. https://doi.org/10.1371/journal.pone.0087228 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Guimaraes, R. P. M. et al. Evidence of Müller glia conversion into retina ganglion cells using Neurogenin2. Front. Cell Neurosci. 12, 410. https://doi.org/10.3389/fncel.2018.00410 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cebolla, B. & Vallejo, M. Nuclear factor-I regulates glial fibrillary acidic protein gene expression in astrocytes differentiated from cortical precursor cells. J. Neurochem. 97, 1057–1070. https://doi.org/10.1111/j.1471-4159.2006.03804.x (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deneen, B. et al. The transcription factor NFIA controls the onset of gliogenesis in the developing spinal cord. Neuron 52, 953–968. https://doi.org/10.1016/j.neuron.2006.11.019 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dyer, M. A. & Cepko, C. L. Control of Müller glial cell proliferation and activation following retinal injury. Nat. Neurosci. 3, 873–880 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Latest Intelligence