Assembly of a stem cell-derived human postimplantation embryo model – Nature Protocols

  • Muter, J., Lynch, V. J., McCoy, R. C. & Brosens, J. J. Human embryo implantation. Development https://doi.org/10.1242/dev.201507 (2023).

  • Deglincerti, A. et al. Self-organization of the in vitro attached human embryo. Nature 533, 251–254 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shahbazi, M. N. et al. Self-organization of the human embryo in the absence of maternal tissues. Nat. Cell Biol. 18, 700–708 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Molè, M. A., Weberling, A. & Zernicka-Goetz, M. in Current Topics in Developmental Biology Vol. 136 (ed Solnica-Krezel, L.) 113–138 (Academic Press, 2020).

  • Nakamura, T., Fujiwara, K., Saitou, M. & Tsukiyama, T. Non-human primates as a model for human development. Stem Cell Rep. 16, 1093–1103 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Siriwardena, D. & Boroviak, T. E. Evolutionary divergence of embryo implantation in primates. Philos. Trans. R. Soc. Lond. B 377, 20210256 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wamaitha, S. E. & Niakan, K. K. Human pre-gastrulation development. Curr. Top. Dev. Biol. 128, 295–338 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, D. et al. Primary specification of blastocyst trophectoderm by scRNA-seq: new insights into embryo implantation. Sci. Adv. 8, eabj3725 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alberio, R., Kobayashi, T. & Surani, M. A. Conserved features of non-primate bilaminar disc embryos and the germline. Stem Cell Rep. 16, 1078–1092 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Rossant, J. & Tam, P. P. L. Early human embryonic development: blastocyst formation to gastrulation. Dev. Cell 57, 152–165 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Christodoulou, N. et al. Morphogenesis of extra-embryonic tissues directs the remodelling of the mouse embryo at implantation. Nat. Commun. 10, 3557 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amadei, G. et al. Embryo model completes gastrulation to neurulation and organogenesis. Nature 610, 143–153 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lau, K. Y. C. et al. Mouse embryo model derived exclusively from embryonic stem cells undergoes neurulation and heart development. Cell Stem Cell 29, 1445–1458 e1448 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tarazi, S. et al. Post-gastrulation synthetic embryos generated ex utero from mouse naive ESCs. Cell https://doi.org/10.1016/j.cell.2022.07.028 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amadei, G. et al. Inducible stem-cell-derived embryos capture mouse morphogenetic events in vitro. Dev. Cell https://doi.org/10.1016/j.devcel.2020.12.004 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Harrison, S. E., Sozen, B., Christodoulou, N., Kyprianou, C. & Zernicka-Goetz, M. Assembly of embryonic and extraembryonic stem cells to mimic embryogenesis in vitro. Science 356, eaal1810 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Sozen, B. et al. Self-assembly of embryonic and two extra-embryonic stem cell types into gastrulating embryo-like structures. Nat. Cell Biol. 20, 979–989 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weatherbee, B. A. T. et al. Pluripotent stem cell-derived model of the post-implantation human embryo. Nature https://doi.org/10.1038/s41586-023-06368-y (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shahbazi, M. N. et al. Pluripotent state transitions coordinate morphogenesis in mouse and human embryos. Nature 552, 239–243 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simunovic, M. et al. A 3D model of a human epiblast reveals BMP4-driven symmetry breaking. Nat. Cell Biol. 21, 900–910 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Warmflash, A., Sorre, B., Etoc, F., Siggia, E. D. & Brivanlou, A. H. A method to recapitulate early embryonic spatial patterning in human embryonic stem cells. Nat. Methods 11, 847–854 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Etoc, F. et al. A balance between secreted inhibitors and edge sensing controls gastruloid self-organization. Dev. Cell 39, 302–315 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martyn, I., Kanno, T. Y., Ruzo, A., Siggia, E. D. & Brivanlou, A. H. Self-organization of a human organizer by combined Wnt and Nodal signalling. Nature 558, 132–135 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moris, N. et al. An in vitro model of early anteroposterior organization during human development. Nature 582, 410–415 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shao, Y. et al. A pluripotent stem cell-based model for post-implantation human amniotic sac development. Nat. Commun. 8, 208 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng, Y. et al. Controlled modelling of human epiblast and amnion development using stem cells. Nature 573, 421–425 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kagawa, H. et al. Human blastoids model blastocyst development and implantation. Nature 601, 600–605 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, X. et al. Modelling human blastocysts by reprogramming fibroblasts into iBlastoids. Nature 591, 627–632 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, L. et al. Blastocyst-like structures generated from human pluripotent stem cells. Nature 591, 620–626 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yanagida, A. et al. Naive stem cell blastocyst model captures human embryo lineage segregation. Cell Stem Cell 28, 1016–1022 e1014 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sozen, B. et al. Reconstructing aspects of human embryogenesis with pluripotent stem cells. Nat. Commun. 12, 5550 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karvas, R. M. et al. 3D-cultured blastoids model human embryogenesis from pre-implantation to early gastrulation stages. Cell Stem Cell 30, 1148–1165 e1147 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mackinlay, K. M. L. et al. An in vitro stem cell model of human epiblast and yolk sac interaction. eLife 10, e63930 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pedroza, M. et al. Self-patterning of human stem cells into post-implantation lineages. Nature https://doi.org/10.1038/s41586-023-06354-4 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simunovic, M., Siggia, E. D. & Brivanlou, A. H. In vitro attachment and symmetry breaking of a human embryo model assembled from primed embryonic stem cells. Cell Stem Cell 29, 962–972 e964 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, L. et al. Modeling post-implantation stages of human development into early organogenesis with stem-cell-derived peri-gastruloids. Cell https://doi.org/10.1016/j.cell.2023.07.018 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oldak, B. et al. Complete human day 14 post-implantation embryo models from naive ES cells. Nature 622, 562–573 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ai, Z. et al. Dissecting peri-implantation development using cultured human embryos and embryo-like assembloids. Cell Res. 33, 661–678 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuan, G. et al. Establishment of a novel non-integrated human pluripotent stem cell-based gastruloid model. Preprint at bioRxiv https://doi.org/10.1101/2023.06.28.546720 (2023).

  • Hislop, J. et al. Modeling post-implantation human development to yolk sac blood emergence. Nature https://doi.org/10.1038/s41586-023-06914-8 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, C. et al. A comprehensive human embryogenesis reference tool using single-cell RNA-sequencing data. Preprint at bioRxiv https://doi.org/10.1101/2021.05.07.442980 (2024).

  • Lovell-Badge, R. et al. ISSCR guidelines for stem cell research and clinical translation: the 2021 update. Stem Cell Rep. 16, 1398–1408 (2021).

    Article 

    Google Scholar
     

  • Clark, A. T. et al. Human embryo research, stem cell-derived embryo models and in vitro gametogenesis: considerations leading to the revised ISSCR guidelines. Stem Cell Rep. 16, 1416–1424 (2021).

    Article 

    Google Scholar
     

  • Niclis, J. C. et al. Efficiently specified ventral midbrain dopamine neurons from human pluripotent stem cells under xeno-free conditions restore motor deficits in Parkinsonian rodents. Stem Cells Transl. Med. 6, 937–948 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar