Search
Close this search box.

Calcium Signalling And Transport In The Kidney – Nature Reviews Nephrology – Renal.PlatoHealth.ai

  • Blaine, J., Chonchol, M. & Levi, M. Renal control of calcium, phosphate, and magnesium homeostasis. Clin. J. Am. Soc. Nephrol. 10, 1257–1272 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eisner, D., Neher, E., Taschenberger, H. & Smith, G. Physiology of intracellular calcium buffering. Physiol. Rev. 103, 2767–2845 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moor, M. B. & Bonny, O. Ways of calcium reabsorption in the kidney. Am. J. Physiol. Renal Physiol. 310, F1337–F1350 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jeon, U. S. Kidney and calcium homeostasis. Electrolyte Blood Press. 6, 68–76 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alexander, R. T., Cordat, E., Chambrey, R., Dimke, H. & Eladari, D. Acidosis and urinary calcium excretion: insights from genetic disorders. J. Am. Soc. Nephrol. 27, 3511–3520 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peacock, M. Calcium metabolism in health and disease. Clin. J. Am. Soc. Nephrol. 5, S23–S30 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bosman, A. et al. Sexual dimorphisms in serum calcium and phosphate concentrations in the Rotterdam Study. Sci. Rep. 13, 8310 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meoli, L. & Gunzel, D. The role of claudins in homeostasis. Nat. Rev. Nephrol. 19, 587–603 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tinawi, M. Disorders of calcium metabolism: hypocalcemia and hypercalcemia. Cureus 13, e12420 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alexander, R. T., Fuster, D. G. & Dimke, H. Mechanisms underlying calcium nephrolithiasis. Annu. Rev. Physiol. 84, 559–583 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alexander, R. T. Kidney stones, hypercalciuria, and recent insights into proximal tubule calcium reabsorption. Curr. Opin. Nephrol. Hypertens. 32, 359–365 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pan, W. et al. The epithelial sodium/proton exchanger, NHE3, is necessary for renal and intestinal calcium (re)absorption. Am. J. Physiol. Renal Physiol. 302, F943–F956 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Beggs, M. R. et al. Claudin-2 and claudin-12 form independent, complementary pores required to maintain calcium homeostasis. Proc. Natl Acad. Sci. USA 118, e2111247118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Curry, J. N. et al. Claudin-2 deficiency associates with hypercalciuria in mice and human kidney stone disease. J. Clin. Invest. 130, 1948–1960 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Plain, A. et al. Claudin-12 knockout mice demonstrate reduced proximal tubule calcium permeability. Int. J. Mol. Sci. 21, 2074 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Breiderhoff, T. et al. Claudin-10a deficiency shifts proximal tubular Cl permeability to cation selectivity via claudin-2 redistribution. J. Am. Soc. Nephrol. 33, 699–717 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rouse, D., Ng, R. C. & Suki, W. N. Calcium transport in the pars recta and thin descending limb of Henle of the rabbit, perfused in vitro. J. Clin. Invest. 65, 37–42 (1980).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wiebe, S. A. et al. NHE8 attenuates Ca2+ influx into NRK cells and the proximal tubule epithelium. Am. J. Physiol. Renal Physiol. 317, F240–F253 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hou, J. et al. Claudin-16 and claudin-19 interact and form a cation-selective tight junction complex. J. Clin. Invest. 118, 619–628 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hou, J. et al. Claudin-16 and claudin-19 interaction is required for their assembly into tight junctions and for renal reabsorption of magnesium. Proc. Natl Acad. Sci. USA 106, 15350–15355 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simon, D. B. et al. Paracellin-1, a renal tight junction protein required for paracellular Mg2+ resorption. Science 285, 103–106 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Konrad, M. et al. Mutations in the tight-junction gene claudin 19 (CLDN19) are associated with renal magnesium wasting, renal failure, and severe ocular involvement. Am. J. Hum. Genet. 79, 949–957 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, M. et al. TRP (transient receptor potential) ion channel family: structures, biological functions and therapeutic interventions for diseases. Signal. Transduct. Target. Ther. 8, 261 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nilius, B. & Owsianik, G. The transient receptor potential family of ion channels. Genome Biol. 12, 218 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bacsa, B., Tiapko, O., Stockner, T. & Groschner, K. Mechanisms and significance of Ca2+ entry through TRPC channels. Curr. Opin. Physiol. 17, 25–33 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, H. et al. TRPC channels: structure, function, regulation and recent advances in small molecular probes. Pharmacol. Ther. 209, 107497 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Davis, M. J., Earley, S., Li, Y. S. & Chien, S. Vascular mechanotransduction. Physiol. Rev. 103, 1247–1421 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nikolaev, Y. A. et al. Mammalian TRP ion channels are insensitive to membrane stretch. J. Cell Sci. 132, jcs238360 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goel, M., Sinkins, W. G., Zuo, C. D., Estacion, M. & Schilling, W. P. Identification and localization of TRPC channels in the rat kidney. Am. J. Physiol. Renal Physiol. 290, F1241–F1252 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Staruschenko, A., Ma, R., Palygin, O. & Dryer, S. E. Ion channels and channelopathies in glomeruli. Physiol. Rev. 103, 787–854 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dryer, S. E., Roshanravan, H. & Kim, E. Y. TRPC channels: regulation, dysregulation and contributions to chronic kidney disease. Biochim. Biophys. Acta Mol. Basis Dis. 1865, 1041–1066 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Winn, M. P. et al. A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 308, 1801–1804 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reiser, J. et al. TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nat. Genet. 37, 739–744 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, Y. et al. A small-molecule inhibitor of TRPC5 ion channels suppresses progressive kidney disease in animal models. Science 358, 1332–1336 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Polat, O. K. et al. The small GTPase regulatory protein Rac1 drives podocyte injury independent of cationic channel protein TRPC5. Kidney Int. 103, 1056–1062 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lenoir, O., Huber, T. B. & Tharaux, P. L. From bench to bedside: lessons learned from translational podocyte research. Kidney Int. 103, 1018–1020 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Hou, X. et al. Transient receptor potential channel 6 knockdown prevents apoptosis of renal tubular epithelial cells upon oxidative stress via autophagy activation. Cell Death Dis. 9, 1015 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, Y. L. et al. Inhibition of TRPC6 channels ameliorates renal fibrosis and contributes to renal protection by soluble klotho. Kidney Int. 91, 830–841 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Du, J. et al. Canonical transient receptor potential 1 channel is involved in contractile function of glomerular mesangial cells. J. Am. Soc. Nephrol. 18, 1437–1445 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peng, F. et al. circRNA_010383 acts as a sponge for miR-135a, and its downregulated expression contributes to renal fibrosis in diabetic nephropathy. Diabetes 70, 603–615 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Niehof, M. & Borlak, J. HNF4α and the Ca-channel TRPC1 are novel disease candidate genes in diabetic nephropathy. Diabetes 57, 1069–1077 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khayyat, N. H., Tomilin, V. N., Zaika, O. & Pochynyuk, O. Polymodal roles of TRPC3 channel in the kidney. Channels 14, 257–267 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Soni, H., Peixoto-Neves, D., Buddington, R. K. & Adebiyi, A. Adenosine A1 receptor-operated calcium entry in renal afferent arterioles is dependent on postnatal maturation of TRPC3 channels. Am. J. Physiol. Renal Physiol. 313, F1216–F1222 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ibeh, C. L. et al. Evidence for a regulated Ca2+ entry in proximal tubular cells and its implication in calcium stone formation. J. Cell Sci. 132, jcs.225268 (2019).

    Article 

    Google Scholar
     

  • Saliba, Y. et al. Evidence of a role for fibroblast transient receptor potential canonical 3 Ca2+ channel in renal fibrosis. J. Am. Soc. Nephrol. 26, 1855–1876 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goel, M., Zuo, C. D. & Schilling, W. P. Role of cAMP/PKA signaling cascade in vasopressin-induced trafficking of TRPC3 channels in principal cells of the collecting duct. Am. J. Physiol. Renal Physiol. 298, F988–F996 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tomilin, V. N. et al. TRPC3 determines osmosensitive [Ca2+]i signaling in the collecting duct and contributes to urinary concentration. PLoS One 14, e0226381 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Baaij, J. H. F. Magnesium reabsorption in the kidney. Am. J. Physiol. Renal Physiol. 324, F227–F244 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Chubanov, V., Köttgen, M., Touyz, R. M. & Gudermann, T. TRPM channels in health and disease. Nat. Rev. Nephrol. 20, 175–187 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schlingmann, K. P. et al. Hypomagnesemia with secondary hypocalcemia is caused by mutations in TRPM6, a new member of the TRPM gene family. Nat. Genet. 31, 166–170 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Walder, R. Y. et al. Mutation of TRPM6 causes familial hypomagnesemia with secondary hypocalcemia. Nat. Genet. 31, 171–174 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chubanov, V. et al. Disruption of TRPM6/TRPM7 complex formation by a mutation in the TRPM6 gene causes hypomagnesemia with secondary hypocalcemia. Proc. Natl Acad. Sci. USA 101, 2894–2899 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nadezhdin, K. D. et al. Structural mechanisms of TRPM7 activation and inhibition. Nat. Commun. 14, 2639 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fonfria, E. et al. TRPM2 channel opening in response to oxidative stress is dependent on activation of poly(ADP-ribose) polymerase. Br. J. Pharmacol. 143, 186–192 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Malko, P. & Jiang, L. H. TRPM2 channel-mediated cell death: an important mechanism linking oxidative stress-inducing pathological factors to associated pathological conditions. Redox Biol. 37, 101755 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, G. et al. TRPM2 mediates ischemic kidney injury and oxidant stress through RAC1. J. Clin. Invest. 124, 4989–5001 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khanahmad, H. et al. Pathological mechanisms induced by TRPM2 ion channels activation in renal ischemia-reperfusion injury. Mol. Biol. Rep. 49, 11071–11079 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nazıroğlu, M. et al. Albumin evokes Ca2+-induced cell oxidative stress and apoptosis through TRPM2 channel in renal collecting duct cells reduced by curcumin. Sci. Rep. 9, 12403 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Esarte Palomero, O., Larmore, M. & DeCaen, P. G. Polycystin channel complexes. Annu. Rev. Physiol. 85, 425–448 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stocker, S. D. & Sullivan, J. B. Deletion of the transient receptor potential vanilloid 1 channel attenuates sympathoexcitation and hypertension and improves glomerular filtration rate in 2-kidney-1-clip rats. Hypertension 80, 1671–1682 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kassmann, M. et al. Transient receptor potential vanilloid 1 (TRPV1), TRPV4, and the kidney. Acta Physiol. 207, 546–564 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Wei, X. et al. Activation of TRPV1 channel antagonizes diabetic nephropathy through inhibiting endoplasmic reticulum-mitochondria contact in podocytes. Metabolism 105, 154182 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gualdani, R. et al. Mechanical activation of TRPV4 channels controls albumin reabsorption by proximal tubule cells. Sci. Signal. 13, eabc6967 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cabral, P. D., Capurro, C. & Garvin, J. L. TRPV4 mediates flow-induced increases in intracellular Ca in medullary thick ascending limbs. Acta Physiol. 214, 319–328 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Saez, F., Hong, N. J., Cabral, P. D. & Garvin, J. L. Stretch-induced increases in intracellular Ca stimulate thick ascending limb O2 production and are enhanced in Dahl salt-sensitive rats. Hypertension 75, 431–438 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hong, N. J., Gonzalez-Vicente, A., Saez, F. & Garvin, J. L. Mechanisms of decreased tubular flow-induced nitric oxide in Dahl salt-sensitive rat thick ascending limbs. Am. J. Physiol. Renal Physiol. 321, F369–F377 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mamenko, M. V. et al. The renal TRPV4 channel is essential for adaptation to increased dietary potassium. Kidney Int. 91, 1398–1409 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stavniichuk, A. et al. TRPV4 expression in the renal tubule is necessary for maintaining whole body K+ homeostasis. Am. J. Physiol. Renal Physiol. 324, F603–F616 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mannaa, M. et al. Transient receptor potential vanilloid 4 channel deficiency aggravates tubular damage after acute renal ischaemia reperfusion. Sci. Rep. 8, 4878 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alexander, R. T. et al. Ultrastructural and immunohistochemical localization of plasma membrane Ca2+-ATPase 4 in Ca2+-transporting epithelia. Am. J. Physiol. Renal Physiol. 309, F604–F616 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hoenderop, J. G. et al. Renal Ca2+ wasting, hyperabsorption, and reduced bone thickness in mice lacking TRPV5. J. Clin. Invest. 112, 1906–1914 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peng, J. B., Suzuki, Y., Gyimesi, G. & Hediger, M. A. in: J. A. Kozak & J. W. Putney, Jr. (eds) Calcium Entry Channels in Non-Excitable Cells. 241–274 (CRC Press/Taylor & Francis, 2018).

  • Vennekens, R. et al. Permeation and gating properties of the novel epithelial Ca2+ channel. J. Biol. Chem. 275, 3963–3969 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zuidscherwoude, M. et al. Functional basis for calmodulation of the TRPV5 calcium channel. J. Physiol. 601, 859–878 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van der Wijst, J., van Goor, M. K., Schreuder, M. F. & Hoenderop, J. G. TRPV5 in renal tubular calcium handling and its potential relevance for nephrolithiasis. Kidney Int. 96, 1283–1291 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Dang, S. et al. Structural insight into TRPV5 channel function and modulation. Proc. Natl Acad. Sci. USA 116, 8869–8878 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hughes, T. E. T. et al. Structural basis of TRPV5 channel inhibition by econazole revealed by cryo-EM. Nat. Struct. Mol. Biol. 25, 53–60 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hughes, T. E. T. et al. Structural insights on TRPV5 gating by endogenous modulators. Nat. Commun. 9, 4198 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoenderop, J. G. et al. Homo- and heterotetrameric architecture of the epithelial Ca2+ channels TRPV5 and TRPV6. EMBO J. 22, 776–785 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khattar, V., Wang, L. & Peng, J. B. Calcium selective channel TRPV6: structure, function, and implications in health and disease. Gene 817, 146192 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wartenberg, P. et al. Additional data for the mouse TRPV6 expression atlas. Data Brief. 42, 108201 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vallon, V., Unwin, R., Inscho, E. W., Leipziger, J. & Kishore, B. K. Extracellular nucleotides and P2 receptors in renal function. Physiol. Rev. 100, 211–269 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Palygin, O., Evans, L. C., Cowley, A. W. Jr. & Staruschenko, A. Acute in vivo analysis of ATP release in rat kidneys in response to changes of renal perfusion pressure. J. Am. Heart Assoc. 6, e006658 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roshanravan, H. & Dryer, S. E. ATP acting through P2Y receptors causes activation of podocyte TRPC6 channels: role of podocin and reactive oxygen species. Am. J. Physiol. Renal Physiol. 306, F1088–F1097 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ilatovskaya, D. V., Palygin, O., Levchenko, V. & Staruschenko, A. Pharmacological characterization of the P2 receptors profile in the podocytes of the freshly isolated rat glomeruli. Am. J. Physiol. Cell Physiol. 305, C1050–C1059 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Palygin, O. et al. Characterization of purinergic receptor 2 signaling in podocytes from diabetic kidneys. iScience 24, 102528 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arkhipov, S. N., Potter, D. L., Geurts, A. M. & Pavlov, T. S. Knockout of P2rx7 purinergic receptor attenuates cyst growth in a rat model of ARPKD. Am. J. Physiol. Renal Physiol. 317, F1649–f1655 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chang, M. Y. et al. Inhibition of the P2X7 receptor reduces cystogenesis in PKD. J. Am. Soc. Nephrol. 22, 1696–1706 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chaudhari, S., Mallet, R. T., Shotorbani, P. Y., Tao, Y. & Ma, R. Store-operated calcium entry: pivotal roles in renal physiology and pathophysiology. Exp. Biol. Med. 246, 305–316 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Park, S. J., Li, C. & Chen, Y. M. Endoplasmic reticulum calcium homeostasis in kidney disease: pathogenesis and therapeutic targets. Am. J. Pathol. 191, 256–265 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Monkawa, T. et al. Localization of inositol 1,4,5-trisphosphate receptors in the rat kidney. Kidney Int. 53, 296–301 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Woll, K. A. & Van Petegem, F. Calcium-release channels: structure and function of IP3 receptors and ryanodine receptors. Physiol. Rev. 102, 209–268 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tao, Y. et al. Enhanced Orai1-mediated store-operated Ca2+ channel/calpain signaling contributes to high glucose-induced podocyte injury. J. Biol. Chem. 298, 101990 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gusev, K. et al. Reorganization and suppression of store-operated calcium entry in podocytes of type 2 diabetic rats. Int. J. Mol. Sci. 24, 7259 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, S. et al. Palmitate induces ER calcium depletion and apoptosis in mouse podocytes subsequent to mitochondrial oxidative stress. Cell Death Dis. 6, e1976 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park, S. J. et al. Discovery of endoplasmic reticulum calcium stabilizers to rescue ER-stressed podocytes in nephrotic syndrome. Proc. Natl Acad. Sci. USA 116, 14154–14163 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tao, Y., Mallet, R. T., Mathis, K. W. & Ma, R. Store-operated Ca2+ channel signaling: novel mechanism for podocyte injury in kidney disease. Exp. Biol. Med. 248, 425–433 (2023).

    Article 
    CAS 

    Google Scholar
     

  • DeHaven, W. I. et al. TRPC channels function independently of STIM1 and Orai1. J. Physiol. 587, 2275–2298 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tao, Y., Yazdizadeh Shotorbani, P., Inman, D., Das-Earl, P. & Ma, R. Store-operated Ca2+ entry inhibition ameliorates high glucose and ANG II-induced podocyte apoptosis and mitochondrial damage. Am. J. Physiol. Renal Physiol. 324, F494–F504 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin, J., Ye, M., Hu, K., Gong, J. & He, Q. STIM promotes the epithelial-mesenchymal transition of podocytes through regulation of FcγRII activity in diabetic nephropathy. Histol. Histopathol. 34, 671–682 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Menè, P., Teti, A., Pugliese, F. & Cinotti, G. A. Calcium release-activated calcium influx in cultured human mesangial cells. Kidney Int. 46, 122–128 (1994).

    Article 
    PubMed 

    Google Scholar
     

  • Ma, R., Smith, S., Child, A., Carmines, P. K. & Sansom, S. C. Store-operated Ca2+ channels in human glomerular mesangial cells. Am. J. Physiol. Renal Physiol. 278, F954–F961 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sours-Brothers, S., Ding, M., Graham, S. & Ma, R. Interaction between TRPC1/TRPC4 assembly and STIM1 contributes to store-operated Ca2+ entry in mesangial cells. Exp. Biol. Med. 234, 673–682 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Wu, P. et al. Store-operated Ca2+ channels in mesangial cells inhibit matrix protein expression. J. Am. Soc. Nephrol. 26, 2691–2702 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mai, X. et al. Blockade of Orai1 store-operated calcium entry protects against renal fibrosis. J. Am. Soc. Nephrol. 27, 3063–3078 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeng, B. et al. ORAI channels are critical for receptor-mediated endocytosis of albumin. Nat. Commun. 8, 1920 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Woodward, O. M. et al. Identification of a polycystin-1 cleavage product, P100, that regulates store operated Ca entry through interactions with STIM1. PLoS One 5, e12305 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yanda, M. K., Liu, Q., Cebotaru, V., Guggino, W. B. & Cebotaru, L. Role of calcium in adult onset polycystic kidney disease. Cell Signal. 53, 140–150 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mamenko, M. et al. Defective store-operated calcium entry causes partial nephrogenic diabetes insipidus. J. Am. Soc. Nephrol. 27, 2035–2048 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kuo, I. Y. et al. Cyst formation following disruption of intracellular calcium signaling. Proc. Natl Acad. Sci. USA 111, 14283–14288 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Padhy, B., Xie, J., Wang, R., Lin, F. & Huang, C. L. Channel function of polycystin-2 in the endoplasmic reticulum protects against autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 33, 1501–1516 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anyatonwu, G. I., Estrada, M., Tian, X., Somlo, S. & Ehrlich, B. E. Regulation of ryanodine receptor-dependent calcium signaling by polycystin-2. Proc. Natl Acad. Sci. USA 104, 6454–6459 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Y. et al. Polycystin-1 interacts with inositol 1,4,5-trisphosphate receptor to modulate intracellular Ca2+ signaling with implications for polycystic kidney disease. J. Biol. Chem. 284, 36431–36441 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sammels, E. et al. Polycystin-2 activation by inositol 1,4,5-trisphosphate-induced Ca2+ release requires its direct association with the inositol 1,4,5-trisphosphate receptor in a signaling microdomain. J. Biol. Chem. 285, 18794–18805 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mekahli, D. et al. Polycystin-1 and polycystin-2 are both required to amplify inositol-trisphosphate-induced Ca2+ release. Cell Calcium 51, 452–458 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cárdenas, C. et al. Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria. Cell 142, 270–283 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuo, I. Y. et al. Polycystin 2 regulates mitochondrial Ca2+ signaling, bioenergetics, and dynamics through mitofusin 2. Sci. Signal. 12, eaat7397 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Padovano, V. et al. The polycystins are modulated by cellular oxygen-sensing pathways and regulate mitochondrial function. Mol. Biol. Cell 28, 261–269 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rowe, I. et al. Defective glucose metabolism in polycystic kidney disease identifies a new therapeutic strategy. Nat. Med. 19, 488–493 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chiaravalli, M. et al. 2-Deoxy-D-glucose ameliorates PKD progression. J. Am. Soc. Nephrol. 27, 1958–1969 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Padovano, V., Podrini, C., Boletta, A. & Caplan, M. J. Metabolism and mitochondria in polycystic kidney disease research and therapy. Nat. Rev. Nephrol. 14, 678–687 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Giorgi, C., Marchi, S. & Pinton, P. The machineries, regulation and cellular functions of mitochondrial calcium. Nat. Rev. Mol. Cell Biol. 19, 713–730 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Su, L., Zhang, J., Gomez, H., Kellum, J. A. & Peng, Z. Mitochondria ROS and mitophagy in acute kidney injury. Autophagy 19, 401–414 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Babcock, D. F., Herrington, J., Goodwin, P. C., Park, Y. B. & Hille, B. Mitochondrial participation in the intracellular Ca2+ network. J. Cell Biol. 136, 833–844 (1997).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garbincius, J. F. & Elrod, J. W. Mitochondrial calcium exchange in physiology and disease. Physiol. Rev. 102, 893–992 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuan, Z. et al. Calcium uptake via mitochondrial uniporter contributes to palmitic acid-induced apoptosis in mouse podocytes. J. Cell Biochem. 118, 2809–2818 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, H. et al. IP3R-Grp75-VDAC1-MCU calcium regulation axis antagonists protect podocytes from apoptosis and decrease proteinuria in an adriamycin nephropathy rat model. BMC Nephrol. 19, 140 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yanda, M. K., Tomar, V., Cole, R., Guggino, W. B. & Cebotaru, L. The mitochondrial Ca2+ import complex is altered in ADPKD. Cell Calcium 101, 102501 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thai, T. L. et al. The polarized effect of intracellular calcium on the renal epithelial sodium channel occurs as a result of subcellular calcium signaling domains maintained by mitochondria. J. Biol. Chem. 290, 28805–28811 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Groot, T. et al. Parathyroid hormone activates TRPV5 via PKA-dependent phosphorylation. J. Am. Soc. Nephrol. 20, 1693–1704 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fluck, E. C., Yazici, A. T., Rohacs, T. & Moiseenkova-Bell, V. Y. Structural basis of TRPV5 regulation by physiological and pathophysiological modulators. Cell Rep. 39, 110737 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bindels, R. J., Hartog, A., Timmermans, J. & Van Os, C. H. Active Ca2+ transport in primary cultures of rabbit kidney CCD: stimulation by 1,25-dihydroxyvitamin D3 and PTH. Am. J. Physiol. 261, F799–F807 (1991).

    CAS 
    PubMed 

    Google Scholar
     

  • Hoenderop, J. G. et al. Modulation of renal Ca2+ transport protein genes by dietary Ca2+ and 1,25-dihydroxyvitamin D3 in 25-hydroxyvitamin D3-1α-hydroxylase knockout mice. FASEB J. 16, 1398–1406 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van Megen, W. H., Tan, R. S. G., Alexander, R. T. & Dimke, H. Differential parathyroid and kidney Ca2+-sensing receptor activation in autosomal dominant hypocalcemia 1. EBioMedicine 78, 103947 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bustamante, M. et al. Calcium-sensing receptor attenuates AVP-induced aquaporin-2 expression via a calmodulin-dependent mechanism. J. Am. Soc. Nephrol. 19, 109–116 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sands, J. M. et al. Apical extracellular calcium/polyvalent cation-sensing receptor regulates vasopressin-elicited water permeability in rat kidney inner medullary collecting duct. J. Clin. Invest. 99, 1399–1405 (1997).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Loupy, A. et al. PTH-independent regulation of blood calcium concentration by the calcium-sensing receptor. J. Clin. Invest. 122, 3355–3367 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tan, R. S. G., Lee, C. H. L., Dimke, H. & Todd Alexander, R. The role of calcium-sensing receptor signaling in regulating transepithelial calcium transport. Exp. Biol. Med. 246, 2407–2419 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Blankenship, K. A. et al. The calcium-sensing receptor regulates calcium absorption in MDCK cells by inhibition of PMCA. Am. J. Physiol. Renal Physiol. 280, F815–F822 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Topala, C. N. et al. Activation of the Ca2+-sensing receptor stimulates the activity of the epithelial Ca2+ channel TRPV5. Cell Calcium 45, 331–339 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gong, Y. et al. Claudin-14 regulates renal Ca2+ transport in response to CaSR signalling via a novel microRNA pathway. EMBO J. 31, 1999–2012 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gong, Y. & Hou, J. Claudin-14 underlies Ca2+-sensing receptor-mediated Ca2+ metabolism via NFAT-microRNA-based mechanisms. J. Am. Soc. Nephrol. 25, 745–760 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, J. J. et al. Activation of the calcium sensing receptor increases claudin-14 expression via a PLC–p38–Sp1 pathway. FASEB J. 35, e21982 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Capasso, G. et al. The calcium sensing receptor modulates fluid reabsorption and acid secretion in the proximal tubule. Kidney Int. 84, 277–284 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ward, D. T., McLarnon, S. J. & Riccardi, D. Aminoglycosides increase intracellular calcium levels and ERK activity in proximal tubular OK cells expressing the extracellular calcium-sensing receptor. J. Am. Soc. Nephrol. 13, 1481–1489 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Picard, N. et al. Acute parathyroid hormone differentially regulates renal brush border membrane phosphate cotransporters. Pflugers Arch. 460, 677–687 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Segawa, H. et al. Parathyroid hormone-dependent endocytosis of renal type IIc Na-Pi cotransporter. Am. J. Physiol. Renal Physiol. 292, F395–F403 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alexander, R. T. & Dimke, H. Effects of parathyroid hormone on renal tubular calcium and phosphate handling. Acta Physiol. 238, e13959 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Duan, Y., Weinstein, A. M., Weinbaum, S. & Wang, T. Shear stress-induced changes of membrane transporter localization and expression in mouse proximal tubule cells. Proc. Natl Acad. Sci. USA 107, 21860–21865 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Du, Z., Weinbaum, S., Weinstein, A. M. & Wang, T. Regulation of glomerulotubular balance. III. Implication of cytosolic calcium in flow-dependent proximal tubule transport. Am. J. Physiol. Renal Physiol. 308, F839–F847 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Churchill, P. C. Second messengers in renin secretion. Am. J. Physiol. 249, F175–F184 (1985).

    CAS 
    PubMed 

    Google Scholar
     

  • Beierwaltes, W. H. The role of calcium in the regulation of renin secretion. Am. J. Physiol. Renal Physiol. 298, F1–F11 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lara, L. S., Gonzalez, A. A., Hennrikus, M. T. & Prieto, M. C. Hormone-dependent regulation of renin and effects on prorenin receptor signaling in the collecting duct. Curr. Hypertens. Rev. 18, 91–100 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chebib, F. T., Sussman, C. R., Wang, X., Harris, P. C. & Torres, V. E. Vasopressin and disruption of calcium signalling in polycystic kidney disease. Nat. Rev. Nephrol. 11, 451–464 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Star, R. A., Nonoguchi, H., Balaban, R. & Knepper, M. A. Calcium and cyclic adenosine monophosphate as second messengers for vasopressin in the rat inner medullary collecting duct. J. Clin. Invest. 81, 1879–1888 (1988).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lanktree, M. B. et al. Prevalence estimates of polycystic kidney and liver disease by population sequencing. J. Am. Soc. Nephrol. 29, 2593–2600 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Márquez-Nogueras, K. M., Vuchkovska, V. & Kuo, I. Y. Calcium signaling in polycystic kidney disease — cell death and survival. Cell Calcium 112, 102733 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Liu, X. et al. Polycystin-2 is an essential ion channel subunit in the primary cilium of the renal collecting duct epithelium. eLife 7, e33183 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ha, K. et al. The heteromeric PC-1/PC-2 polycystin complex is activated by the PC-1 N-terminus. eLife 9, e.60684 (2020).

    Article 

    Google Scholar
     

  • Kim, S. et al. The polycystin complex mediates Wnt/Ca2+ signalling. Nat. Cell Biol. 18, 752–764 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kleene, S. J. & Kleene, N. K. The native TRPP2-dependent channel of murine renal primary cilia. Am. J. Physiol. Renal Physiol. 312, F96–F108 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Su, Q. et al. Structure of the human PKD1-PKD2 complex. Science 361, eaat9819 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Marquez-Nogueras, K. M. & Kuo, I. Y. Cardiovascular perspectives of the TRP channel polycystin 2. J. Physiol. https://doi.org/10.1113/JP283835 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Grieben, M. et al. Structure of the polycystic kidney disease TRP channel polycystin-2 (PC2). Nat. Struct. Mol. Biol. 24, 114–122 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shen, P. S. et al. The structure of the polycystic kidney disease channel PKD2 in lipid nanodiscs. Cell 167, 763–773.e711 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kwon, M. et al. G-protein signaling modulator 1 deficiency accelerates cystic disease in an orthologous mouse model of autosomal dominant polycystic kidney disease. Proc. Natl Acad. Sci. USA 109, 21462–21467 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, J. & Harris, P. C. Regulation of polycystin expression, maturation and trafficking. Cell Signal. 72, 109630 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ta, C. M., Vien, T. N., Ng, L. C. T. & DeCaen, P. G. Structure and function of polycystin channels in primary cilia. Cell Signal. 72, 109626 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Douguet, D., Patel, A. & Honoré, E. Structure and function of polycystins: insights into polycystic kidney disease. Nat. Rev. Nephrol. 15, 412–422 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Praetorius, H. A. & Spring, K. R. A physiological view of the primary cilium. Annu. Rev. Physiol. 67, 515–529 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kleene, S. J. & Kleene, N. K. Inward Ca2+ current through the polycystin-2-dependent channels of renal primary cilia. Am. J. Physiol. Renal Physiol. 320, F1165–F1173 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nauli, S. M. et al. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat. Genet. 33, 129–137 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Delling, M., DeCaen, P. G., Doerner, J. F., Febvay, S. & Clapham, D. E. Primary cilia are specialized calcium signalling organelles. Nature 504, 311–314 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bai, C. X. et al. Activation of TRPP2 through mDia1-dependent voltage gating. EMBO J. 27, 1345–1356 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Padovano, V., Mistry, K., Merrick, D., Gresko, N. & Caplan, M. J. A cut above (and below): protein cleavage in the regulation of polycystin trafficking and signaling. Cell Signal. 72, 109634 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qian, F. et al. Cleavage of polycystin-1 requires the receptor for egg jelly domain and is disrupted by human autosomal-dominant polycystic kidney disease 1-associated mutations. Proc. Natl Acad. Sci. USA 99, 16981–16986 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arif Pavel, M. et al. Function and regulation of TRPP2 ion channel revealed by a gain-of-function mutant. Proc. Natl Acad. Sci. USA 113, E2363–E2372 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Z. et al. The ion channel function of polycystin-1 in the polycystin-1/polycystin-2 complex. EMBO Rep. 20, e48336 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, X. et al. TRPC5 does not cause or aggravate glomerular disease. J. Am. Soc. Nephrol. 29, 409–415 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brown, B. J., Boekell, K. L., Stotter, B. R., Talbot, B. E. & Schlondorff, J. S. Gain-of-function, focal segmental glomerulosclerosis Trpc6 mutation minimally affects susceptibility to renal injury in several mouse models. PLoS One 17, e0272313 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Riehle, M. et al. TRPC6 G757D loss-of-function mutation associates with FSGS. J. Am. Soc. Nephrol. 27, 2771–2783 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anderson, M., Kim, E. Y., Hagmann, H., Benzing, T. & Dryer, S. E. Opposing effects of podocin on the gating of podocyte TRPC6 channels evoked by membrane stretch or diacylglycerol. Am. J. Physiol. Cell Physiol. 305, C276–C289 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saqib, U. et al. Transient receptor potential canonical 6 (TRPC6) channel in the pathogenesis of diseases: a jack of many trades. Inflammation 46, 1144–1160 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bai, Y. et al. Structural basis for pharmacological modulation of the TRPC6 channel. eLife 9, e.53311 (2020).

    Article 

    Google Scholar
     

  • Lin, B. L. et al. Pharmacological TRPC6 inhibition improves survival and muscle function in mice with Duchenne muscular dystrophy. JCI Insight 7, e158906 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, B. L. et al. In vivo selective inhibition of TRPC6 by antagonist BI 749327 ameliorates fibrosis and dysfunction in cardiac and renal disease. Proc. Natl Acad. Sci. USA 116, 10156–10161 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trachtman, H. et al. TRPC6 inhibitor BI 764198 in focal segmental glomerulosclerosis: phase 2 study design. Kidney Int. Rep. 8, 2822–2825 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Spires, D. et al. Protective role of Trpc6 knockout in the progression of diabetic kidney disease. Am. J. Physiol. Renal Physiol. 315, F1091–F1097 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ilatovskaya, D. V. et al. A NOX4/TRPC6 pathway in podocyte calcium regulation and renal damage in diabetic kidney disease. J. Am. Soc. Nephrol. 29, 1917–1927 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ilatovskaya, D. V. et al. Podocyte injury in diabetic nephropathy: implications of angiotensin II-dependent activation of TRPC channels. Sci. Rep. 5, 17637 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bohovyk, R. et al. Protease-activated receptor 1-mediated damage of podocytes in diabetic nephropathy. Diabetes 72, 1795–1808 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Z. et al. Transient receptor potential cation channel 6 contributes to kidney injury induced by diabetes and hypertension. Am. J. Physiol. Renal Physiol. 322, F76–F88 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Palygin, O. The role of TRPC6 channel in chronic kidney disease. Am. J. Physiol. Renal Physiol. 322, F195–F196 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Golosova, D. et al. Role of opioid signaling in kidney damage during the development of salt-induced hypertension. Life Sci. Alliance 3, e202000853 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, E. Y. & Dryer, S. E. Effects of TRPC6 inactivation on glomerulosclerosis and renal fibrosis in aging rats. Cells 10, 856 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, E. Y., Yazdizadeh Shotorbani, P. & Dryer, S. E. TRPC6 inactivation does not affect loss of renal function in nephrotoxic serum glomerulonephritis in rats, but reduces severity of glomerular lesions. Biochem. Biophys. Rep. 17, 139–150 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ilatovskaya, D. V. et al. Angiotensin II has acute effects on TRPC6 channels in podocytes of freshly isolated glomeruli. Kidney Int. 86, 506–514 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Binz-Lotter, J. et al. Injured podocytes are sensitized to angiotensin II-induced calcium signaling. J. Am. Soc. Nephrol. 31, 532–542 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Semenikhina, M. et al. β-Arrestin pathway activation by selective ATR1 agonism promotes calcium influx in podocytes, leading to glomerular damage. Clin. Sci. 137, 1789–1804 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Pavlov, T. S. et al. NOX4-dependent regulation of ENaC in hypertension and diabetic kidney disease. FASEB J. 34, 13396–13408 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Anderson, M., Roshanravan, H., Khine, J. & Dryer, S. E. Angiotensin II activation of TRPC6 channels in rat podocytes requires generation of reactive oxygen species. J. Cell Physiol. 229, 434–442 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Salemkour, Y. et al. Podocyte injury in diabetic kidney disease in mouse models involves TRPC6-mediated calpain activation impairing autophagy. J. Am. Soc. Nephrol. 34, 1823–1842 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • May, C. J. et al. Podocyte protease activated receptor 1 stimulation in mice produces focal segmental glomerulosclerosis mirroring human disease signaling events. Kidney Int. 104, 265–278 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shalygin, A. et al. Cytoskeleton rearrangements modulate TRPC6 channel activity in podocytes. Int. J. Mol. Sci. 22, 4396 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Renkema, K. Y. et al. TRPV5 gene polymorphisms in renal hypercalciuria. Nephrol. Dial. Transpl. 24, 1919–1924 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Knauf, F. et al. NALP3-mediated inflammation is a principal cause of progressive renal failure in oxalate nephropathy. Kidney Int. 84, 895–901 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mulay, S. R. et al. Calcium oxalate crystals induce renal inflammation by NLRP3-mediated IL-1β secretion. J. Clin. Invest. 123, 236–246 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shroff, U. N., Schiessl, I. M., Gyarmati, G., Riquier-Brison, A. & Peti-Peterdi, J. Novel fluorescence techniques to quantitate renal cell biology. Methods Cell Biol. 154, 85–107 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nguyen, V. V. T. et al. A systematic review of kidney-on-a-chip-based models to study human renal (patho-)physiology. Dis. Model. Mech. 16, dmm050113 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi, M. et al. Human ureteric bud organoids recapitulate branching morphogenesis and differentiate into functional collecting duct cell types. Nat. Biotechnol. 41, 252–261 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeng, Z. et al. Generation of patterned kidney organoids that recapitulate the adult kidney collecting duct system from expandable ureteric bud progenitors. Nat. Commun. 12, 3641 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar