Search
Close this search box.

Automated human induced pluripotent stem cell culture and sample preparation for 3D live-cell microscopy – Nature Protocols

  • Viana, M. P. et al. Integrated intracellular organization and its variations in human iPS cells. Nature 613, 345–354 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ounkomol, C., Seshamani, S., Maleckar, M. M., Collman, F. & Johnson, G. R. Label-free prediction of three-dimensional fluorescence images from transmitted-light microscopy. Nat. Methods 15, 917–920 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Donovan-Maiye, R. M. et al. A deep generative model of 3D single-cell organization. PLoS Comput. Biol. 18, e1009155 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mahla, R. S. Stem cells applications in regenerative medicine and disease therapeutics. Int. J. Cell Biol. 2016, 6940283 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roberts, B. et al. Systematic gene tagging using CRISPR/Cas9 in human stem cells to illuminate cell organization. Mol. Biol. Cell 28, 2854–2874 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paull, D. et al. Automated, high-throughput derivation, characterization and differentiation of induced pluripotent stem cells. Nat. Methods 12, 885–892 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baghbaderani, A. A. et al. cGMP-manufactured human induced pluripotent stem cells are available for pre-clinical and clinical applications. Stem Cell Rep. 5, 647–659 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Archibald, P. R. T. et al. Comparability of automated human induced pluripotent stem cell culture: a pilot study. Bioprocess Biosyst. Eng. 39, 1847–1858 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crombie, D. E. et al. Development of a modular automated system for maintenance and differentiation of adherent human pluripotent stem cells. SLAS Discov. 22, 1016–1025 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Koike, H. et al. Establishment of automated culture system for murine induced pluripotent stem cells. BMC Biotechnol. 12, 81 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kami, D. et al. Large-scale cell production of stem cells for clinical application using the automated cell processing machine. BMC Biotechnol. 13, 102 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Terstegge, S. et al. Automated maintenance of embryonic stem cell cultures. Biotechnol. Bioeng. 96, 195–201 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thomas, R. J. et al. Automated, scalable culture of human embryonic stem cells in feeder-free conditions. Biotechnol. Bioeng. 102, 1636–1644 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Daniszewski, M. et al. Automated cell culture systems and their applications to human pluripotent stem cell studies. SLAS Technol. 23, 315–325 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y., Cheng, L. & Gerecht, S. Efficient and scalable expansion of human pluripotent stem cells under clinically compliant settings: a view in 2013. Ann. Biomed. Eng. 42, 1357–1372 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hussain, W. et al. Reproducible culture and differentiation of mouse embryonic stem cells using an automated microwell platform. Biochem. Eng. J. 77, 246–257 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Konagaya, S., Ando, T., Yamauchi, T., Suemori, H. & Iwata, H. Long-term maintenance of human induced pluripotent stem cells by automated cell culture system. Sci. Rep. 5, 16647 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Webb, D. J. & Brown, C. M. Epi-fluorescence microscopy. Methods Mol. Biol. 931, 29–59 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chatterjee, I. et al. in Induced Pluripotent Stem (iPS) Cells. Vol. 1357 (eds. Turksen, K. & Nagy, A.) 311–327 (Springer, 2015).

  • Le, M. N. T. & Hasegawa, K. Expansion culture of human pluripotent stem cells and production of cardiomyocytes. Bioengineering 6, 48 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Conway, M. K. et al. Scalable 96-well plate based iPSC culture and production using a robotic liquid handling system. J. Vis. Exp. https://doi.org/10.3791/52755 (2015).

  • Chan, S. W., Rizwan, M. & Yim, E. K. F. Emerging methods for enhancing pluripotent stem cell expansion. Front. Cell Dev. Biol. 8, 70 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haenel, F. & Garbow, N. Application note: Cell counting and confluency analysis as quality controls in cell-based assays. PerkinElmer https://resources.perkinelmer.com/lab-solutions/resources/docs/011833_01_app.pdf (2014).

  • Jaccard, N. et al. Automated method for the rapid and precise estimation of adherent cell culture characteristics from phase contrast microscopy images. Biotechnol. Bioeng. 111, 504–517 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kreitzer, F. R. et al. A robust method to derive functional neural crest cells from human pluripotent stem cells. Am. J. Stem Cells 2, 119–131 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schulz, T. C. et al. Directed neuronal differentiation of human embryonic stem cells. BMC Neurosci. 4, 27 (2003).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zemirli, N., Morel, E. & Molino, D. Mitochondrial dynamics in basal and stressful conditions. Int. J. Mol. Sci. 19, 564 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, J. et al. The Allen Cell Structure Segmenter: a new open source toolkit for segmenting 3D intracellular structures in fluorescence microscopy images. Preprint at bioRxiv https://doi.org/10.1101/491035 (2018).

  • Berg, S. et al. ilastik: interactive machine learning for (bio)image analysis. Nat. Methods 16, 1226–1232 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van der Walt, S. et al. scikit-image: image processing in Python. PeerJ 2, e453 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carpenter, A. E. et al. CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 7, R100 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kamentsky, L. et al. Improved structure, function and compatibility for CellProfiler: modular high-throughput image analysis software. Bioinformatics 27, 1179–1180 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McQuin, C. et al. CellProfiler 3.0: next-generation image processing for biology. PLoS Biol. 16, e2005970 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar