Bottlenecks in biobased approaches to plastic degradation – Nature Communications

  • Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Improving markets for recycled plastics: trends, prospects and policy responses. oecd-ilibrary.org https://read.oecd-ilibrary.org/environment/improving-markets-for-recycled-plastics_9789264301016-en#page1.

  • Ali, S. S. et al. Degradation of conventional plastic wastes in the environment: a review on current status of knowledge and future perspectives of disposal. Sci. Total Environ. 771, 144719 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Plastics Europe. Plastics—the facts 2022. Plastics Europe https://plasticseurope.org/knowledge-hub/plastics-the-facts-2022/.

  • Yao, Z., Seong, H. J. & Jang, Y.-S. Environmental toxicity and decomposition of polyethylene. Ecotoxicol. Environ. Saf. 242, 113933 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qureshi, M. S. et al. Pyrolysis of plastic waste: opportunities and challenges. J. Anal. Appl. Pyrolysis 152, 104804 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Jeswani, H. et al. Life cycle environmental impacts of chemical recycling via pyrolysis of mixed plastic waste in comparison with mechanical recycling and energy recovery. Sci. Total Environ. 769, 144483 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Anuar Sharuddin, S. D., Abnisa, F., Wan Daud, W. M. A. & Aroua, M. K. A review on pyrolysis of plastic wastes. Energy Convers. Manag. 115, 308–326 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Mohanan, N., Montazer, Z., Sharma, P. K. & Levin, D. B. Microbial and enzymatic degradation of synthetic plastics. Front. Microbiol. 11, 580709 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jönsson, C. et al. Biocatalysis in the recycling landscape for synthetic polymers and plastics towards circular textiles. ChemSusChem 14, 4028–4040 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tournier, V. et al. An engineered PET depolymerase to break down and recycle plastic bottles. Nature 580, 216–219 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tournier, V. et al. Enzymes’ power for plastics degradation. Chem. Rev. 123, 5612–5701 (2023). Thoroughly reviews the field of enzymatic plastic degradation showcasing current research and where the field currently stands.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ellis, L. D. et al. Chemical and biological catalysis for plastics recycling and upcycling. Nat. Catal. 4, 539–556 (2021). This article summarizes opportunities for further advancement and concerns faced in using catalysts, both chemical and biological, to achieve a circular economy for plastics.

    Article 
    CAS 

    Google Scholar
     

  • Utomo, R. N. C. et al. Defined microbial mixed culture for utilization of polyurethane monomers. ACS Sustain. Chem. Eng. 8, 17466–17474 (2020).

    Article 

    Google Scholar
     

  • Espinosa, M. J. C. et al. Toward biorecycling: isolation of a soil bacterium that grows on a polyurethane oligomer and monomer. Front. Microbiol. 11, 404 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Connor, A., Lamb, J. V., Delferro, M., Koffas, M. & Zha, R. H. Two-step conversion of polyethylene into recombinant proteins using a microbial platform. Microb. Cell Fact. 22, 214 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sullivan, K. P. et al. Mixed plastics waste valorization through tandem chemical oxidation and biological funneling. Science 378, 207–211 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mihreteab, M., Stubblefield, B. A. & Gilbert, E. S. Microbial bioconversion of thermally depolymerized polypropylene by Yarrowia lipolytica for fatty acid production. Appl. Microbiol. Biotechnol. 103, 7729–7740 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zara, Z. et al. Surface interaction of ionic liquids: stabilization of polyethylene terephthalate-degrading enzymes in solution. Molecules 27, 119 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wheeler, F., Tyrer, J. R. & Jones, L. C. R. Selective laser crystallization and amorphization in polymer fibers. J. Laser Appl. 34, 042030 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Guo, B. et al. Fast depolymerization of PET bottle mediated by microwave pre‐treatment and an engineered PETase. ChemSusChem 16, e202300742 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, H. et al. Machine learning-aided engineering of hydrolases for PET depolymerization. Nature 604, 662–667 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Patel, A. et al. Melt processing pretreatment effects on enzymatic depolymerization of poly(ethylene terephthalate). ACS Sustain. Chem. Eng. 10, 13619–13628 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Chang, A. C. et al. Understanding consequences and tradeoffs of melt processing as a pretreatment for enzymatic depolymerization of poly(ethylene terephthalate). Macromol. Rapid Commun. 43, 2100929 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Law, A., Simon, L. & Lee‐Sullivan, P. Effects of thermal aging on isotactic polypropylene crystallinity. Polym. Eng. Sci. 48, 627–633 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Cai, H., Dave, V., Gross, R. A. & McCarthy, S. P. Effects of physical aging, crystallinity, and orientation on the enzymatic degradation of poly(lactic acid). J. Polym. Sci. Part B Polym. Phys. 34, 2701–2708 (1996).

    <a data-track="click" rel="nofollow noopener" data-track-label="10.1002/(SICI)1099-0488(19961130)34:163.0.CO;2-S” data-track-action=”article reference” href=”https://doi.org/10.1002%2F%28SICI%291099-0488%2819961130%2934%3A16%3C2701%3A%3AAID-POLB2%3E3.0.CO%3B2-S” aria-label=”Article reference 26″ data-doi=”10.1002/(SICI)1099-0488(19961130)34:163.0.CO;2-S”>Article 
    ADS 

    Google Scholar
     

  • Badino, S. F., Bååth, J. A., Borch, K., Jensen, K. & Westh, P. Adsorption of enzymes with hydrolytic activity on polyethylene terephthalate. Enzym. Microb. Technol. 152, 109937 (2021).

    Article 

    Google Scholar
     

  • Kaabel, S. et al. Enzymatic depolymerization of highly crystalline polyethylene terephthalate enabled in moist-solid reaction mixtures. Proc. Natl Acad. Sci. 118, e2026452118 (2021). Details a new method for enzymatic degradation which yields high conversion with limited water usage, which decreases the natural resources needed for the process.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, Q., Hiyama, M., Kabe, T., Kimura, S. & Iwata, T. Enzymatic self-biodegradation of poly(l -lactic acid) films by embedded heat-treated and immobilized proteinase K. Biomacromolecules 21, 3301–3307 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • DelRe, C. et al. Near-complete depolymerization of polyesters with nano-dispersed enzymes. Nature 592, 558–563 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cesur, S. The effects of additives on the biodegradation of polycaprolactone composites. J. Polym. Environ. 26, 1425–1444 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Liu, L., Xu, M., Ye, Y. & Zhang, B. On the degradation of (micro)plastics: degradation methods, influencing factors, environmental impacts. Sci. Total Environ. 806, 151312 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sonnendecker, C. et al. Low carbon footprint recycling of post-consumer PET plastic with a metagenomic polyester hydrolase. ChemSusChem 15, e202101062 (2022). Discovery of novel polyester hydrolases from a compost metagenome.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Havstad, M. R. Biodegradable plastics. Plastic Waste and Recycling 97–129 (Elsevier, 2020). https://doi.org/10.1016/B978-0-12-817880-5.00005-0. Comprehensive review on biodegradable plastics including discussions on the importance of waste management for these plastics.

  • Rosenboom, J.-G., Langer, R. & Traverso, G. Bioplastics for a circular economy. Nat. Rev. Mater. 7, 117–137 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qi, X., Ren, Y. & Wang, X. New advances in the biodegradation of poly(lactic) acid. Int. Biodeterior. Biodegrad. 117, 215–223 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Yang, Y. et al. Complete bio-degradation of poly(butylene adipate-co-terephthalate) via engineered cutinases. Nat. Commun. 14, 1645 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benavides Fernández, C. D., Guzmán Castillo, M. P., Quijano Pérez, S. A. & Carvajal Rodríguez, L. V. Microbial degradation of polyethylene terephthalate: a systematic review. SN Appl. Sci. 4, 263 (2022).

    Article 

    Google Scholar
     

  • Hachisuka, S., Nishii, T. & Yoshida, S. Development of a targeted gene disruption system in the poly(ethylene terephthalate)-degrading bacterium Ideonella sakaiensis and its applications to PETase and MHETase genes. Appl. Environ. Microbiol. 87, e00020–21 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, P. et al. Potential one-step strategy for PET degradation and PHB biosynthesis through co-cultivation of two engineered microorganisms. Eng. Microbiol. 1, 100003 (2021).

    Article 

    Google Scholar
     

  • Khairul Anuar, N. F. S. et al. An overview into polyethylene terephthalate (PET) hydrolases and efforts in tailoring enzymes for improved plastic degradation. Int. J. Mol. Sci. 23, 12644 (2022). This article provides an overview of enzymes associated with polyethylene terephthalate degradation.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Müller, R., Schrader, H., Profe, J., Dresler, K. & Deckwer, W. Enzymatic degradation of poly(ethylene terephthalate): rapid hydrolyse using a hydrolase from T. fusca. Macromol. Rapid Commun. 26, 1400–1405 (2005).

    Article 

    Google Scholar
     

  • Sulaiman, S. et al. Isolation of a novel cutinase homolog with polyethylene terephthalate-degrading activity from leaf-branch compost by using a metagenomic approach. Appl. Environ. Microbiol. 78, 1556–1562 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoshida, S. et al. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 351, 1196–1199 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xi, X. et al. Secretory expression in Bacillus subtilis and biochemical characterization of a highly thermostable polyethylene terephthalate hydrolase from bacterium HR29. Enzym. Microb. Technol. 143, 109715 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Son, H. F. et al. Rational protein engineering of thermo-stable petase from Ideonella sakaiensis for highly efficient PET degradation. ACS Catal. 9, 3519–3526 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Bell, E. L. et al. Directed evolution of an efficient and thermostable PET depolymerase. Nat. Catal. 5, 673–681 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Pfaff, L. et al. Multiple substrate binding mode-guided engineering of a thermophilic PET hydrolase. ACS Catal. 12, 9790–9800 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cui, Y. et al. Computational redesign of a PETase for plastic biodegradation under ambient condition by the GRAPE strategy. ACS Catal. 11, 1340–1350 (2021). This article outlines a paired computational and experimental strategy for optimizing performance of PETase from Ideonella sakaiensis.

    Article 
    CAS 

    Google Scholar
     

  • Arnal, G. et al. Assessment of four engineered PET degrading enzymes considering large-scale industrial applications. ACS Catal. 13, 13156–13166 (2023). This article compares the performance of multiple, engineered enzymes under consistent conditions and provide for a standardized methodology for enzyme performance.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Acosta, D. J. & Alper, H. S. Advances in enzymatic and organismal technologies for the recycling and upcycling of petroleum-derived plastic waste. Curr. Opin. Biotechnol. 84, 103021 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dhanraj, N. D., Hatha, A. A. M. & Jisha, M. S. Biodegradation of petroleum based and bio-based plastics: approaches to increase the rate of biodegradation. Arch. Microbiol. 204, 258 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Santo, M., Weitsman, R. & Sivan, A. The role of the copper-binding enzyme—laccase—in the biodegradation of polyethylene by the actinomycete Rhodococcus ruber. Int. Biodeterior. Biodegrad. 84, 204–210 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Y. et al. Computer-aided discovery of a novel thermophilic laccase for low-density polyethylene degradation. J. Hazard. Mater. 458, 131986 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gravouil, K. et al. Transcriptomics and lipidomics of the environmental strain Rhodococcus ruber point out consumption pathways and potential metabolic bottlenecks for polyethylene degradation. Environ. Sci. Technol. 51, 5172–5181 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sudhakar, M. et al. Biofouling and biodegradation of polyolefins in ocean waters. Polym. Degrad. Stab. 92, 1743–1752 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Lv, S., Li, Y., Zhao, S. & Shao, Z. Biodegradation of typical plastics: from microbial diversity to metabolic mechanisms. Int. J. Mol. Sci. 25, 593 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ekere, I. et al. Bioconversion process of polyethylene from waste tetra pak® packaging to polyhydroxyalkanoates. Polymers 14, 2840 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rabot, C. et al. Conversion of polyethylenes into fungal secondary metabolites. Angew. Chem. Int. Ed. 62, e202214609 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Magnin, A., Pollet, E. & Avérous, L. Characterization of the enzymatic degradation of polyurethanes. Methods in Enzymology vol. 648, 317–336 (Elsevier, 2021).

  • Liu, J. et al. Biodegradation and up-cycling of polyurethanes: progress, challenges, and prospects. Biotechnol. Adv. 48, 107730 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin, X. et al. Current advances in polyurethane biodegradation. Polym. Int. 71, 1384–1392 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Branson, Y. et al. Urethanases for the enzymatic hydrolysis of low molecular weight carbamates and the recycling of polyurethanes. Angew. Chem. Int. Ed. 62, e202216220 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Savoldelli, J., Tomback, D. & Savoldelli, H. Breaking down polystyrene through the application of a two-step thermal degradation and bacterial method to produce usable byproducts. Waste Manag. 60, 123–126 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y., Pedersen, J. N., Eser, B. E. & Guo, Z. Biodegradation of polyethylene and polystyrene: from microbial deterioration to enzyme discovery. Biotechnol. Adv. 60, 107991 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hou, L. & Majumder, E. L.-W. Potential for and distribution of enzymatic biodegradation of polystyrene by environmental microorganisms. Materials 14, 503 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, W.-M. & Criddle, C. S. Characterization of biodegradation of plastics in insect larvae. Methods in Enzymology Vol. 648, 95–120 (Elsevier, 2021).

  • Peng, B.-Y. et al. Biodegradation of polyvinyl chloride (PVC) in Tenebrio molitor (Coleoptera: Tenebrionidae) larvae. Environ. Int. 145, 106106 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brandon, A. M., Garcia, A. M., Khlystov, N. A., Wu, W.-M. & Criddle, C. S. Enhanced bioavailability and microbial biodegradation of polystyrene in an enrichment derived from the gut microbiome of Tenebrio molitor (mealworm larvae). Environ. Sci. Technol. 55, 2027–2036 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, Y., Xian, Z.-N., Yue, W., Yin, C.-F. & Zhou, N.-Y. Degradation of polyvinyl chloride by a bacterial consortium enriched from the gut of Tenebrio molitor larvae. Chemosphere 318, 137944 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Z. et al. Polyvinyl chloride degradation by a bacterium isolated from the gut of insect larvae. Nat. Commun. 13, 5360 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nyamjav, I., Jang, Y., Lee, Y. E. & Lee, S. Biodegradation of polyvinyl chloride by Citrobacter koseri isolated from superworms (Zophobas atratus larvae). Front. Microbiol. 14, 1175249 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saeed, S., Iqbal, A. & Deeba, F. Biodegradation study of polyethylene and PVC using naturally occurring plastic degrading microbes. Arch. Microbiol. 204, 497 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khandare, S. D., Chaudhary, D. R. & Jha, B. Bioremediation of polyvinyl chloride (PVC) films by marine bacteria. Mar. Pollut. Bull. 169, 112566 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Suitor, J. T., Varzandeh, S. & Wallace, S. One-pot synthesis of adipic acid from guaiacol in Escherichia coli. ACS Synth. Biol. 9, 2472–2476 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Negoro, S. Biodegradation of nylon oligomers. Appl. Microbiol. Biotechnol. 54, 461–466 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Negoro, S. et al. Structural and functional characterization of nylon hydrolases. Methods in Enzymology Vol. 648 (eds. Weber, G., Bornscheuer, U. T. & Wei, R.) 357–389 (Academic Press, 2021).

  • Von Haugwitz, G. et al. Synthesis of modified poly(vinyl alcohol)s and their degradation using an enzymatic cascade. Angew. Chem. Int. Ed. 62, e202216962 (2023). Identification of the first enzymatic pathway for the degradation of poly(vinyl alcohol) polymers.

  • Singh, A. et al. Techno-economic, life-cycle, and socioeconomic impact analysis of enzymatic recycling of poly(ethylene terephthalate). Joule 5, 2479–2503 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Uekert, T. et al. Life cycle assessment of enzymatic poly(ethylene terephthalate) recycling. Green. Chem. 52, 107811 (2022). Critical examination of the entire biorecycling process for PET which directs researchers to areas concern to focus their efforts for further process optimization.


    Google Scholar
     

  • Kumar, R. et al. Impacts of plastic pollution on ecosystem services, sustainable development goals, and need to focus on circular economy and policy interventions. Sustainability 13, 9963 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yin, S. et al. Mechanical reprocessing of polyolefin waste: a review. Polym. Eng. Sci. 55, 2899–2909 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Ragaert, K., Delva, L. & Van Geem, K. Mechanical and chemical recycling of solid plastic waste. Waste Manag. 69, 24–58 (2017). This article details current recycling methods used for some plastics as well as their challenges and proposed ways to overcome these challenges.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schyns, Z. O. G. & Shaver, M. P. Mechanical recycling of packaging plastics: a review. Macromol. Rapid Commun. 42, 2000415 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Saikrishnan, S., Jubinville, D., Tzoganakis, C. & Mekonnen, T. H. Thermo-mechanical degradation of polypropylene (PP) and low-density polyethylene (LDPE) blends exposed to simulated recycling. Polym. Degrad. Stab. 182, 109390 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Dias, R. et al. Study of the technical feasibility of the use of polypropylene residue in composites for automotive industry. Plastics in the Environment (ed. Gomiero, A.) (IntechOpen, 2019). https://doi.org/10.5772/intechopen.81147.

  • Plastics Europe. Plastics—the Fast Facts 2023. https://plasticseurope.org/knowledge-hub/plastics-the-fast-facts-2023/.