Search
Close this search box.

Biophysical chemistry behind sickle cell anemia and the mechanism of voxelotor action – Scientific Reports

  • Pauling, L., Itano, H. A., Singer, S. J. & Wells, I. C. Sickle cell anemia, a molecular disease. Science 110, 543–548 (1949).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ingram, V. M. Gene mutations in human hæmoglobin: The chemical difference between normal and sickle cell hæmoglobin. Nature 180, 326–328 (1957).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Becklake, M. R., Griffiths, S. B., McGregor, M., Goldman, H. I. & Schreve, J. P. Oxygen dissociation curves in sickle cell anemia and in subjects with the sickle cell trait. J. Clin. Investig. 34, 751–755 (1955).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abdu, A., Gómez-Márquez, J. & Aldrich, T. K. The oxygen affinity of sickle hemoglobin. Respir. Physiol. Neurobiol. 161, 92–94 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • May, A. & Huehns, E. R. The mechanism of the low oxygen affinity of red cells in sickle cell disease. Hamatol. Bluttransfus. 10, 279–283 (1972).

    CAS 
    PubMed 

    Google Scholar
     

  • Fabry, M. E., Desrosiers, L. & Suzuka, S. M. Direct intracellular measurement of deoxygenated hemoglobin S solubility. Blood 98, 883–884 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Papageorgiou, D. P. et al. Simultaneous polymerization and adhesion under hypoxia in sickle cell disease. Proc. Natl. Acad. Sci. 115, 9473–9478 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gill, S. J. et al. Aggregation effects on oxygen binding of sickle cell hemoglobin. Science 201, 362–364 (1978).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim-Shapiro, D. B., Noguchi, C. T. & Schechter, A. N. Sickle hemoglobin polymerization. In Sickle Cell Disease (eds Gladwin, M. T. et al.) (McGraw-Hill Education, 2021).


    Google Scholar
     

  • Poillon, W. N. & Kim, B. C. 2,3-Diphosphoglycerate and intracellular pH as interdependent determinants of the physiologic solubility of deoxyhemoglobin S. Blood 76, 1028–1036 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hutchaleelaha, A., Patel, M., Silva, A., Oksenberg, D. & Metcalf, B. GBT440 demonstrates high specificity for red blood cells in nonclinical species. Blood 126, 2172–2172 (2015).

    Article 

    Google Scholar
     

  • Metcalf, B. et al. Discovery of GBT440, an orally bioavailable R-state stabilizer of sickle cell hemoglobin. ACS Med. Chem. Lett. 8, 321–326 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oksenberg, D. et al. GBT440 increases haemoglobin oxygen affinity, reduces sickling and prolongs RBC half-life in a murine model of sickle cell disease. Br. J. Haematol. 175, 141–153 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sinha, N., Tsai, C.-J. & Nussinov, R. A proposed structural model for amyloid fibril elongation: domain swapping forms an interdigitating β-structure polymer. Protein Eng. Des. Sel. 14, 93–103 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Fermi, G., Perutz, M. F., Williamson, D., Stein, P. & Shih, D.T.-b. Structure-function relationships in the low-affinity mutant haemoglobin aalborg (Gly74 (E18)β → Arg). J. Mol. Biol. 226, 883–888 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oksenberg, D. et al. GBT440 increases haemoglobin oxygen affinity, reduces sickling and prolongs RBC half-life in a murine model of sickle cell disease. Br. J. Haematol. 175, 141–153 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Demirci, S., Uchida, N. & Tisdale, J. F. Gene therapy for sickle cell disease: An update. Cytotherapy 20, 899–910 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kato, G. J. et al. Sickle cell disease. Nat. Rev. Dis. Prim. 4, 18010 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Xu, D., Lin, S. L. & Nussinov, R. Protein binding versus protein folding: The role of hydrophilic bridges in protein associations 1 1edited by B. Honig. J. Mol. Biol. 265, 68–84 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lounnas, V. & Wade, R. C. Exceptionally stable salt bridges in cytochrome P450cam have functional roles. Biochemistry 36, 5402–5417 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marqusee, S. & Sauer, R. T. Contributions of a hydrogen bond/salt bridge network to the stability of secondary and tertiary structure in λ repressor. Protein Sci. 3, 2217–2225 (1994).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pucci, F., Bourgeas, R. & Rooman, M. High-quality thermodynamic data on the stability changes of proteins upon single-site mutations. J. Phys. Chem. Ref. Data 45, 023104 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Hendsch, Z. S. & Tidor, B. Do salt bridges stabilize proteins? A continuum electrostatic analysis. Protein Sci. 3, 211–226 (1994).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakamura, H. Roles of electrostatic interaction in proteins. Q. Rev. Biophys. 29, 1–90 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kumar, S. & Nussinov, R. Close-range electrostatic interactions in proteins. ChemBioChem 3, 604 (2002).

    <a data-track="click" rel="nofollow noopener" data-track-label="10.1002/1439-7633(20020703)3:73.0.CO;2-X” data-track-action=”article reference” href=”https://doi.org/10.1002%2F1439-7633%2820020703%293%3A7%3C604%3A%3AAID-CBIC604%3E3.0.CO%3B2-X” aria-label=”Article reference 25″ data-doi=”10.1002/1439-7633(20020703)3:73.0.CO;2-X”>Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chu, X. et al. Importance of electrostatic interactions in the association of intrinsically disordered histone chaperone Chz1 and histone H2A.Z-H2B. PLoS Comput. Biol. 8, e1002608 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo, H. et al. A novel sickle hemoglobin: Hemoglobin S-south end. J. Pediatr. Hematol. Oncol. 26, 773–776 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Perutz, M. F., Wilkinson, A. J., Paoli, M. & Dodson, G. G. The stereochemical mechanism of the cooperative effects in hemoglobin revisited. Annu. Rev. Biophys. Biomol. Struct. 27, 1–34 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Suhail, M., Usmani, S. & Ahmad, M. A quantum chemistry background of sickle cell anemia and gaps in antisickling drug development. Eur. J. Chem. 14, 370–375 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Adachi, K., Konitzer, P., Paulraj, C. G. & Surrey, S. Role of leu-beta 88 in the hydrophobic acceptor pocket for Val-beta 6 during hemoglobin S polymerization. J. Biol. Chem. 269, 17477–17480 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ferrone, F. A., Ivanova, M. & Jasuja, R. Heterogeneous nucleation and crowding in sickle hemoglobin: An analytic approach. Biophys. J. 82, 399–406 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dash, B., Archana, Y., Satapathy, N. & Naik, S. Search for antisickling agents from plants. Pharmacogn. Rev. 7, 53 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marengo-Rowe, A. J. Structure-function relations of human hemoglobins. Baylor Univ. Med. Cent. Proc. 19, 239–245 (2006).

    Article 

    Google Scholar
     

  • Rotter, M. A., Kwong, S., Briehl, R. W. & Ferrone, F. A. Heterogeneous nucleation in sickle hemoglobin: Experimental validation of a structural mechanism. Biophys. J. 89, 2677–2684 (2005).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martin, D. W. Structure and function of a protein–haemoglobin. Harper’s Rev. Biochem. 19th ed. Martin DW, Mayes PA Rodwell VN eds. Calif. Lange Med. Publ. (1983).

  • Tsai, C.-J., Lin, S. L., Wolfson, H. J. & Nussinov, R. Studies of protein-protein interfaces: A statistical analysis of the hydrophobic effect. Protein Sci. 6, 53–64 (1997).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dill, K. A. Dominant forces in protein folding. Biochemistry 29, 7133–7155 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Makhatadze, G. I., Loladze, V. V., Ermolenko, D. N., Chen, X. & Thomas, S. T. Contribution of surface salt bridges to protein stability: Guidelines for protein engineering. J. Mol. Biol. 327, 1135–1148 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ueda, Y., Nagel, R. L. & Bookchin, R. M. An increased Bohr effect in sickle cell anemia. Blood 53, 472–480 (1979).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chng, K. Z. et al. Assessment of transient changes in oxygen diffusion of single red blood cells using a microfluidic analytical platform. Commun. Biol. 4, 271 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mairbäurl, H. Red blood cell function in hypoxia at altitude and Exercise. Int. J. Sports Med. 15, 51–63 (1994).

    Article 
    PubMed 

    Google Scholar
     

  • Mulquiney, P. J., Bubb, W. A. & Kuchel, P. W. Model of 2,3-bisphosphoglycerate metabolism in the human erythrocyte based on detailed enzyme kinetic equations1: In vivo kinetic characterization of 2,3-bisphosphoglycerate synthase/phosphatase using 13C and 31P NMR. Biochem. J. 342, 567 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jensen, M., Bunn, H. F., Halikas, G., Kan, Y. W. & Nathan, D. G. Effects of cyanate and 2,3-diphosphoglycerate on sickling relationship to oxygenation. J. Clin. Investig. 52, 2542–2547 (1973).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poillon, W. N., Kim, B. C., Labotka, R. J., Hicks, C. U. & Kark, J. A. Antisickling effects of 2,3-diphosphoglycerate depletion. Blood 85, 3289–3296 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Frewin, R. Biochemical aspects of anaemia. In Clinical Biochemistry: Metabolic and Clinical Aspects 515–532 (Elsevier, 2014). https://doi.org/10.1016/B978-0-7020-5140-1.00027-4.

    Chapter 

    Google Scholar
     

  • Pelley, J. W. Protein structure and function. In Elsevier’s Integrated Review Biochemistry 19–28 (Elsevier, 2012). https://doi.org/10.1016/B978-0-323-07446-9.00003-9.

    Chapter 

    Google Scholar
     

  • Tashi, T. & Prchal, J. T. Polycythemia. In Lanzkowsky’s Manual of Pediatric Hematology and Oncology 197–208 (Elsevier, 2016). https://doi.org/10.1016/B978-0-12-801368-7.00012-0.

    Chapter 

    Google Scholar
     

  • Vekilov, P. G. Sickle-cell haemoglobin polymerization: Is it the primary pathogenic event of sickle-cell anaemia?. Br. J. Haematol. 139, 173–184 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eaton, W. A. Hemoglobin S polymerization and sickle cell disease: A retrospective on the occasion of the 70th anniversary of Pauling’s science paper. Am. J. Hematol. 95, 205–211 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Jensen, F. B. Red blood cell pH, the Bohr effect, and other oxygenation-linked phenomena in blood O2 and CO2 transport. Acta Physiol. Scand. 182, 215–227 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Engel, E. R., Howard, A. L., Ankus, E. J. & Rico, J. F. Advances in sickle cell disease management. Adv. Pediatr. 67, 57–71 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Hoppe, C. & Neumayr, L. Sickle cell disease. Hematol. Oncol. Clin. N. Am. 33, 355–371 (2019).

    Article 

    Google Scholar
     

  • Abdulmalik, O. et al. VZHE-039, a novel antisickling agent that prevents erythrocyte sickling under both hypoxic and anoxic conditions. Sci. Rep. 10, 20277 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zaugg, R. H., Walder, J. A. & Klotz, I. M. Schiff base adducts of haemoglobin. Modifications that inhibit erythrocyte sickling. J. Biol. Chem. 252, 8542–8548 (1977).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oder, E., Safo, M. K., Abdulmalik, O. & Kato, G. J. New developments in anti-sickling agents: Can drugs directly prevent the polymerization of sickle haemoglobin in vivo ?. Br. J. Haematol. 175, 24–30 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pagare, P. P. et al. Rational design of pyridyl derivatives of vanillin for the treatment of sickle cell disease. Bioorg. Med. Chem. 26, 2530–2538 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stern, W., Mathews, D., McKew, J., Shen, X. & Kato, G. J. A phase 1, first-in-man, dose-response study of aes-103 (5-HMF), an anti-sickling, allosteric modifier of hemoglobin oxygen affinity in healthy Norman volunteers. Blood 120, 3210–3210 (2012).

    Article 

    Google Scholar
     

  • Lehrer-Graiwer, J. et al. GBT440, a potent anti-sickling hemoglobin modifier reduces hemolysis, improves anemia and nearly eliminates sickle cells in peripheral blood of patients with sickle cell disease. Blood 126, 542–542 (2015).

    Article 

    Google Scholar
     

  • Ali, M. A. et al. Efficacy and safety of recently approved drugs for sickle cell disease: A review of clinical trials. Exp. Hematol. 92, 11-18.e1 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cimpeanu, E., Poplawska, M., Jimenez, B. C., Dutta, D. & Lim, S. H. Allogeneic hematopoietic stem cell transplant for sickle cell disease: The why, who, and what. Blood Rev. 50, 100868 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ferrone, F. A. Targeting HbS polymerization. Semin. Hematol. 55, 53–59 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Leibovitch, J. N. et al. l-glutamine, crizanlizumab, voxelotor, and cell-based therapy for adult sickle cell disease: Hype or hope?. Blood Rev. 53, 100925 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bellantoni, A. J., Mangoli, A. & Deel, M. D. Hematology of childhood and adolescence. In Encyclopedia of Child and Adolescent Health 651–675 (Elsevier, 2023).

    Chapter 

    Google Scholar
     

  • Estepp, J. H. Voxelotor (GBT440), a first-in-class hemoglobin oxygen-affinity modulator, has promising and reassuring preclinical and clinical data. Am. J. Hematol. 93, 326–329 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Hutchaleelaha, A. et al. Pharmacokinetics and pharmacodynamics of voxelotor (GBT440) in healthy adults and patients with sickle cell disease. Br. J. Clin. Pharmacol. 85, 1290–1302 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eaton, W. A. & Bunn, H. F. Treating sickle cell disease by targeting HbS polymerization. Blood 129, 2719–2726 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shaanan, B. Structure of human oxyhaemoglobin at 2·1resolution. J. Mol. Biol. 171, 31–59 (1983).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tame, J. R. H. & Vallone, B. The structures of deoxy human haemoglobin and the mutant Hb Tyrα42His at 120 K. Acta Crystallogr. Sect. D Biol. Crystallogr. 56, 805–811 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ghatge, M. S. et al. Crystal structure of carbonmonoxy sickle hemoglobin in R-state conformation. J. Struct. Biol. 194, 446–450 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harrington, D. J., Adachi, K. & Royer, W. E. The high resolution crystal structure of deoxyhemoglobin S. J. Mol. Biol. 272, 398–407 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fan, J.-S. et al. Solution structure and dynamics of human hemoglobin in the carbonmonoxy form. Biochemistry 52, 5809–5820 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Richard, V., Dodson, G. G. & Mauguen, Y. Human deoxyhaemoglobin-2,3-diphosphoglycerate complex low-salt structure at 2·5 Å resolution. J. Mol. Biol. 233, 270–274 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sinha, N., Kumar, S. & Nussinov, R. interdomain interactions in hinge-bending transitions. Structure 9, 1165–1181 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chikezie, P. C., Ekeanyanwu, R. C. & Chile-Agada, A. B. Polymerization of deoxygenated sickle hemoglobin in the presence of fractionated leaf extracts of Anacardium occidentale, Psidium guajava, and Terminalia catappa. Bull. Natl. Res. Cent. 44, 135 (2020).

    Article 

    Google Scholar
     

  • Meuzelaar, H., Vreede, J. & Woutersen, S. Influence of Glu/Arg, Asp/Arg, and Glu/Lys salt bridges on α-helical stability and folding kinetics. Biophys. J. 110, 2328–2341 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Donald, J. E., Kulp, D. W. & DeGrado, W. F. Salt bridges: Geometrically specific, designable interactions. Proteins Struct. Funct. Bioinform. 79, 898–915 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Lim, S., Choi, D., Jeong, T. & Han, D. Carboxylate-derived conductive, sodium-ion storable surface of Prussian blue with a stable cathode-electrolyte interface. J. Alloys Compd. 938, 168502 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Gallops, C. E., Yu, C., Ziebarth, J. D. & Wang, Y. Effect of the protonation level and ionic strength on the structure of linear polyethyleneimine. ACS Omega 4, 7255–7264 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Gad, S. C. Phosphoric acid. In Reference Module in Biomedical Sciences (Elsevier, 2023). https://doi.org/10.1016/B978-0-12-824315-2.00813-7.

    Chapter 

    Google Scholar
     

  • Spainhour, C. B. Phosphoric Acid. In Encyclopedia of Toxicology 916–919 (Elsevier, 2014). https://doi.org/10.1016/B978-0-12-386454-3.00904-0.

    Chapter 

    Google Scholar
     

  • Verma, C. Corrosion and corrosion inhibition in acidic electrolytes 49–58 (Elsevier, London, 2022). https://doi.org/10.1016/B978-0-323-90589-3.00006-9.

    Book 

    Google Scholar
     

  • Callaghan, R., George, A. M. & Kerr, I. D. 8.8 Molecular aspects of the translocation process by ABC proteins. In Comprehensive Biophysics 145–173 (Elsevier, 2012). https://doi.org/10.1016/B978-0-12-374920-8.00812-2.

    Chapter 

    Google Scholar
     

  • Grønborg, M. & Jensen, O. N. Phosphoprotein and phosphoproteome analysis by mass spectrometry. J. Chromatogr. Libr. 68, 21–38. https://doi.org/10.1016/S0301-4770(03)80005-2 (2003).

    Article 

    Google Scholar
     

  • Cho, J., King, J. S., Qian, X., Harwood, A. J. & Shears, S. B. Dephosphorylation of 2,3-bisphosphoglycerate by MIPP expands the regulatory capacity of the Rapoport-Luebering glycolytic shunt. Proc. Natl. Acad. Sci. 105, 5998–6003 (2008).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • The kinetics of the carbon dioxide-carbonic acid reaction. Philos. Trans. R. Soc. Lond. Ser. A, Contain. Pap. Math. Phys. Character 232, 65–97 (1933).

  • Brandt, M. J., Johnson, K. M., Elphinston, A. J. & Ratnayaka, D. D. Chemical storage, dosing and control. In Twort’s Water Supply 513–552 (Elsevier, 2017). https://doi.org/10.1016/B978-0-08-100025-0.00012-0.

    Chapter 

    Google Scholar
     

  • Retallack, G. J. Impact of Past Global Warming on Biodiversity. in Encyclopedia of Biodiversity 224–230 (Elsevier, 2007). doi:https://doi.org/10.1016/B978-0-12-384719-5.00232-X.

  • McManus, J. W. Coral Reefs. in Encyclopedia of Ocean Sciences 660–670 (Elsevier, 2001). doi:https://doi.org/10.1016/B978-012374473-9.00090-4.

  • Sher, E. Environmental Aspects of Air Pollution. in Handbook of Air Pollution From Internal Combustion Engines 27–41 (Elsevier, 1998). doi:https://doi.org/10.1016/B978-012639855-7/50041-7.

  • Högman, C. F. Preparation and preservation of red cells. Vox Sang. 74, 177–187 (1998).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Kvassman, J. & Pettersson, G. Mechanism of 1,3-bisphosphoglycerate transfer from phosphoglycerate kinase to glyceraldehyde-3-phosphate dehydrogenase. Eur. J. Biochem. 186, 265–272 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Haller, R. G. & DiMauro, S. Metabolic and Mitochondrial Myopathies. in Muscle 1031–1041 (Elsevier, 2012). doi:https://doi.org/10.1016/B978-0-12-381510-1.00075-2.

  • Płoszczyca, K., Czuba, M., Chalimoniuk, M., Gajda, R. & Baranowski, M. Red blood cell 2,3-diphosphoglycerate decreases in response to a 30 km time trial under hypoxia in cyclists. Front. Physiol. 12, 670977 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shung, K., Lee, M., Reid, J. & Finch, C. Effects of oxygen tension and pH on the ultrasonic absorption properties of sickle cells. Blood 54, 451–458 (1979).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ueda, Y. & Bookchin, R. M. Effects of carbon dioxide and pH variations in vitro on blood respiratory functions, red blood cell volume, transmembrane pH gradients, and sickling in sickle cell anemia. J. Lab. Clin. Med. 104, 146–159 (1984).

    CAS 
    PubMed 

    Google Scholar
     

  • Erik van der Linden & Foegeding, E. A. Gelation. in Modern Biopolymer Science 29–91 (Elsevier, 2009). doi:https://doi.org/10.1016/B978-0-12-374195-0.00002-1.

  • Di Liberto, G. et al. Dense red blood cell and oxygen desaturation in sickle-cell disease. Am. J. Hematol. 91, 1008–1013 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Poillon, W. N., Robinson, M. D. & Kim, B. C. Deoxygenated sickle haemoglobin. Modulation of its solubility by 2,3-diphosphoglycerate and other allosteric polyanions. J. Biol. Chem. 260, 13897–900 (1985).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Biovia, D. S. Discovery studio modeling environment. at (2017).

  • Dennington, R., Keith, T. A. & Millam, J. M. GaussView Version 6. at (2019).

  • Kuhlman, B. & Bradley, P. Advances in protein structure prediction and design. Nat. Rev. Mol. Cell Biol. 20, 681–697 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lahiri, P., Verma, H., Ravikumar, A. & Chatterjee, J. Protein stabilization by tuning the steric restraint at the reverse turn. Chem. Sci. 9, 4600–4609 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zandarashvili, L., Esadze, A. & Iwahara, J. NMR studies on the dynamics of hydrogen bonds and ion pairs involving lysine side chains of proteins. Adv. Protein Chem. Struct. Biol. 93, 37–80. https://doi.org/10.1016/B978-0-12-416596-0.00002-6 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blumenthal, I. Carbon monoxide poisoning. J. R. Soc. Med. 94, 270–272 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Noguchi, C. & Schechter, A. The intracellular polymerization of sickle hemoglobin and its relevance to sickle cell disease. Blood 58, 1057–1068 (1981).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rotter, M., Yosmanovich, D., Briehl, R. W., Kwong, S. & Ferrone, F. A. Nucleation of sickle hemoglobin mixed with hemoglobin A: Experimental and theoretical studies of hybrid-forming mixtures. Biophys. J. 101, 2790–2797 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar