Cartilage tissue engineering using decellularized biomatrix hydrogel containing TGF-β-loaded alginate microspheres in mechanically loaded bioreactor – Scientific Reports

  • Fusco, M., Skaper, S. D., Coaccioli, S., Varrassi, G. & Paladini, A. Degenerative joint diseases and neuroinflammation. Pain Pract. 17(4), 522–532 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Yousefi, A. M., Hoque, M. E., Prasad, R. G. & Uth, N. Current strategies in multiphasic scaffold design for osteochondral tissue engineering: a review. J. Biomed. Mater. Res. Part A 103(7), 2460–2481 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Azami, M. & Beheshtizadeh, N. Identification of regeneration-involved growth factors in cartilage engineering procedure promotes its reconstruction. Regen. Med. 16(8), 719–731 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, Y. et al. Unraveling of advances in 3D-printed polymer-based bone scaffolds. Polymers 14(3), 566. https://doi.org/10.3390/polym14030566 (2022).

  • Solanki, K., Shanmugasundaram, S., Shetty, N. & Kim, S.-J. Articular cartilage repair and joint preservation: A review of the current status of biological approach. J. Clin. Orthop. Trauma 22, 101602 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vaish, A. et al. Biological reconstruction of the joint: Concepts of articular cartilage regeneration and their scientific basis. J. Clin. Orthop. Trauma 24, 101718 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Kim, Y. S., Majid, M., Melchiorri, A. J. & Mikos, A. G. Applications of decellularized extracellular matrix in bone and cartilage tissue engineering. Bioeng. Transl. Med. 4(1), 83–95 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Yuan, J. et al. Biomimetic peptide dynamic hydrogel inspired by humanized defensin nanonets as the wound-healing gel coating. Chem. Eng. J. 470, 144266 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Bordbar, S. et al. Production and evaluation of decellularized extracellular matrix hydrogel for cartilage regeneration derived from knee cartilage. J. Biomed. Mater. Res. Part A. 108(4), 938–946 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Szychlinska, M. A. et al. Mesenchymal stem cell-based cartilage regeneration approach and cell senescence: Can we manipulate cell aging and function?. Tissue Eng. Part B Rev. 23(6), 529–539 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Cao, J. et al. Influence of autologous dendritic cells on cytokine-induced killer cell proliferation, cell phenotype and antitumor activity in vitro. Oncol. Lett. 12(3), 2033–2037 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tekari, A., Luginbuehl, R., Hofstetter, W. & Egli, R. J. Transforming growth factor beta signaling is essential for the autonomous formation of cartilage-like tissue by expanded chondrocytes. PLoS ONE 10(3), e0120857 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, Y. et al. Targeting loop3 of sclerostin preserves its cardiovascular protective action and promotes bone formation. Nat. Commun. 13(1), 4241 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huey, D. J., Hu, J. C. & Athanasiou, K. A. Unlike bone, cartilage regeneration remains elusive. Science 338(6109), 917–921 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo, G. et al. Itaconic acid induces angiogenesis and suppresses apoptosis via Nrf2/autophagy to prolong the survival of multi-territory perforator flaps. Heliyon 9(7), e17909 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Q. et al. Cartilage-specific deletion of Alk5 gene results in a progressive osteoarthritis-like phenotype in mice. Osteoarthr. Cartil. 25(11), 1868–1879 (2017).

    Article 
    CAS 

    Google Scholar
     

  • van der Kraan, P. M. Differential role of transforming growth factor-beta in an osteoarthritic or a healthy joint. J. Bone Metab. 25(2), 65–72 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Venkatesan, J. K. et al. Impact of mechanical stimulation on the chondrogenic processes in human bone marrow aspirates modified to overexpress sox9 via rAAV vectors. J. Exp. Orthop. 4(1), 22 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, X. et al. Three-dimensional sulfated bacterial cellulose/gelatin composite scaffolds for culturing hepatocytes. Cyborg Bionic Syst. 4, 0021 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ciofani, G., Raffa, V., Menciassi, A., Micera, S. & Dario, P. A drug delivery system based on alginate microspheres: Mass-transport test and in vitro validation. Biomed. Microdevices 9(3), 395–403 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • DeFail, A. J., Chu, C. R., Izzo, N. & Marra, K. G. Controlled release of bioactive TGF-β1 from microspheres embedded within biodegradable hydrogels. Biomaterials 27(8), 1579–1585 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, J. et al. TGF-β1 conjugated chitosan collagen hydrogels induce chondrogenic differentiation of human synovium-derived stem cells. J. Biol. Eng. 9(1), 1–11 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Safari, F. et al. Human umbilical cord-derived scaffolds for cartilage tissue engineering. J. Biomed. Mater. Res. A. 107(8), 1793–1802 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grad, S. et al. Sliding motion modulates stiffness and friction coefficient at the surface of tissue engineered cartilage. Osteoarthr. Cartil. 20(4), 288–295 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Jeon, J. E., Schrobback, K., Hutmacher, D. W. & Klein, T. J. Dynamic compression improves biosynthesis of human zonal chondrocytes from osteoarthritis patients. Osteoarthr. Cartil. 20(8), 906–915 (2012).

    Article 
    CAS 

    Google Scholar
     

  • van Schaik, T. J. et al. Development of an ex vivo murine osteochondral repair model. Cartilage https://doi.org/10.1177/1947603518809402 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wimmer, M. A. et al. Tribology approach to the engineering and study of articular cartilage. Tissue Eng. 10(9–10), 1436–1445 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vainieri, M., Wahl, D., Alini, M., van Osch, G. & Grad, S. Mechanically stimulated osteochondral organ culture for evaluation of biomaterials in cartilage repair studies. Acta Biomater. 81, 256–266 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khanmohammadi, M., Sakai, S. & Taya, M. Characterization of encapsulated cells within hyaluronic acid and alginate microcapsules produced via horseradish peroxidase-catalyzed crosslinking. J. Biomater. Sci. Polym. Ed. 30(4), 295–307 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khanmohammadi, M., Zolfagharzadeh, V., Bagher, Z., Soltani, H. & Ai, J. Cell encapsulation in core-shell microcapsules through coaxial electrospinning system and horseradish peroxidase-catalyzed crosslinking. Biomed. Phys. Eng. Express 6(1), 015022 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Bahrami, N. et al. The ability of 3D alginate/polyvinyl alcohol cross-linked hybrid hydrogel to differentiate periodontal ligament stem cells into osteoblasts. Arch. Neurosci. https://doi.org/10.5812/ans.85118 (2019).

    Article 

    Google Scholar
     

  • Schätti, O. et al. A combination of shear and dynamic compression leads to mechanically induced chondrogenesis of human mesenchymal stem cells. Eur. Cell Mater. 22(214–225), b97 (2011).


    Google Scholar
     

  • Chen, S. et al. lncRNA Xist regulates osteoblast differentiation by sponging miR-19a-3p in aging-induced osteoporosis. Aging Dis. 11(5), 1058–1068 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen, W. et al. A polymeric hydrogel to eliminate programmed death-ligand 1 for enhanced tumor radio-immunotherapy. ACS Nano 17(23), 23998–24011 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khan, M. U. A. et al. Fundamental properties of smart hydrogels for tissue engineering applications: A review. Int. J. Biol. Macromol. 254, 127882 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, J. et al. The influence of the representation of collagen fibre organisation on the cartilage contact mechanics of the hip joint. J. Biomech. 49(9), 1679–1685 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Z., Kupcsik, L., Yao, S. J., Alini, M. & Stoddart, M. J. Mechanical load modulates chondrogenesis of human mesenchymal stem cells through the TGF-β pathway. J. Cell. Mol. Med. 14(6a), 1338–1346 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Terraciano, V. et al. Differential response of adult and embryonic mesenchymal progenitor cells to mechanical compression in hydrogels. Stem Cells 25(11), 2730–2738 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiao, D. et al. Notch signaling regulates MMP-13 expression via Runx2 in chondrocytes. Sci. Rep. 9(1), 15596 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Borzí, R. M. et al. Matrix metalloproteinase 13 loss associated with impaired extracellular matrix remodeling disrupts chondrocyte differentiation by concerted effects on multiple regulatory factors. Arthritis Rheum. 62(8), 2370–2381 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Itatani, Y., Kawada, K. & Sakai, Y. Transforming growth factor-β signaling pathway in colorectal cancer and its tumor microenvironment. Int. J. Mol. Sci. 20(23), 5822 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar