Heacock, M. et al. E-waste and harm to vulnerable populations: A growing global problem. Environ. Health Perspect. 124, 550–555 (2016).
The Internet of Trash: IoT Has a Looming E-Waste Problem—IEEE Spectrum. https://spectrum.ieee.org/the-internet-of-trash-iot-has-a-looming-ewaste-problem.
Voon, S. L., An, J., Wong, G., Zhang, Y. & Chua, C. K. 3D food printing: A categorized review of inks and their development. Virt. Phys. Prototyp. 14, 203–218. https://doi.org/10.1080/17452759.2019.1603508 (2019).
Magdassi, S. The Chemistry of Inkjet Inks (World Scientific, 2009).
Tan, M. J. et al. Biodegradable electronics: Cornerstone for sustainable electronics and transient applications. J. Mater. Chem. C Mater. 4, 5531–5558 (2016).
Zeng, X., Yang, C., Chiang, J. F. & Li, J. Innovating e-waste management: From macroscopic to microscopic scales. Sci. Total Environ. 575, 1–5 (2017).
Htwe, Y. Z. N. & Mariatti, M. Printed graphene and hybrid conductive inks for flexible, stretchable, and wearable electronics: Progress, opportunities, and challenges. J. Sci. Adv. Mater. Devices 7, 100435 (2022).
Barhoum, A., Samyn, P., Öhlund, T. & Dufresne, A. Review of recent research on flexible multifunctional nanopapers. Nanoscale 9, 15181–15205 (2017).
Piemonte, V., Sabatini, S. & Gironi, F. Chemical recycling of PLA: A great opportunity towards the sustainable development? J. Polym. Environ. 21, 640. https://doi.org/10.1007/s10924-013-0608-9 (2013).
Spierling, S. et al. End-of-life options for bio-based plastics in a circular economy—Status quo and potential from a life cycle assessment perspective. Resources 9, 90 (2020).
Lipomi, D. J. et al. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 6, 788–792 (2011).
Kim, Y. et al. Stretchable nanoparticle conductors with self-organized conductive pathways. Nature 500, 59–63 (2013).
Segev-Bar, M. & Haick, H. Flexible sensors based on nanoparticles. ACS Nano 7, 8366–8378 (2013).
Tran, T. S., Dutta, N. K. & Choudhury, N. R. Graphene inks for printed flexible electronics: Graphene dispersions, ink formulations, printing techniques and applications. Adv. Colloid Interface Sci. 261, 41–61 (2018).
Yuan, J. K., Yao, S. H., Sylvestre, A. & Bai, J. Biphasic polymer blends containing carbon nanotubes: Heterogeneous nanotube distribution and its influence on the dielectric properties. J. Phys. Chem. C 116, 2051–2058 (2012).
Dermanaki Farahani, R., Gagne, M., Klemberg-Sapieha, J. E. & Therriault, D. Electrically conductive silver nanoparticles-filled nanocomposite materials as surface coatings of composite structures. Adv. Eng. Mater. 18, 1189–1199 (2016).
Al-Saleh, M. H., Gelves, G. A. & Sundararaj, U. Copper nanowire/polystyrene nanocomposites: Lower percolation threshold and higher EMI shielding. Compos. A Appl. Sci. Manuf. 42, 92–97 (2011).
Farahani, R. D., Klemberg-Sapieha, J. E. & Therriault, D. Enhanced conductivity of nanocomposite films through heterogeneous distribution of nanofillers during processing. Mater. Des. 88, 1175–1182 (2015).
Lynch, P. J. et al. Graphene-based printable conductors for cyclable strain sensors on elastomeric substrates. Carbon N. Y. 169, 25–31 (2020).
Zhao, S. et al. Percolation threshold-inspired design of hierarchical multiscale hybrid architectures based on carbon nanotubes and silver nanoparticles for stretchable and printable electronics. J. Mater. Chem. C Mater. 4, 6666–6674 (2016).
Coleman, J. N., Khan, U. & Gun’ko, Y. K. Mechanical reinforcement of polymers using carbon nanotubes. Adv. Mater. 18, 689–706 (2006).
Cataldi, P., Athanassiou, A. & Bayer, I. S. Graphene nanoplatelets-based advanced materials and recent progress in sustainable applications. Appl. Sci. 8, 1438 (2018).
Cai, L. & Wang, C. Carbon nanotube flexible and stretchable electronics. Nanoscale Res. Lett. 10, 1–21 (2015).
Bagotia, N., Choudhary, V. & Sharma, D. K. Synergistic effect of graphene/multiwalled carbon nanotube hybrid fillers on mechanical, electrical and EMI shielding properties of polycarbonate/ethylene methyl acrylate nanocomposites. Compos. B Eng. 159, 378–388 (2019).
Kharissova, O. V., Kharisov, B. I. & De Casas Ortiz, E. G. Dispersion of carbon nanotubes in water and non-aqueous solvents. RSC Adv. 3, 24812–24852 (2013).
Venkata Krishna Rao, R., Venkata Abhinav, K., Karthik, P. S. & Singh, S. P. Conductive silver inks and their applications in printed and flexible electronics. RSC Adv. 5, 77760–77790 (2015).
Zhang, S. et al. Highly stretchable, sensitive, and flexible strain sensors based on silver nanoparticles/carbon nanotubes composites. J. Alloys Compd. 652, 48–54 (2015).
Mo, L. et al. Silver nanoparticles based ink with moderate sintering in flexible and printed electronics. Int. J. Mol. Sci. 20, 2124 (2019).
Lu, N. & Kim, D. H. Flexible and stretchable electronics paving the way for soft robotics. Soft Robot. 1, 53–62 (2013).
Yu, T., Tao, Y., Wang, B., Wang, L. & Tai, Y. A facile approach to a silver conductive ink with high performance for macroelectronics. Nanoscale Res. Lett. 8, 1–6 (2013).
Black, K. et al. Silver ink formulations for sinter-free printing of conductive films. Sci. Rep. 6, 1–7 (2016).
Mo, L. et al. Nano-silver ink of high conductivity and low sintering temperature for paper electronics. Nanoscale Res. Lett. 14, 1–11 (2019).
Li, W. W. et al. One-step synthesis of Ag nanoparticles for fabricating highly conductive patterns using infrared sintering. J. Mater. Res. Technol. 9, 142–151 (2020).
Gao, M., Li, L. & Song, Y. Inkjet printing wearable electronic devices. J. Mater. Chem. C Mater. 5, 2971–2993 (2017).
Lee, C. L., Chen, C. H. & Chen, C. W. Graphene nanosheets as ink particles for inkjet printing on flexible board. Chem. Eng. J. 230, 296–302 (2013).
Htwe, Y. Z. N., Abdullah, M. K. & Mariatti, M. Water-based graphene/AgNPs hybrid conductive inks for flexible electronic applications. J. Mater. Res. Technol. 16, 59–73 (2022).
Htwe, Y. Z. N. N., Hidayah, I. N., Mariatti, M., Hidayah, I. N. & Mariatti, M. Performance of inkjet-printed strain sensor based on graphene/silver nanoparticles hybrid conductive inks on polyvinyl alcohol substrate. J. Mater. Sci. Mater. Electron. 31, 15361–15371 (2020).
Ghadimi, S., Mazinani, S., Bazargan, A. M. & Sharif, F. Effect of formulation and process on morphology and electrical conductivity of Ag–graphene hybrid inks. Synth. Met. 281, 116913 (2021).
Stano, G. et al. One-shot additive manufacturing of robotic finger with embedded sensing and actuation. Int. J. Adv. Manuf. Technol. 124, 467–485 (2023).
Wallin, T. J., Pikul, J. & Shepherd, R. F. 3D printing of soft robotic systems. Nat. Rev. Mater. 3, 84–100 (2018).
Won, P. et al. 3D printing of liquid metal embedded elastomers for soft thermal and electrical materials. ACS Appl. Mater. Interfaces 14, 55028–55038 (2022).
Shin, S. R. et al. A bioactive carbon nanotube-based ink for printing 2D and 3D flexible electronics. Adv. Mater. 28, 3280–3289 (2016).
Zhou, X. et al. Preparation and characterization of lysozyme@carbon nanotubes/waterborne polyurethane composite and the potential application in printing inks. Prog. Org. Coat. 142, 105600 (2020).
Htwe, Y. Z. N., Abdullah, M. K. & Mariatti, M. Optimization of graphene conductive ink using solvent exchange techniques for flexible electronics applications. Synth. Met. 274, 116719 (2021).
Nguyen, P. Q. M., Yeo, L. P., Lok, B. K. & Lam, Y. C. Patterned surface with controllable wettability for inkjet printing of flexible printed electronics. ACS Appl. Mater. Interfaces 6, 4011–4016 (2014).
Saidina, D. S., Zubir, S. A., Fontana, S., Hérold, C. & Mariatti, M. Synthesis and characterization of graphene-based inks for spray-coating applications. J. Electron. Mater. 48, 5757–5770 (2019).
Kang, J. W. et al. Fully spray-coated inverted organic solar cells. Solar Energy Mater. Solar Cells 103, 76–79 (2012).
Krebs, F. C. Fabrication and processing of polymer solar cells: A review of printing and coating techniques. Solar Energy Mater. Solar Cells 93, 394–412 (2009).
Najafi, M. et al. Polylactic acid-graphene emulsion ink based conductive cotton fabrics. J. Mater. Res. Technol. 18, 5197–5211 (2022).
Lei, L., Zhong, L., Lin, X., Li, Y. & Xia, Z. Synthesis and characterization of waterborne polyurethane dispersions with different chain extenders for potential application in waterborne ink. Chem. Eng. J. 253, 518–525 (2014).
Hu, Y. Q. et al. Fabrication and characterization of novel pickering emulsions and pickering high internal emulsions stabilized by gliadin colloidal particles. Food Hydrocolloid 61, 300–310 (2016).
Low, L. E., Siva, S. P., Ho, Y. K., Chan, E. S. & Tey, B. T. Recent advances of characterization techniques for the formation, physical properties and stability of pickering emulsion. Adv. Colloid Interface Sci. 277, 102117 (2020).
Zhai, W., Li, G., Yu, P., Yang, L. & Mao, L. Silver phosphate/carbon nanotube-stabilized pickering emulsion for highly efficient photocatalysis. J. Phys. Chem. C 117, 15183–15191 (2013).
Briggs, N. M. et al. Multiwalled carbon nanotubes at the interface of pickering emulsions. Langmuir 31, 13077–13084 (2015).
Zhu, J. Y., Tang, C. H., Yin, S. W. & Yang, X. Q. Development and characterization of novel antimicrobial bilayer films based on polylactic acid (PLA)/pickering emulsions. Carbohydr. Polym. 181, 727–735 (2018).
Chang, C. W., Cheng, T. Y. & Liao, Y. C. Encapsulated silver nanoparticles in water/oil emulsion for conductive inks. J. Taiwan Inst. Chem. Eng. 92, 8–14 (2018).
Zhang, W. Nanoparticle aggregation: Principles and modeling. Adv. Exp. Med. Biol. 811, 20–43 (2014).
Pinchuk, A. O. Size-dependent Hamaker constant for silver nanoparticles. J. Phys. Chem. C 116, 20099–20120 (2012).
El Badawy, A. M., Scheckel, K. G., Suidan, M. & Tolaymat, T. The impact of stabilization mechanism on the aggregation kinetics of silver nanoparticles. Sci. Total Environ. 429, 325–331 (2012).
Marcq, F. et al. Carbon nanotubes and silver flakes filled epoxy resin for new hybrid conductive adhesives. Microelectron. Reliab. 51, 1230–1234 (2011).
Pop, E., Mann, D., Wang, Q., Goodson, K. & Dai, H. Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett. 6, 96–100 (2006).
Yang, D. J., Wang, S. G., Zhang, Q., Sellin, P. J. & Chen, G. Thermal and electrical transport in multi-walled carbon nanotubes. Phys. Lett. A 329, 207–213 (2004).
Wang, C., Takei, K., Takahashi, T. & Javey, A. Carbon nanotube electronics—Moving forward. Chem. Soc. Rev. 42, 2592–2609 (2013).
Park, S., Vosguerichian, M. & Bao, Z. A review of fabrication and applications of carbon nanotube film-based flexible electronics. Nanoscale 5, 1727–1752 (2013).
Narayanan, G. N., Ganesh, R. S. & Karthigeyan, A. Effect of annealing temperature on structural, optical and electrical properties of hydrothermal assisted zinc oxide nanorods. Thin Solid Films 598, 39–45 (2016).
Kim, H. & Lee, S. Characteristics of electrical heating elements coated with graphene nanocomposite on polyester fabric: Effect of different graphene contents and annealing temperatures. Fibers Polym. 19, 965–976 (2018).
Guigo, N., Forestier, E. & Sbirrazzuoli, N. Thermal properties of biobased polymers: Furandicarboxylic acid (FDCA)-based polyesters. Adv. Polym. Sci. 283, 189–217 (2019).
Carrasco, F., Pagès, P., Gámez-Pérez, J., Santana, O. O. & Maspoch, M. L. Processing of poly(lactic acid): Characterization of chemical structure, thermal stability and mechanical properties. Polym. Degrad. Stab. 95, 116–125 (2010).
Murariu, M., Da Silva Ferreira, A., Alexandre, M. & Dubois, P. Polylactide (PLA) designed with desired end-use properties: 1. PLA compositions with low molecular weight ester-like plasticizers and related performances. Polym. Adv. Technol. 19, 636–646 (2008).
Pyda, M. & Wunderlich, B. Reversing and nonreversing heat capacity of poly(lactic acid) in the glass transition region by TMDSC. Macromolecules 38, 10472–10479 (2005).
Shi, H., Liu, C., Jiang, Q. & Xu, J. Effective approaches to improve the electrical conductivity of PEDOT:PSS: A review. Adv. Electron. Mater. 1, 1500017 (2015).
Huang, J., Miller, P. F., De Mello, J. C., De Mello, A. J. & Bradley, D. D. C. Influence of thermal treatment on the conductivity and morphology of PEDOT/PSS films. Synth. Met. 139, 569–572 (2003).
Han, Z. & Fina, A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review. Prog. Polym. Sci. 36, 914–944 (2011).
Forestier, E. et al. Characterization and performance of silicone modified polylactic acid (PLA)-graphene nanoplatelet ink coatings for flexible elastomeric substrates. Prog. Org. Coat. 174, 107251 (2023).
Radjabian, M., Kish, M. H. & Mohammadi, N. Structure-property relationship for poly(lactic acid) (PLA) filaments: Physical, thermomechanical and shape memory characterization. J. Polym. Res. 19, 1–10 (2012).
Wang, J. et al. Improving the conductivity of single-walled carbon nanotubes films by heat treatment. J. Alloys Compd. 485, 456–461 (2009).
Hong, W. T. & Tai, N. H. Investigations on the thermal conductivity of composites reinforced with carbon nanotubes. Diam. Relat. Mater. 17, 1577–1581 (2008).
Wang, G. F., Tao, X. M., Xin, J. H. & Fei, B. Modification of conductive polymer for polymeric anodes of flexible organic light-emitting diodes. Nanoscale Res. Lett. 4, 613–617 (2009).
Wang, C. S., Lee, C.Y.-C. & Arnold, F. E. Mechanical and electrical properties of heat-treated ladder polymer fiber. MRS Online Proc. Libr. 247, 747 (1992).
Gong, Q. M. et al. The effect of high-temperature annealing on the structure and electrical properties of well-aligned carbon nanotubes. Mater. Res. Bull. 42, 474–481 (2007).
Hou, Y. H., Zhang, M. Q., Rong, M. Z., Yu, G. & Zeng, H. M. Improvement of conductive network quality in carbon black-filled polymer blends. J. Appl. Polym. Sci. 84, 2768–2775 (2002).
Luoma, E. et al. Oriented and annealed poly(lactic acid) films and their performance in flexible printed and hybrid electronics. J. Plast. Film Sheet. 37, 429–462 (2021).
Ma, P. C., Tang, B. Z. & Kim, J. K. Effect of CNT decoration with silver nanoparticles on electrical conductivity of CNT-polymer composites. Carbon N. Y. 46, 1497–1505 (2008).
Huang, X. et al. Biodegradable materials for multilayer transient printed circuit boards. Adv. Mater. 26, 7371–7377 (2014).
Bortz, D. R., Heras, E. G. & Martin-Gullon, I. Impressive fatigue life and fracture toughness improvements in graphene oxide/epoxy composites. Macromolecules 45, 238–245 (2012).
Loh, T. W., Ladani, R. B., Orifici, A. & Kandare, E. Ultra-tough and in-situ repairable carbon/epoxy composite with EMAA. Compos. A Appl. Sci. Manuf. 143, 106206 (2021).
Chun, K. Y. et al. Highly conductive, printable and stretchable composite films of carbon nanotubes and silver. Nat. Nanotechnol. 5, 853–857 (2010).
Ghatge, S., Yang, Y., Ahn, J. H. & Hur, H. G. Biodegradation of polyethylene: A brief review. Appl. Biol. Chem. 63, 1–14 (2020).
Garbini, G. L., Barra Caracciolo, A. & Grenni, P. Electroactive bacteria in natural ecosystems and their applications in microbial fuel cells for bioremediation: A review. Microorganisms 11, 1255 (2023).
Lu, X., von Haxthausen, K. A., Brock, A. L. & Trapp, S. Turnover of lake sediments treated with sediment microbial fuel cells: A long-term study in a eutrophic lake. Sci. Total Environ. 796, 148880 (2021).
Shi, K. et al. Accelerated bioremediation of a complexly contaminated river sediment through ZVI-electrode combined stimulation. J. Hazard. Mater. 413, 125392 (2021).
Zhao, Y. et al. Enhanced bioelectroremediation of a complexly contaminated river sediment through stimulating electroactive degraders with methanol supply. J. Hazard. Mater. 349, 168–176 (2018).
Lovley, D. R. & Holmes, D. E. Electromicrobiology: The ecophysiology of phylogenetically diverse electroactive microorganisms. Nat. Rev. Microbiol. 20, 5–19 (2022).
Yaqoob, A. A. et al. Utilizing biomass-based graphene oxide–polyaniline–ag electrodes in microbial fuel cells to boost energy generation and heavy metal removal. Polymers 14, 845 (2022).
Abbas, S. Z. & Rafatullah, M. Recent advances in soil microbial fuel cells for soil contaminants remediation. Chemosphere 272, 129691 (2021).
Di Franca, M. L. et al. Microbiome composition and dynamics of a reductive/oxidative bioelectrochemical system for perchloroethylene removal: Effect of the feeding composition. Front. Microbiol. 13, 951911 (2022).
Yong, Y. C., Dong, X. C., Chan-Park, M. B., Song, H. & Chen, P. Macroporous and monolithic anode based on polyaniline hybridized three-dimensional graphene for high-performance microbial fuel cells. ACS Nano 6, 2394–2400 (2012).
Zhou, X. et al. Recent advances in synthesis of waterborne polyurethane and their application in water-based ink: A review. J. Mater. Sci. Technol. 31, 708–722 (2015).
Mort, R. et al. Waterborne polyurethane/acrylic adhesive blends from Physaria fendleri oil for food packaging applications. Sustainability 14, 8657 (2022).
Abd El-Rehim, H. A., Hegazy, E. S. A., Ali, A. M. & Rabie, A. M. Synergistic effect of combining UV-sunlight-soil burial treatment on the biodegradation rate of LDPE/starch blends. J. Photochem. Photobiol. A Chem. 163, 547–556 (2004).
Middleton, J. C. & Tipton, A. J. Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21, 2335–2346 (2000).
Gao, L. et al. All paper-based flexible and wearable piezoresistive pressure sensor. ACS Appl. Mater. Interfaces 11, 25034–25042 (2019).
Mohanraj, G. T., Chaki, T. K., Chakraborty, A. & Khastgir, D. Measurement of AC conductivity and dielectric properties of flexible conductive styrene–butadiene rubber-carbon black composites. J. Appl. Polym. Sci. 104, 986–995 (2007).
Sethi, D., Ram, R. & Khastgir, D. Electrical conductivity and dynamic mechanical properties of silicon rubber-based conducting composites: Effect of cyclic deformation, pressure and temperature. Polym. Int. 66, 1295–1305 (2017).
Das, N. C., Chaki, T. K. & Khastgir, D. Effect of axial stretching on electrical resistivity of short carbon fibre and carbon black filled conductive rubber composites. Polym. Int. 51, 156–163 (2002).
Cataldi, P., Ceseracciu, L., Marras, S., Athanassiou, A. & Bayer, I. S. Electrical conductivity enhancement in thermoplastic polyurethane-graphene nanoplatelet composites by stretch-release cycles. Appl. Phys. Lett. 110, 121904 (2017).
Qu, M. et al. Flexible conductive Ag-CNTs sponge with corrosion resistance for wet condition sensing and human motion detection. Colloids Surf. A Physicochem. Eng. Asp. 656, 130427 (2023).
Lin, Q. et al. Construction of a 3D interconnected boron nitride nanosheets in a PDMS matrix for high thermal conductivity and high deformability. Compos. Sci. Technol. 226, 109528 (2022).
- SEO Powered Content & PR Distribution. Get Amplified Today.
- PlatoData.Network Vertical Generative Ai. Empower Yourself. Access Here.
- PlatoAiStream. Web3 Intelligence. Knowledge Amplified. Access Here.
- PlatoESG. Carbon, CleanTech, Energy, Environment, Solar, Waste Management. Access Here.
- PlatoHealth. Biotech and Clinical Trials Intelligence. Access Here.
- Source: https://www.nature.com/articles/s41598-024-60315-z