Search
Close this search box.

Biochemical role of FOXM1-dependent histone linker H1B in human epidermal stem cells – Cell Death & Disease

  • Wolffe AP. Histone H1. Int J Biochem Cell Biol. 1997;29:1463–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pan C, Fan Y. Role of H1 linker histones in mammalian development and stem cell differentiation. Biochim Biophys Acta BBA – Gene Regul Mech. 2016;1859:496–509.

    Article 
    CAS 

    Google Scholar
     

  • Talbert PB, Ahmad K, Almouzni G, AusiJ, Berger F, Bhalla PL, et al. A unified phylogeny-based nomenclature for histone variants. Epigenet Chromatin. 2012;5:7.

    Article 
    CAS 

    Google Scholar
     

  • Hergeth SP, Schneider R. The H1 linker histones: multifunctional proteins beyond the nucleosomal core particle. EMBO Rep. 2015;16:1439–53.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Orrego M, Ponte I, Roque A, Buschati N, Mora X, Suau P. Differential affinity of mammalian histone H1 somatic subtypes for DNA and chromatin. BMC Biol. 2007;5:22.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Th’ng JPH, Sung R, Ye M, Hendzel MJ. H1 family histones in the nucleus. J Biol Chem. 2005;280:27809–14.

    Article 
    PubMed 

    Google Scholar
     

  • Happel N, Doenecke D. Histone H1 and its isoforms: contribution to chromatin structure and function. Gene. 2009;431:1–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wood C, Snijders A, Williamson J, Reynolds C, Baldwin J, Dickman M. Post-translational modifications of the linker histone variants and their association with cell mechanisms. FEBS J. 2009;276:3685–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee H, Habas R, Abate-Shen C. Msx1 cooperates with histone H1b for inhibition of transcription and myogenesis. Science. 2004;304:1675–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Konishi A, Shimizu S, Hirota J, Takao T, Fan Y, Matsuoka Y, et al. Involvement of histone H1.2 in apoptosis induced by DNA double-strand breaks. Cell. 2003;114:673–88.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Popova EY, Grigoryev SA, Fan Y, Skoultchi AI, Zhang SS, Barnstable CJ. Developmentally regulated linker histone H1c promotes heterochromatin condensation and mediates structural integrity of rod photoreceptors in mouse retina. J Biol Chem. 2013;288:17895–907.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gallico GG, O’Connor NE, Compton CC, Kehinde O, Green H. Permanent coverage of large burn wounds with autologous cultured human epithelium. N Engl J Med. 1984;311:448–51.

    Article 
    PubMed 

    Google Scholar
     

  • Pellegrini G, Traverso CE, Franzi AT, Zingirian M, Cancedda R, De Luca M. Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. Lancet Lond Engl. 1997;349:990–3.

    Article 
    CAS 

    Google Scholar
     

  • Rama P, Matuska S, Paganoni G, Spinelli A, De Luca M, Pellegrini G. Limbal stem-cell therapy and long-term corneal regeneration. N Engl J Med. 2010;363:147–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mavilio F, Pellegrini G, Ferrari S, Di Nunzio F, Di Iorio E, Recchia A, et al. Correction of junctional epidermolysis bullosa by transplantation of genetically modified epidermal stem cells. Nat Med. 2006;12:1397–402.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hirsch T, Rothoeft T, Teig N, Bauer JW, Pellegrini G, De Rosa L, et al. Regeneration of the entire human epidermis using transgenic stem cells. Nature. 2017;551:327–32.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Rosa L, Enzo E, Zardi G, Bodemer C, Magnoni C, Schneider H, et al. Hologene 5: a phase II/III clinical trial of combined cell and gene therapy of junctional epidermolysis bullosa. Front Genet. 2021;12:705019.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kueckelhaus M, Rothoeft T, De Rosa L, Yeni B, Ohmann T, Maier C, et al. Transgenic epidermal cultures for junctional epidermolysis bullosa—5-year outcomes. N Engl J Med. 2021;385:2264–70.

    Article 
    PubMed 

    Google Scholar
     

  • Barrandon Y, Green H. Three clonal types of keratinocyte with different capacities for multiplication. Proc Natl Acad Sci USA. 1987;84:2302–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Enzo E, Cattaneo C, Consiglio F, Polito MP, Bondanza S, De Luca M. Clonal analysis of human clonogenic keratinocytes. In: Methods in cell biology. Elsevier; 2022. pp. 101–16.

  • Enzo E, Secone Seconetti A, Forcato M, Tenedini E, Polito MP, Sala I, et al. Single-keratinocyte transcriptomic analyses identify different clonal types and proliferative potential mediated by FOXM1 in human epidermal stem cells. Nat Commun. 2021;12:2505.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Rosa L, Secone Seconetti A, De Santis G, Pellacani G, Hirsch T, Rothoeft T, et al. Laminin 332-dependent YAP dysregulation depletes epidermal stem cells in junctional epidermolysis bullosa. Cell Rep. 2019;27:2036–49.e6.

    Article 
    PubMed 

    Google Scholar
     

  • Santinon G, Enzo E, Dupont S. The sweet side of YAP/TAZ. Cell Cycle. 2015;14:2543–4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Sullivan RJ, Karlseder J. Telomeres: protecting chromosomes against genome instability. Nat Rev Mol Cell Biol. 2010;11:171–81.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nanba D, Toki F, Matsushita N, Matsushita S, Higashiyama S, Barrandon Y. Actin filament dynamics impacts keratinocyte stem cell maintenance. EMBO Mol Med. 2013;5:640–53.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Senoo M, Pinto F, Crum CP, McKeon F. p63 is essential for the proliferative potential of stem cells in stratified epithelia. Cell. 2007;129:523–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mills AA, Zheng B, Wang XJ, Vogel H, Roop DR, Bradley A. p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature. 1999;398:708–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang A, Schweitzer R, Sun D, Kaghad M, Walker N, Bronson RT, et al. p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature. 1999;398:714–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pellegrini G, Dellambra E, Golisano O, Martinelli E, Fantozzi I, Bondanza S, et al. p63 identifies keratinocyte stem cells. Proc Natl Acad Sci USA. 2001;98:3156–61.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qu J, Yi G, Zhou H. p63 cooperates with CTCF to modulate chromatin architecture in skin keratinocytes. Epigenet Chromatin. 2019;12:31.

    Article 

    Google Scholar
     

  • Smirnov A, Lena AM, Tosetti G, Yang X, Cappello A, Citterich MH, et al. Epigenetic priming of an epithelial enhancer by p63 and CTCF controls expression of a skin-restricted gene XP33. Cell Death Discov. 2023;9:1–9.

    Article 

    Google Scholar
     

  • Perdigoto CN, Valdes VJ, Bardot ES, Ezhkova E. Epigenetic regulation of epidermal differentiation. Cold Spring Harb Perspect Med. 2014;4:a015263.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sen GL, Webster DE, Barragan DI, Chang HY, Khavari PA. Control of differentiation in a self-renewing mammalian tissue by the histone demethylase JMJD3. Genes Dev. 2008;22:1865–70.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ezhkova E, Pasolli HA, Parker JS, Stokes N, Su Ihsin, Hannon G, et al. Ezh2 orchestrates gene expression for the stepwise differentiation of tissue-specific stem cells. Cell. 2009;136:1122–35.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ezhkova E, Lien WH, Stokes N, Pasolli HA, Silva JM, Fuchs E. EZH1 and EZH2 cogovern histone H3K27 trimethylation and are essential for hair follicle homeostasis and wound repair. Genes Dev. 2011;25:485–98.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Indra AK, Dupé V, Bornert JM, Messaddeq N, Yaniv M, Mark M, et al. Temporally controlled targeted somatic mutagenesis in embryonic surface ectoderm and fetal epidermal keratinocytes unveils two distinct developmental functions of BRG1 in limb morphogenesis and skin barrier formation. Dev Camb Engl. 2005;132:4533–44.

    CAS 

    Google Scholar
     

  • Panatta E, Lena AM, Mancini M, Smirnov A, Marini A, Delli Ponti R, et al. Long non‐coding RNA uc.291 controls epithelial differentiation by interfering with the ACTL6A/BAF complex. EMBO Rep. 2020;21:e46734.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bao X, Rubin AJ, Qu K, Zhang J, Giresi PG, Chang HY, et al. A novel ATAC-seq approach reveals lineage-specific reinforcement of the open chromatin landscape via cooperation between BAF and p63. Genome Biol. 2015;16:284.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Todaro GJ, Green H. Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines. J Cell Biol. 1963;17:299–313.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Behrends M, Engmann O. Linker histone H1.5 is an underestimated factor in differentiation and carcinogenesis. Skinner M, editor. Environ Epigenet. 2020;6:dvaa013.

  • Kang K, Choi Y, Kim HH, Yoo KH, Yu S. Predicting FOXM1-mediated gene regulation through the analysis of genome-wide FOXM1 binding Sites in MCF-7, K562, SK-N-SH, GM12878 and ECC-1 cell lines. Int J Mol Sci. 2020;21. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7503762/.

  • Chen X, Müller GA, Quaas M, Fischer M, Han N, Stutchbury B, et al. The forkhead transcription factor FOXM1 controls cell cycle-dependent gene expression through an atypical chromatin binding mechanism. Mol Cell Biol. 2013;33:227–36.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chakravarti S, Enzo E, Rocha Monteiro de Barros M, Maffezzoni MBR, Pellegrini G. Genetic disorders of the extracellular matrix: from cell and gene therapy to future applications in regenerative medicine. Annu Rev Genom Hum Genet. 2022;23:193–222.

    Article 
    CAS 

    Google Scholar
     

  • Polito MP, Marini G, Palamenghi M, Enzo E. Decoding the human epidermal complexity at single-cell resolution. Int J Mol Sci. 2023;24:8544.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walko G, Castañón MJ, Wiche G. Molecular architecture and function of the hemidesmosome. Cell Tissue Res. 2015;360:363–78.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • De Rosa L, Enzo E, Palamenghi M, Sercia L, De Luca M. Stairways to advanced therapies for epidermolysis bullosa. Cold Spring Harb Perspect Biol. 2022;15:a041229.

  • Fine JD. Epidemiology of inherited epidermolysis bullosa based on incidence and prevalence estimates from the national epidermolysis bullosa registry. JAMA Dermatol. 2016;152:1231.

    Article 
    PubMed 

    Google Scholar
     

  • Madison KC. Barrier function of the skin: ‘la raison d’être’ of the epidermis. J Invest Dermatol. 2003;121:231–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bauer JW, Koller J, Murauer EM, De Rosa L, Enzo E, Carulli S, et al. Closure of a large chronic wound through transplantation of gene-corrected epidermal stem cells. J Invest Dermatol. 2017;137:778–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • De Rosa L, Carulli S, Cocchiarella F, Quaglino D, Enzo E, Franchini E, et al. Long-term stability and safety of transgenic cultured epidermal stem cells in gene therapy of junctional epidermolysis bullosa. Stem Cell Rep. 2014;2:1–8.

    Article 

    Google Scholar
     

  • Cattaneo C, Enzo E, De Rosa L, Sercia L, Consiglio F, Forcato M, et al. Allele-specific CRISPR-Cas9 editing of dominant epidermolysis bullosa simplex in human epidermal stem cells. Mol Ther. 2024;32:372–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pellegrini G, Rama P, Matuska S, Lambiase A, Bonini S, Pocobelli A, et al. Biological parameters determining the clinical outcome of autologous cultures of limbal stem cells. Regen Med. 2013;8:553–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Willcockson MA, Healton SE, Weiss CN, Bartholdy BA, Botbol Y, Mishra LN, et al. H1 histones control the epigenetic landscape by local chromatin compaction. Nature. 2021;589:293–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, Cooke M, Panjwani S, Cao K, Krauth B, Ho PY, et al. Histone H1 Depletion Impairs Embryonic Stem Cell Differentiation. PLOS Genet. 2012;8:e1002691.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Terme JM, Sesé B, Millán-Ariño L, Mayor R, Belmonte JCI, Barrero MJ, et al. Histone H1 variants are differentially expressed and incorporated into chromatin during differentiation and reprogramming to pluripotency. J Biol Chem. 2011;286:35347–57.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sollberger G, Streeck R, Apel F, Caffrey BE, Skoultchi AI, Zychlinsky A. Linker histone H1.2 and H1.4 affect the neutrophil lineage determination. eLife. 2020;9:e52563.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moltrasio C, Romagnuolo M, Marzano AV. Epigenetic mechanisms of epidermal differentiation. Int J Mol Sci. 2022;23:4874.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar