Search
Close this search box.

Bacterial genome engineering using CRISPR-associated transposases – Nature Protocols

  • Call, S. N. & Andrews, L. B. CRISPR-based approaches for gene regulation in non-model bacteria. Front. Genome Ed. 4, 892304 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, L. et al. CRISPR-based metabolic engineering in non-model microorganisms. Curr. Opin. Biotechnol. 75, 102698 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ploessl, D., Zhao, Y. & Shao, Z. Engineering of non-model eukaryotes for bioenergy and biochemical production. Curr. Opin. Biotechnol. 79, 102869 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gudmunds, E., Wheat, C. W., Khila, A. & Husby, A. Functional genomic tools for emerging model species. Trends Ecol. Evol. 37, 1104–1115 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jinek, M. et al. RNA-programmed genome editing in human cells. eLife 2, e00471 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cho, S. W., Kim, S., Kim, J. M. & Kim, J.-S. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat. Biotechnol. 31, 230–232 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sander, J. D. & Joung, J. K. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 32, 347–355 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, H., La Russa, M. & Qi, L. S. CRISPR/Cas9 in genome editing and beyond. Annu. Rev. Biochem. 85, 227–264 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vento, J. M., Crook, N. & Beisel, C. L. Barriers to genome editing with CRISPR in bacteria. J. Ind. Microbiol. Biotechnol. 46, 1327–1341 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fels, U., Gevaert, K. & Van Damme, P. Bacterial genetic engineering by means of recombineering for reverse genetics. Front. Microbiol. 11, 548410 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Corts, A., Thomason, L. C., Costantino, N. & Court, D. L. Recombineering in non-model bacteria. Curr. Protoc. 2, e605 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pyne, M. E., Moo-Young, M., Chung, D. A. & Chou, C. P. Coupling the CRISPR/Cas9 system with Lambda red recombineering enables simplified chromosomal gene replacement in Escherichia coli. Appl. Environ. Microbiol. 81, 5103–5114 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reisch, C. R. & Prather, K. L. J. The no-SCAR (Scarless Cas9 Assisted Recombineering) system for genome editing in Escherichia coli. Sci. Rep. 5, 15096 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, W., Bikard, D., Cox, D., Zhang, F. & Marraffini, L. A. RNA-guided editing of bacterial genomes using CRISPR–Cas systems. Nat. Biotechnol. 31, 233–239 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ikeda, K. et al. Efficient scarless genome editing in human pluripotent stem cells. Nat. Methods 15, 1045–1047 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Elison, G. L. & Acar, M. Scarless genome editing: progress towards understanding genotype–phenotype relationships. Curr. Genet. 64, 1229–1238 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pines, G., Freed, E. F., Winkler, J. D. & Gill, R. T. Bacterial recombineering: genome engineering via phage-based homologous recombination. ACS Synth. Biol. 4, 1176–1185 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Filsinger, G. T. et al. Characterizing the portability of phage-encoded homologous recombination proteins. Nat. Chem. Biol. 17, 394–402 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krishnamurthy, M., Moore, R. T., Rajamani, S. & Panchal, R. G. Bacterial genome engineering and synthetic biology: combating pathogens. BMC Microbiol. 16, 258 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Charbonneau, M. R., Isabella, V. M., Li, N. & Kurtz, C. B. Developing a new class of engineered live bacterial therapeutics to treat human diseases. Nat. Commun. 11, 1738 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fata Moradali, M. & Rehm, B. H. A. in Biopolymers for Biomedical and Biotechnological Applications https://doi.org/10.1002/9783527818310.ch3 (Wiley-Vch, 2021).

  • McLoughlin, A. J. Plasmid stability and ecological competence in recombinant cultures. Biotechnol. Adv. 12, 279–324 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Craig, N. L. Tn7: a target site-specific transposon. Mol. Microbiol. 5, 2569–2573 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi, Q. et al. Conformational toggling controls target site choice for the heteromeric transposase element Tn7. Nucleic Acids Res. 43, 10734–10745 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herrmann, S. et al. Site-specific recombination strategies for engineering actinomycete genomes. Appl. Environ. Microbiol. 78, 1804–1812 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Duyne, G. D. in Mobile DNA III https://doi.org/10.1128/9781555819217.ch5 (ASM Press, 2015).

  • Cain, A. K. et al. A decade of advances in transposon-insertion sequencing. Nat. Rev. Genet. 21, 526–540 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Opijnen, T., Bodi, K. L. & Camilli, A. Tn-seq: high-throughput parallel sequencing for fitness and genetic interaction studies in microorganisms. Nat. Methods 6, 767–772 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vo, P. L. H. et al. CRISPR RNA-guided integrases for high-efficiency, multiplexed bacterial genome engineering. Nat. Biotechnol. https://doi.org/10.1038/s41587-020-00745-y (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klompe, S. E., Vo, P. L. H., Halpin-Healy, T. S. & Sternberg, S. H. Transposon-encoded CRISPR–Cas systems direct RNA-guided DNA integration. Nature 571, 219–225 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peters, J. E., Makarova, K. S., Shmakov, S. & Koonin, E. V. Recruitment of CRISPR–Cas systems by Tn7-like transposons. Proc. Natl Acad. Sci. USA 114, E7358–E7366 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y. et al. Programming cells by multicopy chromosomal integration using CRISPR-associated transposases. Cris. J. 4, 350–359 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Chen, W. et al. Targeted genetic screening in bacteria with a Cas12k-guided transposase. Cell Rep. 36, 109635 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rubin, B. E. et al. Species- and site-specific genome editing in complex bacterial communities. Nat. Microbiol. 7, 34–47 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, S. et al. Orthogonal CRISPR-associated transposases for parallel and multiplexed chromosomal integration. Nucleic Acids Res. 49, 10192–10202 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saito, M. et al. Dual modes of CRISPR-associated transposon homing. Cell 184, 2441–2453.e18 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Halpin-Healy, T. S., Klompe, S. E., Sternberg, S. H. & Fernández, I. S. Structural basis of DNA targeting by a transposon-encoded CRISPR–Cas system. Nature 577, 271–274 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Klompe, S. E. et al. Evolutionary and mechanistic diversity of Type I-F CRISPR-associated transposons. Mol. Cell 82, 616–628.e5 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Strecker, J. et al. RNA-guided DNA insertion with CRISPR-associated transposases. Science 365, 48–53 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rybarski, J. R., Hu, K., Hill, A. M., Wilke, C. O. & Finkelstein, I. J. Metagenomic discovery of CRISPR-associated transposons. Proc. Natl Acad. Sci. USA 118, e2112279118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hsieh, S.-C. & Peters, J. E. Discovery and characterization of novel Type I-D CRISPR-guided transposons identified among diverse Tn7-like elements in cyanobacteria. Nucleic Acids Res. 51, 765–782 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tou, C. J., Orr, B. & Kleinstiver, B. P. Precise cut-and-paste DNA insertion using engineered Type V-K CRISPR-associated transposases. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-01574-x (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Vo, P. L. H., Acree, C., Smith, M. L. & Sternberg, S. H. Unbiased profiling of CRISPR RNA-guided transposition products by long-read sequencing. Mob. DNA 12, 13 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • George, J. T. et al. Mechanism of target site selection by type V-K CRISPR-associated transposases. Science 382, eadj8543 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmitz, M., Querques, I., Oberli, S., Chanez, C. & Jinek, M. Structural basis for the assembly of the Type V CRISPR-associated transposon complex. Cell 185, 4999–5010.e17 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park, J.-U. et al. Structural basis for target site selection in RNA-guided DNA transposition systems. Science 373, 768–774 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peters, J. E. in Mobile DNA III https://doi.org/10.1128/9781555819217.ch30 (ASM Press, 2015).

  • Hoffmann, F. T. et al. Selective TnsC recruitment enhances the fidelity of RNA-guided transposition. Nature 609, 384–393 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Skelding, Z., Queen-Baker, J. & Craig, N. L. Alternative interactions between the Tn7 transposase and the Tn7 target DNA binding protein regulate target immunity and transposition. EMBO J. 22, 5904–5917 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arciszewska, L. K., Drake, D. & Craig, N. L. Transposon Tn7: cis-acting sequences in transposition and transposition immunity. J. Mol. Biol. 207, 35–52 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choi, K. Y., Spencer, J. M. & Craig, N. L. The Tn7 transposition regulator TnsC interacts with the transposase subunit TnsB and target selector TnsD. Proc. Natl Acad. Sci. USA 111, E2858–E2865 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, J. et al. CRISPR-associated transposase system can insert multiple copies of donor DNA into the same target locus. Cris. J. 4, 789–798 (2021).

    CAS 

    Google Scholar
     

  • Rice, P. A., Craig, N. L. & Dyda, F. Comment on ‘RNA-guided DNA insertion with CRISPR-associated transposases’. Science 368, eabb2022 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Strecker, J., Ladha, A., Makarova, K. S., Koonin, E. V. & Zhang, F. Response to comment on ‘RNA-guided DNA insertion with CRISPR-associated transposases’. Science 368, eabb2920 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tansirichaiya, S., Rahman, M. A. & Roberts, A. P. The transposon registry. Mob. DNA 10, 40 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y. et al. Multicopy chromosomal integration using CRISPR-associated transposases. ACS Synth. Biol. 9, 1998–2008 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Petassi, M. T., Hsieh, S.-C. & Peters, J. E. Guide RNA categorization enables target site choice in Tn7–CRISPR–cas transposons. Cell 183, 1757–1771.e18 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aziz, R. K., Breitbart, M. & Edwards, R. A. Transposases are the most abundant, most ubiquitous genes in nature. Nucleic Acids Res. 38, 4207–4217 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bean, E. L., Herman, C., Anderson, M. E. & Grossman, A. D. Biology and engineering of integrative and conjugative elements: construction and analyses of hybrid ICEs reveal element functions that affect species-specific efficiencies. PLoS Genet. 18, e1009998 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McKenzie, G. J. & Craig, N. L. Fast, easy and efficient: site-specific insertion of transgenes into Enterobacterial chromosomes using Tn7 without need for selection of the insertion event. BMC Microbiol. 6, 39 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hartl, D. L. Discovery of the transposable element mariner. Genetics 157, 471–476 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lampe, D. J., Akerley, B. J., Rubin, E. J., Mekalanos, J. J. & Robertson, H. M. Hyperactive transposase mutants of the Himar1 mariner transposon. Proc. Natl Acad. Sci. USA 96, 11428–11433 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muñoz-López, M. & García-Pérez, J. L. DNA transposons: nature and applications in genomics. Curr. Genomics 11, 115–128 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goryshin, I. Y., Miller, J. A., Kil, Y. V., Lanzov, V. A. & Reznikoff, W. S. Tn5/IS50 target recognition. Proc. Natl Acad. Sci. USA 95, 10716–10721 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Veeranagouda, Y., Husain, F. & Wexler, H. M. Transposon mutagenesis of Bacteroides fragilis using a Mariner transposon vector. Anaerobe 22, 126–129 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Perry, B. J. & Yost, C. K. Construction of a Mariner-based transposon vector for use in insertion sequence mutagenesis in selected members of the Rhizobiaceae. BMC Microbiol. 14, 298 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Akerley, B. J. et al. Systematic identification of essential genes by in vitro Mariner mutagenesis. Proc. Natl Acad. Sci. USA 95, 8927–8932 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, H. H. et al. Programming cells by multiplex genome engineering and accelerated evolution. Nature 460, 894–898 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, H. H. et al. Genome-scale promoter engineering by coselection MAGE. Nat. Methods 9, 591–593 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leibig, M. et al. Marker removal in staphylococci via Cre recombinase and different lox sites. Appl. Environ. Microbiol. 74, 1316–1323 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fedoryshyn, M., Petzke, L., Welle, E., Bechthold, A. & Luzhetskyy, A. Marker removal from actinomycetes genome using Flp recombinase. Gene 419, 43–47 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jensen, S. I. & Nielsen, A. T. Multiplex genome editing in Escherichia coli. Methods Mol. Biol. https://doi.org/10.1007/978-1-4939-7295-1_8 (2018).

  • Walker, M. W. G., Klompe, S. E., Zhang, D. J. & Sternberg, S. H. Transposon mutagenesis libraries reveal novel molecular requirements during CRISPR RNA-guided DNA integration. Nucleic Acids Res. 51, 4519–4535 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stellwagen, A. E. & Craig, N. L. Avoiding self: two Tn7-encoded proteins mediate target immunity in Tn7 transposition. EMBO J. 16, 6823–6834 (1997).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng, D., Liwinski, T. & Elinav, E. Interaction between microbiota and immunity in health and disease. Cell Res. 30, 492–506 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lampe, G. D. et al. Targeted DNA integration in human cells without double-strand breaks using CRISPR-associated transposases. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01748-1 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Roberts, A., Nethery, M. A. & Barrangou, R. Functional characterization of diverse type I-F CRISPR-associated transposons. Nucleic Acids Res. 50, 11670–11681 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Antoine, R. & Locht, C. Isolation and molecular characterization of a novel broad-host-range plasmid from Bordetella bronchiseptica with sequence similarities to plasmids from Gram-positive organisms. Mol. Microbiol. 6, 1785–1799 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lauritsen, I., Kim, S. H., Porse, A. & Nørholm, M. H. H. Standardized cloning and curing of plasmids. Methods Mol. Biol. https://doi.org/10.1007/978-1-4939-7795-6_28 (2018).

  • Ronda, C., Chen, S. P., Cabral, V., Yaung, S. J. & Wang, H. H. Metagenomic engineering of the mammalian gut microbiome in situ. Nat. Methods 16, 167–170 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Llosa, M. & de la Cruz, F. Bacterial conjugation: a potential tool for genomic engineering. Res. Microbiol. 156, 1–6 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Strand, T. A., Lale, R., Degnes, K. F., Lando, M. & Valla, S. A new and improved host-independent plasmid system for RK2-based conjugal transfer. PLoS One 9, e90372 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar