Biocompatible nanocomposite hydroxyapatite-based granules with increased specific surface area and bioresorbability for bone regenerative medicine applications

  • Kazimierczak, P., Kolmas, J. & Przekora, A. Biological response to macroporous chitosan-agarose bone scaffolds comprising Mg-and Zn-doped nano-hydroxyapatite. Int. J. Mol. Sci. 20 https://doi.org/10.3390/ijms20153835 (2019).

  • Ielo, I., Calabrese, G., De Luca, G. & Conoci, S. Recent advances in Hydroxyapatite-based biocomposites for bone tissue regeneration in Orthopedics. Int. J. Mol. Sci. 23 https://doi.org/10.3390/ijms23179721 (2022).

  • Islam, M. S. & Todo, M. Effects of sintering temperature on the compressive mechanical properties of collagen/hydroxyapatite composite scaffolds for bone tissue engineering. Mater. Lett. 173, 231–234 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Prakasam, M. et al. Fabrication, properties and applications of dense hydroxyapatite: A review. J. Funct. Biomater. 6, 1099–1140 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Radin, S. R. & Ducheyne, P. Effect of bioactive ceramic composition and structure on in vitro behavior. III. Porous versus dense ceramics. J. Biomed. Mater. Res. 28, 1303–1309 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Laquerriere, P. et al. Effect of hydroxyapatite sintering temperature on intracellular ionic concentrations of monocytes: A TEM-cryo-X-ray microanalysis study. J. Biomed. Mater. Res. 58, 238–246 (2001).

    <a data-track="click_references" rel="nofollow noopener" data-track-label="10.1002/1097-4636(2001)58:33.0.CO;2-I” data-track-item_id=”10.1002/1097-4636(2001)58:33.0.CO;2-I” data-track-value=”article reference” data-track-action=”article reference” href=”https://doi.org/10.1002%2F1097-4636%282001%2958%3A3%3C238%3A%3AAID-JBM1012%3E3.0.CO%3B2-I” aria-label=”Article reference 6″ data-doi=”10.1002/1097-4636(2001)58:33.0.CO;2-I”>Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, A. J. et al. Effect of sintering on porosity, phase, and surface morphology of spray dried hydroxyapatite microspheres. J. Biomed. Mater. Res. – Part. A. 87, 557–562 (2008).


    Google Scholar
     

  • Malina, D., Biernat, K. & Sobczak-Kupiec, A. Studies on sintering process of synthetic hydroxyapatite. Acta Biochim. Pol. 60, 851–855 (2013).

    PubMed 

    Google Scholar
     

  • Trzaskowska, M., Vivcharenko, V. & Przekora, A. The impact of hydroxyapatite sintering temperature on its microstructural, mechanical, and biological properties. Int. J. Mol. Sci. 24, 5083. https://doi.org/10.3390/ijms24065083 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Przekora, A., Klimek, K., Wojcik, M., Palka, K. & Ginalska, G. New method for HA/glucan bone scaffold preparation reduces cytotoxic effect of highly reactive bioceramics. Mater. Lett. 190, 213–216 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Klimek, K. et al. False’ cytotoxicity of ions-adsorbing hydroxyapatite – corrected method of cytotoxicity evaluation for ceramics of high specific surface area. Mater. Sci. Eng. C. 65, 70–79 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Malafaya, P. B. & Reis, R. L. Bilayered chitosan-based scaffolds for osteochondral tissue engineering: influence of hydroxyapatite on in vitro cytotoxicity and dynamic bioactivity studies in a specific double-chamber bioreactor. Acta Biomater. 5, 644–660 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Przekora, A., Czechowska, J., Pijocha, D., Ślósarczyk, A. & Ginalska, G. Do novel cement-type biomaterials reveal ion reactivity that affects cell viability in vitro? Cent. Eur. J. Biol. 9, 277–289 (2014).

    CAS 

    Google Scholar
     

  • John, A., Varma, H. K. & Kumari, T. V. Surface reactivity of calcium phosphate based ceramics in a Cell Culture System. J. Biomater. Appl. 18, 63–78 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sung, K. E. & Kyeongsoon, P. Adv. Exp. Med. Biol. 1250, 141–155 (2020).

    Article 

    Google Scholar
     

  • Chai, Y. C. et al. Current views on calcium phosphate osteogenicity and the translation into effective bone regeneration strategies. Acta Biomater. 8, 3876–3887 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ginebra, M. P., Espanol, M., Montufar, E. B., Perez, R. A. & Mestres, G. New processing approaches in calcium phosphate cements and their applications in regenerative medicine. Acta Biomater. 6, 2863–2873 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dorozhkin, S. V. Bioceramics based on calcium orthophosphates (review). Glas Ceram. 64, 442–447 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Ebrahimi, M., Botelho, M. G. & Dorozhkin, S. V. Biphasic calcium phosphates bioceramics (HA/TCP): Concept, physicochemical properties and the impact of standardization of study protocols in biomaterials research. Mater. Sci. Eng. C. 71, 1293–1312 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Monte, J. P., Fontes, A., Santos, B. S., Pereira, G. A. L. & Pereira, G. Recent advances in hydroxyapatite/polymer/silver nanoparticles scaffolds with antimicrobial activity for bone regeneration. Mater. Lett. 338, 134027. https://doi.org/10.1016/j.matlet.2023.134027 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Radulescu, D. E. et al. Novel trends into the development of natural hydroxyapatite-based polymeric composites for bone tissue Engineering. Polym. 2022. 14, 899 (2022).

    CAS 

    Google Scholar
     

  • Kumar, R., Mohanty, S. & Hydroxyapatite A Versatile Bioceramic for Tissue Engineering Application. J. Inorg. Organomet. Polym. Mater. 32, 4461–4477 (2022).

  • Fourie, J., Taute, F., du Preez, L. & de Beer, D. Chitosan Composite biomaterials for bone tissue engineering: A review. Regen Eng. Transl Med. 8, 1–21. https://doi.org/10.1007/s40883-020-00187-7 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Hamed, I., Özogul, F. & Regenstein, J. M. Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): A review. Trends Food Sci. Technol. 48, 40–50 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Hsu, S. H. et al. Chitosan as scaffold materials: effects of molecular weight and degree of deacetylation. J. Polym. Res. 11, 141–147 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Khodadadi Yazdi, M. et al. Agarose-based biomaterials for advanced drug delivery. J. Control Release. 326, 523–543 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Salati, M. A. et al. Agarose-based biomaterials: opportunities and challenges in cartilage tissue engineering. Polym. (Basel). 12, 1–15. https://doi.org/10.3390/polym12051150 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, H., Nishinari, K., Williams, M. A. K., Foster, T. J. & Norton I. T. A molecular description of the gelation mechanism of curdlan. Int. J. Biol. Macromol. 30, 7–16 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, R. & Edgar, K. J. Properties, chemistry, and applications of the bioactive polysaccharide curdlan. Biomacromolecules. 15, 1079–1096 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rinaudo, M. Chitin and chitosan: Properties and applications. Prog Polym. Sci. 31, 603–632 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Przekora, A., Benko, A., Blazewicz, M. & Ginalska, G. Hybrid chitosan/β-1,3-glucan matrix of bone scaffold enhances osteoblast adhesion, spreading and proliferation via promotion of serum protein adsorption. Biomed. Mater. 11, 45001. https://doi.org/10.1088/1748-6041/11/4/045001 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Vivcharenko, V., Benko, A., Palka, K., Wojcik, M. & Przekora, A. Elastic and biodegradable chitosan/agarose film revealing slightly acidic pH for potential applications in regenerative medicine as artificial skin graft. Int. J. Biol. Macromol. 164, 172–183 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kazimierczak, P. et al. Novel synthesis method combining a foaming agent with freeze-drying to obtain hybrid highly macroporous bone scaffolds. J. Mater. Sci. Technol. 43, 52–63 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Trzaskowska, M. et al. Optimization of the composition of Mesoporous polymer–ceramic nanocomposite granules for bone regeneration. Molecules. 28, 1–15. https://doi.org/10.3390/molecules28135238 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Kazimierczak, P., Palka, K. & Przekora, A. Development and optimization of the novel fabrication method of highly macroporous chitosan/agarose/nanohydroxyapatite bone scaffold for potential regenerative medicine applications. Biomolecules. 9, 434. https://doi.org/10.3390/biom9090434 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hariani, P. L., Said, M. & Salni Effect of sintering on the mechanical properties of hydroxyapatite from fish bone (Pangasius Hypophthalmus). IOP Conf. Ser. Mater. Sci. Eng. 509 https://doi.org/10.1088/1757-899X/509/1/012109 (2019).

  • van Hoesel, A., Reidsma, F. H., van Os, B. J. H., Megens, L. & Braadbaart, F. Combusted bone: physical and chemical changes of bone during laboratory simulated heating under oxidising conditions and their relevance for the study of ancient fire use. J. Archaeol. Sci. Rep. 28, 102033. https://doi.org/10.1016/j.jasrep.2019.102033 (2019).

    Article 

    Google Scholar
     

  • Kazimierczak, P. et al. Novel synthesis method combining a foaming agent with freeze-drying to obtain hybrid highly macroporous bone scaffolds. J. Mater. Sci. Technol. 43, (2020).

  • Gorgieva, S. & Kokol, V. Preparation, characterization, and in vitro enzymatic degradation of chitosan-gelatine hydrogel scaffolds as potential biomaterials. J. Biomed. Mater. Res. – Part A (2012). https://doi.org/10.1002/jbm.a.34106, (2012).

  • Gregory, C. A., Gunn, G., Peister, W., Prockop, D. J. & A. & An Alizarin red-based assay of mineralization by adherent cells in culture: Comparison with cetylpyridinium chloride extraction. Anal. Biochem. 329, 77–84 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Trzaskowska, M., Vivcharenko, V., Kazimierczak, P., Wolczyk, A. & Przekora, A. In vitro screening studies on eight commercial essential oils-derived compounds to identify promising natural agents for the prevention of osteoporosis. Biomedicines 11 (2023). https://doi.org/10.3390/biomedicines11041095

  • Chen, L., Mccrate, J. M., Lee, J. C. M. & Li, H. The role of surface charge on the uptake and biocompatibility of hydroxyapatite nanoparticles with osteoblast cells. Nanotechnology. 22 https://doi.org/10.1088/0957-4484/22/10/105708 (2011).

  • Motskin, M., Müller, K. H., Genoud, C., Monteith, A. G. & Skepper, J. N. The sequestration of hydroxyapatite nanoparticles by human monocyte-macrophages in a compartment that allows free diffusion with the extracellular environment. Biomaterials. 32, 9470–9482 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vivcharenko, V., Wojcik, M., Palka, K. & Przekora, A. Highly porous and superabsorbent Biomaterial made of marine-derived polysaccharides and ascorbic acid as an optimal dressing for Exuding Wound Management. Mater. (Basel). 14, 1211. https://doi.org/10.3390/ma14051211 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • ISO 10993-5:2009 Biological Evaluation of Medical Devices—Part 5: Tests for In Vitro Cytotoxicity (2009).

  • ISO 10993-. 12:2021 – Biological evaluation of medical devices — Part 12: Sample preparation and reference materials.

  • Wojcik, M. et al. Superabsorbent curdlan-based foam dressings with typical hydrocolloids properties for highly exuding wound management. Mater. Sci. Eng. C. 124, 112068. https://doi.org/10.1016/j.msec.2021.112068 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Jastrzębski, W., Sitarz, M., Rokita, M. & Bułat, K. Infrared spectroscopy of different phosphates structures. Spectrochim Acta Part. Mol. Biomol. Spectrosc. 79, 722–727 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Ramesh, N., Moratti, S. C. & Dias, G. J. Hydroxyapatite–polymer biocomposites for bone regeneration: A review of current trends. J. Biomed. Mater. Res. – Part. B Appl. Biomater. 106, 2046–2057 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Berzina-Cimdina, L., Borodajenko, N. & Theophanides, T. (eds) in (.) Ch. 6 doi:IntechOpen, (2012). https://doi.org/10.5772/36942

  • Sonker, A. K. et al. Crosslinking of agar by diisocyanates. Carbohydr. Polym. 202, 454–460 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meena, R., Prasad, K. & Siddhanta, A. K. Preparation of genipin-fixed agarose hydrogel. J. Appl. Polym. Sci. 104, 290–296 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Hwang, S. et al. Agarose-based hierarchical porous carbons prepared with gas-generating activators and used in high-power density supercapacitors. Energy Fuels. 35, 19775–19783 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wagoner Johnson, A. J. & Herschler, B. A. A review of the mechanical behavior of CaP and CaP/polymer composites for applications in bone replacement and repair. Acta Biomater. 7, 16–30 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dorozhkin, S. V. Calcium orthophosphate-based bioceramics. Mater. (Basel). 6, 3840–3942 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mezahi, F. Z., Oudadesse, H., Harabi, A., Le Gal, Y. & Cathelineau, G. Sintering effects on physico chemical properties of bioactivity of natural and synthetic hydroxyapatite. J. Aust Ceram. Soc. 47, 23–27 (2011).

    CAS 

    Google Scholar
     

  • Kitsugi, T. et al. Bonding Behavior between two bioactive ceramics in vivo. J. Biomed. Mater. Res. 2l https://doi.org/10.1002/jbm.820210905 (1987).

  • Kim, H. M., Himeno, T., Kokubo, T. & Nakamura, T. Process and kinetics of bonelike apatite formation on sintered hydroxyapatite in a simulated body fluid. Biomaterials. 26, 4366–4373 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stastny, P. et al. Structure degradation and strength changes of sintered calcium phosphate bone scaffolds with different phase structures during simulated biodegradation in vitro. Mater. Sci. Eng. C. 100, 544–553 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Imaizumi, H., Sakurai, M., Kashimoto, O., Kikawa, T. & Suzuki, O. Comparative study on osteoconductivity by synthetic octacalcium phosphate and sintered hydroxyapatite in rabbit bone marrow. Calcif Tissue Int. 78, 45–54 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao, Q., Zhang, Y., Chen, W., Meng, X. & Liu, B. Hydrophobicity and physicochemical properties of agarose film as affected by Chitosan addition. Int. J. Biol. Macromol. 106, 1307–1313 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ahmed, E. M. Enhancing thermal, viscoelastic, and optical properties of biodegradable fullerene(C60)/agarose/chitosan composite films for biotechnology. Appl. Phys. A. 127, 481. https://doi.org/10.1007/s00339-021-04635-1 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, K. et al. Preparation of chitosan/curdlan/carboxymethyl cellulose blended film and its characterization. J. Food Sci. Technol. 56, 5396–5404 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, Y. et al. Preparation and characterization of novel curdlan/chitosan blending membranes for antibacterial applications. Carbohydr. Polym. 84, 952–959 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Gieroba, B. et al. Effect of Gelation temperature on the Molecular structure and Physicochemical properties of the Curdlan Matrix: Spectroscopic and microscopic analyses. Int. J. Mol. Sci. 21 https://doi.org/10.3390/ijms21176154 (2020).

  • Dong, J., Yu, D., Yu, Z., Zhang, L. & Xia, W. Thermally-induced crosslinking altering the properties of chitosan films: structure, physicochemical characteristics and antioxidant activity. Food Packag Shelf Life. 34, 100948. https://doi.org/10.1016/j.fpsl.2022.100948 (2022).

    Article 
    CAS 

    Google Scholar
     

  • You, B., Kang, F., Yin, P. & Zhang, Q. Hydrogel-derived heteroatom-doped porous carbon networks for supercapacitor and electrocatalytic oxygen reduction. Carbon N Y. 103, 9–15 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, Y., Goh, C. & Shrestha, A. Biomaterial Properties modulating bone regeneration. Macromol. Biosci. 21, 1–12. https://doi.org/10.1002/mabi.202000365 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wu, D., Isaksson, P., Ferguson, S. J. & Persson, C. Young’s modulus of trabecular bone at the tissue level: a review. Acta Biomater. 78, 1–12. https://doi.org/10.1016/j.actbio.2018.08.001 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, H., Zhang, F. & Yuan, R. Applications of natural polymer-based hydrogels in the food industry. Hydrogels Based on Natural Polymers (Elsevier Inc.) https://doi.org/10.1016/B978-0-12-816421-1.00015-X (2019).

  • Zima, A. Hydroxyapatite-Chitosan based bioactive hybrid biomaterials with improved mechanical strength. Spectrochim Acta – Part. Mol. Biomol. Spectrosc. 193, 175–184 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Miao, X. & Sun, D. Graded/gradient porous biomaterials. Mater. (Basel). 3, 26–47 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Haase, K. Finite element analysis of orthopaedic plates and screws to reduce the effects of stress shielding. Univ. Ott. (Canada). https://doi.org/10.20381/ruor-19284 (2009).

    Article 

    Google Scholar
     

  • Klein-Nulend, J., Bacabac, R. G. & Mullender, M. G. Mechanobiology of bone tissue. Pathol. Biol. 53, 576–580 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Velasco, M. A., Narváez-Tovar, C. A. & Garzón-Alvarado, D. A. Design, materials, and mechanobiology of biodegradable scaffolds for bone tissue engineering. Biomed. Res. Int. 2015 https://doi.org/10.1155/2015/729076 (2015).

  • Diaz-Rodriguez, P., Sánchez, M. & Landin, M. Drug-loaded biomimetic ceramics for tissue engineering. Pharmaceutics. 10, 1–20. https://doi.org/10.3390/pharmaceutics10040272 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Abbasi, N., Hamlet, S., Love, R. M. & Nguyen, N. T. Porous scaffolds for bone regeneration. J. Sci. Adv. Mater. Devices. 5, 1–9. https://doi.org/10.1016/j.jsamd.2020.01.007 (2020).

    Article 

    Google Scholar
     

  • Kołodziejska, B., Figat, R. & Kolmas, J. Biomimetic apatite/natural polymer composite granules as multifunctional dental tissue regenerative material. Int. J. Mol. Sci. 24 https://doi.org/10.3390/ijms242316751 (2023).

  • Zhou, Y. et al. Strategies to direct vascularisation using mesoporous bioactive glass-based biomaterials for bone regeneration. Int. Mater. Rev. 62, 392–414 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Shadjou, N. & Hasanzadeh, M. Silica-based mesoporous nanobiomaterials as promoter of bone regeneration process. J. Biomed. Mater. Res. – Part. A. 103, 3703–3716 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Thümmler, F. & Thomma, W. The sintering process. Metall. Rev. 12, 69–108 (1967).

    Article 

    Google Scholar
     

  • Bailliez, S. & Nzihou, A. The kinetics of surface area reduction during isothermal sintering of hydroxyapatite adsorbent. Chem. Eng. J. 98, 141–152 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Sykaras, N., Iacopino, A. M., Marker, V. A., Triplett, R. G. & Woody, R. D. Implant materials, designs, and Surface topographies: Their effect on Osseointegration. A literature review. Int. J. Oral Maxillofac. Implants. 15, 675–690 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Amani, H. et al. Controlling Cell Behavior through the design of biomaterial surfaces: A focus on surface modification techniques. Adv. Mater. Interfaces. 6, 1–30. https://doi.org/10.1002/admi.201900572 (2019).

    Article 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Covani, U. et al. Biomaterials for orthopedics: a roughness analysis by atomic force microscopy. J. Biomed. Mater. Res. Part. A. 82A, 723–730 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Hou, X. et al. Effect of akermanite morphology on precipitation of bone-like apatite. Appl. Surf. Sci. 257, 3417–3422 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ferraris, S. et al. Bioactive materials: in vitro investigation of different mechanisms of hydroxyapatite precipitation. Acta Biomater. 102, 468–480 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, C. & Chang, J. A review of bioactive silicate ceramics. Biomed. Mater. 8 https://doi.org/10.1088/1748-6041/8/3/032001 (2013).

  • Kokubo, T. & Takadama, H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 27, 2907–2915 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kumar, P. et al. Polyethylene glycol (PEG) modified porous Ca5(PO4)2SiO4 bioceramics: structural, morphologic and bioactivity analysis. Coatings. 10 https://doi.org/10.3390/coatings10060538 (2020).

  • Treiser, M., Abramson, S., Langer, R. & Kohn, J. Degradable and Resorbable Biomaterials. Biomaterials Science: An Introduction to Materials: Third Edition (Elsevier, 2013). https://doi.org/10.1016/B978-0-08-087780-8.00021-8

  • Germaini, M. M. et al. Additive manufacturing of biomaterials for bone tissue engineering – A critical review of the state of the art and new concepts. Prog Mater. Sci. 130 https://doi.org/10.1016/j.pmatsci.2022.100963 (2022).

  • Sheikh, Z. et al. Mechanisms of in vivo degradation and resorption of calcium phosphate based biomaterials. Mater. (Basel). 8, 7913–7925 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lu, J. et al. The biodegradation mechanism of calcium phosphate biomaterials in bone. J. Biomed. Mater. Res. 63, 408–412 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Riihonen, R., Nielsen, S., Väänänen, H. K., Laitala-Leinonen, T. & Kwon, T. H. Degradation of hydroxyapatite in vivo and in vitro requires osteoclastic sodium-bicarbonate co-transporter NBCn1. Matrix Biol. 29, 287–294 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dellinger, J. G., Wojtowicz, A. M. & Jamison, R. D. Effects of degradation and porosity on the load bearing properties of model hydroxyapatite bone scaffolds. J. Biomed. Mater. Res. Part. A. 77A, 563–571 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Muller-Mai, C. M., Voigt, C. & Gross, U. Incorporation and degradation of hydroxyapatite implants of different surface roughness and surface structure in bone. Scanning Microsc. 4, 613–624 (1990).

    CAS 
    PubMed 

    Google Scholar
     

  • Xing, F. et al. Chitin-hydroxyapatite-collagen composite scaffolds for bone regeneration. Int. J. Biol. Macromol. 184, 170–180 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, C. H. & Chin, K. B. Evaluation of physicochemical and textural properties of myofibrillar protein gels and low-fat model sausage containing various levels of curdlan. Asian-Australasian J. Anim. Sci. 32, 144–151 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lee, M. H., Ducheyne, P., Lynch, L., Boettiger, D. & Composto, R. J. Effect of biomaterial surface properties on fibronectin – a 5 b 1 integrin interaction and cellular attachment. Biomaterials. 27, 1907–1916 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rabe, M., Verdes, D. & Seeger, S. Understanding protein adsorption phenomena at solid surfaces. Adv. Colloid Interface Sci. 162, 87–106 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Klimek, K., Przekora, A., Pałka, K. & Ginalska, G. New method for the fabrication of highly osteoconductive β-1,3-glucan/HA scaffold for bone tissue engineering: structural, mechanical, and biological characterization. J. Biomed. Mater. Res. Part. A. 104, 2528–2536 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Kolmas, J. et al. Fabrication and physicochemical characterization of porous composite microgranules with selenium oxyanions and risedronate sodium for potential applications in bone tumors. Int. J. Nanomed. 12, 5633–5642 (2017).

    Article 
    CAS 

    Google Scholar
     

  • López-Pérez, P. M., Marques, A. P., Silva, R. M. P. D., Pashkuleva, I. & Reis, R. L. Effect of chitosan membrane surface modification via plasma induced polymerization on the adhesion of osteoblast-like cells. J. Mater. Chem. 17, 4064–4071 (2007).

    Article 

    Google Scholar
     

  • Frayssinet, P. et al. The influence of sintering temperature on the proliferation of fibroblastic cells in contact with HA-bioceramics. J. Biomed. Mater. Res. 35, 337–347 (1997).

    <a data-track="click_references" rel="nofollow noopener" data-track-label="10.1002/(SICI)1097-4636(19970605)35:33.0.CO;2-I” data-track-item_id=”10.1002/(SICI)1097-4636(19970605)35:33.0.CO;2-I” data-track-value=”article reference” data-track-action=”article reference” href=”https://doi.org/10.1002%2F%28SICI%291097-4636%2819970605%2935%3A3%3C337%3A%3AAID-JBM8%3E3.0.CO%3B2-I” aria-label=”Article reference 105″ data-doi=”10.1002/(SICI)1097-4636(19970605)35:33.0.CO;2-I”>Article 
    CAS 
    PubMed 

    Google Scholar