Search
Close this search box.

Artificial cells for in vivo biomedical applications through red blood cell biomimicry – Nature Communications

  • Yewdall, N. A., Mason, A. F. & van Hest, J. C. M. The hallmarks of living systems: towards creating artificial cells. Interface Focus 8, 20180023 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Spoelstra, W. K., Deshpande, S. & Dekker, C. Tailoring the appearance: what will synthetic cells look like? Curr. Opin. Biotechnol. 51, 47–56 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dimova, R., Stano, P., Marques, C. M. & Walde, P. Preparation methods for giant unilamellar vesicles. In The Giant Vesicle Book (eds Dimova, R. & Marques, C. M.) Ch. 1, 3–20 (CRC Press, Boca Raton, FL, 2019).

  • Lasic, D. D. Giant Vesicles: A Historical Introduction. In Perspectives in Supramolecular Chemistry: Giant Vesicles, Vol. 6 (eds Pier Luigi Luisi & Peter Walde) Ch. 2, 11–24 (John Wiley & Sons, Baffins Lane, UK, 1999).

  • Litschel, T. et al. Reconstitution of contractile actomyosin rings in vesicles. Nat. Commun. 12, 2254 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adepu, S. & Ramakrishna, S. Controlled drug delivery systems: current status and future directions. Molecules 26, 5905 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Z. et al. Synthetic beta cells for fusion-mediated dynamic insulin secretion. Nat. Chem. Biol. 14, 86–93 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gregoriadis, G. Engineering liposomes for drug delivery: progress and problems. Trends Biotechnol. 13, 527–537 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Akbarzadeh, A. et al. Liposome: classification, preparation, and applications. Nanoscale Res. Lett. 8, 102 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng, Z., Gu, Y., Yuan, M., Xiao, R. & Fei, Z. Clinical trials of liposomes in children’s anticancer therapy: a comprehensive analysis of trials registered on ClinicalTrials.gov. Int. J. Nanomed. 17, 1843–1850 (2022).

    Article 

    Google Scholar
     

  • Vincy, A. et al. Recent progress in red blood cells-derived particles as novel bioinspired drug delivery systems: challenges and strategies for clinical translation. Front. Chem. 10, 905256 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, A. P. et al. Membrane-induced bundling of actin filaments. Nat. Phys. 4, 789–793 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heuvingh, J., Pincet, F. & Cribier, S. Hemifusion and fusion of giant vesicles induced by reduction of inter-membrane distance. Eur. Phys. J. E 14, 269–276 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wick, R., Walde, P. & Luisi, P. L. Light microscopic investigations of the autocatalytic self-reproduction of giant vesicles. J. Am. Chem. Soc. 117, 1435–1436 (1995).

    Article 
    CAS 

    Google Scholar
     

  • Lussier, F., Staufer, O., Platzman, I. & Spatz, J. P. Can bottom-up synthetic biology generate advanced drug-delivery systems? Trends Biotechnol. 39, 445–459 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Glassman, P. M. et al. Red blood cells: the metamorphosis of a neglected carrier into the natural mothership for artificial nanocarriers. Adv. Drug Deliv. Rev. 178, 113992 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Emir Diltemiz, S. et al. Use of artificial cells as drug carriers. Mater. Chem. Front. 5, 6672–6692 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lee, Y. & Thompson, D. H. Stimuli-responsive liposomes for drug delivery. WIREs Nanomed. Nanobiotechnol. 9, e1450 (2017).

    Article 

    Google Scholar
     

  • Staufer, O. et al. Microfluidic production and characterization of biofunctionalized giant unilamellar vesicles for targeted intracellular cargo delivery. Biomaterials 264, 120203 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saito, A. C., Ogura, T., Fujiwara, K., Murata, S. & Nomura, S.-iM. Introducing micrometer-sized artificial objects into live cells: a method for cell-giant unilamellar vesicle electrofusion. PLoS ONE 9, e106853 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jenkins, E. et al. Reconstitution of immune cell interactions in free-standing membranes. J. Cell Sci. 132, jcs219709 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Litschel, T. & Schwille, P. Protein reconstitution inside giant unilamellar vesicles. Annu. Rev. Biophys. 50, 525–548 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Walde, P., Cosentino, K., Engel, H. & Stano, P. Giant vesicles: preparations and applications. Chembiochem 11, 848–865 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reeves, J. P. & Dowben, R. M. Formation and properties of thin-walled phospholipid vesicles. J. Cell. Physiol. 73, 49–60 (1969).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Akashi, K., Miyata, H., Itoh, H. & Kinosita, K. J. Preparation of giant liposomes in physiological conditions and their characterization under an optical microscope. Biophys. J. 71, 3242–3250 (1996).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Angelova, M. I. & Dimitrov, D. S. Liposome electroformation. Faraday Discuss. Chem. Soc. 81, 303–311 (1986).

    Article 
    CAS 

    Google Scholar
     

  • Pautot, S., Frisken, B. J. & Weitz, D. A. Production of unilamellar vesicles using an inverted emulsion. Langmuir 19, 2870–2879 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Pautot, S., Frisken, B. J. & Weitz, D. A. Engineering asymmetric vesicles. Proc. Natl. Acad. Sci. USA 100, 10718–10721 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsai, F.-C., Stuhrmann, B. & Koenderink, G. H. Encapsulation of active cytoskeletal protein networks in cell-sized liposomes. Langmuir 27, 10061–10071 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blosser, M. C., Horst, B. G. & Keller, S. L. cDICE method produces giant lipid vesicles under physiological conditions of charged lipids and ionic solutions. Soft Matter 12, 7364–7371 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Venero, O. M., Sato, W., Heili, J. M., Deich, C. & Adamala, K. P. Liposome preparation by 3D-printed microcapillary-based apparatus. In Cell-Free Gene Expression, Vol. 2433 (eds Karim, A. & Jewett, M.) 227–235 (Humana, New York, NY, USA, 2022).

  • Petit, J., Polenz, I., Baret, J.-C., Herminghaus, S. & Bäumchen, O. Vesicles-on-a-chip: a universal microfluidic platform for the assembly of liposomes and polymersomes. Eur. Phys. J. E 39, 59 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Soga, H. et al. In vitro membrane protein synthesis inside cell-sized vesicles reveals the dependence of membrane protein integration on vesicle volume. ACS Synth. Biol. 3, 372–379 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Funakoshi, K., Suzuki, H. & Takeuchi, S. Formation of giant lipid vesiclelike compartments from a planar lipid membrane by a pulsed jet flow. J. Am. Chem. Soc. 129, 12608–12609 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deshpande, S., Caspi, Y., Meijering, A. E. C. & Dekker, C. Octanol-assisted liposome assembly on chip. Nat. Commun. 7, 10447 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Campillo, C. et al. Unexpected membrane dynamics unveiled by membrane nanotube extrusion. Biophys. J. 104, 1248–1256 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moga, A., Yandrapalli, N., Dimova, R. & Robinson, T. Optimization of the inverted emulsion method for high-yield production of biomimetic giant unilamellar vesicles. ChemBioChem 20, 2674–2682 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weiss, M. et al. Sequential bottom-up assembly of mechanically stabilized synthetic cells by microfluidics. Nat. Mater. 17, 89–96 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Göpfrich, K. et al. One-pot assembly of complex giant unilamellar vesicle-based synthetic cells. ACS Synth. Biol. 8, 937–947 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haller, B. et al. Charge-controlled microfluidic formation of lipid-based single- and multicompartment systems. Lab Chip 18, 2665–2674 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Waeterschoot, J. et al. Formation of giant unilamellar vesicles assisted by fluorinated nanoparticles. Adv. Sci. n/a, 2302461 (2023).

    Article 

    Google Scholar
     

  • Hernandez Bücher, J. E. et al. Bottom-up assembly of target-specific cytotoxic synthetic cells. Biomaterials 285, 121522 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Toparlak, Ö. D. et al. Artificial cells drive neural differentiation. Sci. Adv. 6, eabb4920 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Staufer, O., Schröter, M., Platzman, I. & Spatz, J. P. Bottom-up assembly of functional intracellular synthetic organelles by droplet-based microfluidics. Small 16, 1906424 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Chen, G. et al. Implanted synthetic cells trigger tissue angiogenesis through de novo production of recombinant growth factors. Proc. Natl Acad. Sci. USA 119, e2207525119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krinsky, N. et al. Synthetic cells synthesize therapeutic proteins inside tumors. Adv. Healthc. Mater. 7, 1701163 (2018).

    Article 

    Google Scholar
     

  • Glassman, P. M. et al. Vascular drug delivery using carrier red blood cells: focus on RBC surface loading and pharmacokinetics. Pharmaceutics 12, 440 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, C.-M. J., Fang, R. H. & Zhang, L. Erythrocyte-inspired delivery systems. Adv. Healthc. Mater. 1, 537–547 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wauters, A. C. et al. Artificial antigen-presenting cell topology dictates T cell activation. ACS Nano 16, 15072–15085 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo, Z. et al. Erythrocyte inspired functional materials for biomedical applications. Adv. Sci. 10, 2206150 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Guo, J. et al. Biomimetic rebuilding of multifunctional red blood cells: modular design using functional components. ACS Nano 14, 7847–7859 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, S. et al. Enzyme-mediated nitric oxide production in vasoactive erythrocyte membrane-enclosed coacervate protocells. Nat. Chem. 12, 1165–1173 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hou, K. et al. A multifunctional magnetic red blood cell-mimetic micromotor for drug delivery and image-guided therapy. ACS Appl. Mater. Interfaces 14, 3825–3837 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Skalak, R. & Brånemark, P. I. Deformation of red blood cells in capillaries. Science 164, 717–719 (1969).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, H., Liu, Z. L., Lu, L., Buffet, P. & Karniadakis, G. E. How the spleen reshapes and retains young and old red blood cells: a computational investigation. PLoS Comput. Biol. 17, e1009516 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mauer, J. et al. Flow-induced transitions of red blood cell shapes under shear. Phys. Rev. Lett. 121, 118103 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nigra, A. D., Casale, C. H. & Santander, V. S. Human erythrocytes: cytoskeleton and its origin. Cell. Mol. Life Sci. 77, 1681–1694 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fischer, T. M. Shape memory of human red blood cells. Biophys. J. 86, 3304–3313 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mohandas, N. & Gallagher, P. G. Red cell membrane: past, present, and future. Blood 112, 3939–3948 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pivkin, I. V. et al. Biomechanics of red blood cells in human spleen and consequences for physiology and disease. Proc. Natl Acad. Sci. USA 113, 7804–7809 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Diez-Silva, M., Dao, M., Han, J., Lim, C.-T. & Suresh, S. Shape and biomechanical characteristics of human red blood cells in health and disease. MRS Bull. 35, 382–388 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Merkel, T. J. et al. The effect of particle size on the biodistribution of low-modulus hydrogel PRINT particles. J. Control. Release 162, 37–44 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Merkel, T. J. et al. Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles. Proc. Natl Acad. Sci. USA 108, 586–591 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muro, S. et al. Control of endothelial targeting and intracellular delivery of therapeutic enzymes by modulating the size and shape of ICAM-1-targeted carriers. Mol. Ther. 16, 1450–1458 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wei, Y., Quan, L., Zhou, C. & Zhan, Q. Factors relating to the biodistribution & clearance of nanoparticles & their effects on in vivo application. Nanomedicine 13, 1495–1512 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, X., Vo, C., Taylor, M. & Smith, B. R. Non-spherical micro- and nanoparticles in nanomedicine. Mater. Horiz. 6, 1094–1121 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Ju, X. et al. Red-blood-cell-shaped chitosan microparticles prepared by electrospraying. Particuology 30, 151–157 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Crouse, J. Z. et al. Development of a microscale red blood cell-shaped pectin-oligochitosan hydrogel system using an electrospray-vibration method: preparation and characterization. J. Appl. Biomater. Funct. Mater. 13, 326–331 (2015).


    Google Scholar
     

  • Hayashi, K., Hayashi, H., Yamada, S., Sakamoto, W. & Yogo, T. Cellulose-based molecularly imprinted red-blood-cell-like microparticles for the selective capture of cortisol. Carbohydr. Polym. 193, 173–178 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marquis, M., Davy, J., Fang, A. & Renard, D. Microfluidics-assisted diffusion self-assembly: toward the control of the shape and size of pectin hydrogel microparticles. Biomacromolecules 15, 1568–1578 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mazutis, L., Vasiliauskas, R. & Weitz, D. A. Microfluidic production of alginate hydrogel particles for antibody encapsulation and release. Macromol. Biosci. 15, 1641–1646 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, K. et al. Low modulus biomimetic microgel particles with high loading of hemoglobin. Biomacromolecules 13, 2748–2759 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, C. et al. Construction of biconcave hemoglobin-based microcapsules and electrochemical evaluation for its ability of oxygen carry. Sens. Actuators B Chem. 256, 217–225 (2018).

    Article 
    CAS 

    Google Scholar
     

  • She, S. et al. Fabrication of biconcave discoidal silica capsules and their uptake behavior by smooth muscle cells. J. Colloid Interface Sci. 426, 124–130 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • She, S., Li, Q., Shan, B., Tong, W. & Gao, C. Fabrication of red-blood-cell-like polyelectrolyte microcapsules and their deformation and recovery behavior through a microcapillary. Adv. Mater. 25, 5814–5818 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Doshi, N., Zahr, A. S., Bhaskar, S., Lahann, J. & Mitragotri, S. Red blood cell-mimicking synthetic biomaterial particles. Proc. Natl Acad. Sci. USA 106, 21495–21499 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao, S. et al. Shape-dependent biodistribution of biocompatible silk microcapsules. ACS Appl. Mater. Interfaces 11, 5499–5508 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • George, J. E., Manna, R., Roy, S., Kumari, S. & Paul, D. Pump-free and high-throughput generation of monodisperse hydrogel beads by microfluidic step emulsification for dLAMP-on-a-chip. Preprint at bioRxiv https://doi.org/10.1101/2023.03.12.532292 (2023).

  • Yamashita, Y., Masum, S. M., Tanaka, T. & Yamazaki, M. Shape changes of giant unilamellar vesicles of phosphatidylcholine induced by a de novo designed peptide interacting with their membrane interface. Langmuir 18, 9638–9641 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Fanalista, F. et al. Shape and size control of artificial cells for bottom-up biology. ACS Nano 13, 5439–5450 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Neuhaus, F. et al. Vesicle origami: cuboid phospholipid vesicles formed by template-free self-assembly. Angew. Chem. Int. Ed. 56, 6515–6518 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Bhattacharya, A. et al. Single-chain β-D-glycopyranosylamides of unsaturated fatty acids: self-assembly properties and applications to artificial cell development. J. Phys. Chem. B 123, 3711–3720 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Garenne, D., Libchaber, A. & Noireaux, V. Membrane molecular crowding enhances MreB polymerization to shape synthetic cells from spheres to rods. Proc. Natl Acad. Sci. USA 117, 1902–1909 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pan, L., Yan, R., Li, W. & Xu, K. Super-resolution microscopy reveals the native ultrastructure of the erythrocyte cytoskeleton. Cell Rep. 22, 1151–1158 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Teliska, L. H. & Rasband, M. N. Spectrins. Curr. Biol. 31, R504–R506 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abudara, V., Retamal, M. A., Del Rio, R. & Orellana, J. A. Synaptic functions of hemichannels and pannexons: a double-edged sword. Front. Mol. Neurosci. 11, 435 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ulker, P., Gunduz, F., Meiselman, H. J. & Baskurt, O. K. Nitric oxide generated by red blood cells following exposure to shear stress dilates isolated small mesenteric arteries under hypoxic conditions. Clin. Hemorheol. Microcirc. 54, 357–369 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zong, W., Li, Q., Zhang, X. & Han, X. Deformation of giant unilamellar vesicles under osmotic stress. Colloids Surf B Biointerfaces 172, 459–463 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Allen, M. E., Hindley, J. W., Baxani, D. K., Ces, O. & Elani, Y. Hydrogels as functional components in artificial cell systems. Nat. Revi. Chem. 6, 562–578 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Jesorka, A., Markström, M., Karlsson, M. & Orwar, O. Controlled hydrogel formation in the internal compartment of giant unilamellar vesicles. J. Phys. Chem. B 109, 14759–14763 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, D.-Y., Zhou, Z.-H., Yu, Y.-L. & Deng, N.-N. Microfluidic construction of cytoskeleton-like hydrogel matrix for stabilizing artificial cells. Chem. Eng. Sci. 264, 118186 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Dey, S. et al. DNA origami. Nat. Rev. Methods Primers 1, 13 (2021).

    Article 

    Google Scholar
     

  • Jahnke, K., Huth, V., Mersdorf, U., Liu, N. & Göpfrich, K. Bottom-up assembly of synthetic cells with a DNA cytoskeleton. ACS Nano 16, 7233–7241 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walther, T., Jahnke, K., Abele, T. & Göpfrich, K. Printing and erasing of DNA based photoresists inside synthetic cells. Adv. Funct. Mater. 32, 2200762 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kurokawa, C. et al. DNA cytoskeleton for stabilizing artificial cells. Proc. Natl Acad. Sci. USA 114, 7228–7233 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arulkumaran, N., Singer, M., Howorka, S. & Burns, J. R. Creating complex protocells and prototissues using simple DNA building blocks. Nat. Commun. 14, 1314 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Häckl, W., Bärmann, M. & Sackmann, E. Shape changes of self-assembled actin bilayer composite membranes. Phys. Rev. Lett. 80, 1786–1789 (1998).

    Article 

    Google Scholar
     

  • Limozin, L., Roth, A. & Sackmann, E. Microviscoelastic moduli of biomimetic cell envelopes. Phys. Rev. Lett. 95, 178101 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Perrier, D. L. et al. Response of an actin network in vesicles under electric pulses. Sci. Rep. 9, 8151 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, S., Sun, Z. G. & Murrell, M. P. In vitro reconstitution of the Actin Cytoskeleton Inside Giant Unilamellar Vesicles. JOVE (186), 64026 (2022).

  • Baldauf, L. et al. Biomimetic actin cortices shape cell-sized lipid vesicles. Preprint at bioRxiv https://doi.org/10.1101/2023.01.15.524117 (2023).

  • Baldauf, L., Frey, F., Perez, M. A., Idema, T. & Koenderink, G. H. Branched actin cortices reconstituted in vesicles sense membrane curvature. Biophys. J. 122, 2311–2324 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guevorkian, K., Manzi, J., Pontani, L.-L., Brochard-Wyart, F. & Sykes, C. Mechanics of biomimetic liposomes encapsulating an actin shell. Biophys. J. 109, 2471–2479 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wubshet, N. H., Wu, B., Veerapaneni, S. & Liu, A. P. Differential regulation of GUV mechanics via actin network architectures. Biophys. J. 122, 1–14 (2022).


    Google Scholar
     

  • Merkle, D., Kahya, N. & Schwille, P. Reconstitution and anchoring of cytoskeleton inside giant unilamellar vesicles. ChemBioChem 9, 2673–2681 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jørgensen, I. L., Kemmer, G. C. & Pomorski, T. G. Membrane protein reconstitution into giant unilamellar vesicles: a review on current techniques. Eur. Biophys. J. 46, 103–119 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Nishigami, Y., Ito, H., Sonobe, S. & Ichikawa, M. Non-periodic oscillatory deformation of an actomyosin microdroplet encapsulated within a lipid interface. Sci. Rep. 6, 18964 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Virtanen, J. A., Cheng, K. H. & Somerharju, P. Phospholipid composition of the mammalian red cell membrane can be rationalized by a superlattice model. Proc. Natl Acad. Sci. USA 95, 4964–4969 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chakrabarti, R. S. et al. Variability of cholesterol accessibility in human red blood cells measured using a bacterial cholesterol-binding toxin. eLife 6, e23355 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van Meer, G., Voelker, D. R. & Feigenson, G. W. Membrane lipids : where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9, 112–124 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dawaliby, R. et al. Phosphatidylethanolamine is a key regulator of membrane fluidity in eukaryotic cells. J. Biol. Chem. 291, 3658–3667 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zwaal, R. F. A., Comfurius, P. & Bevers, E. M. Surface exposure of phosphatidylserine in pathological cells. Cell. Mol. Life Sci. 62, 971–988 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Savill, J., Dransfield, I., Gregory, C. & Haslett, C. A blast from the past: clearance of apoptotic cells regulates immune responses. Nat. Rev. Immunol. 2, 965–975 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bevers, E. M., Comfurius, P. & Zwaal, R. F. A. Changes in membrane phospholipid distribution during platelet activation. Biochim. Biophys. Acta Biomembr. 736, 57–66 (1983).

    Article 
    CAS 

    Google Scholar
     

  • Engeland, M. V., Ramaekers, F. C. S., Schutte, B. & Reutehgsperger, C. P. M. A novel assay to measure loss of plasma membrane asymmetry during apoptosis of adherent cells in culture. J. Int. Soc. Anal. Cytol. 139, 131–139 (1996).


    Google Scholar
     

  • Fadeel, B. & Xue, D. The ins and outs of phospholipid asymmetry in the plasma membrane: roles in health and disease. Crit. Rev. Biochem. Mol. Biol. 44, 264–277 (2010).

    Article 

    Google Scholar
     

  • Vermes, I., Haanen, C. & Reutelingsperger, C. Flow cytometry of apoptotic cell death. J. Immunol. Methods 243, 167–190 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tse, W. T. & Lux, S. E. Red blood cell membrane disorders. Br. Jo. Haematol. 104, 2–13 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Berezina, T. L. et al. Influence of storage on red blood cell rheological properties. J. Surg. Res. 102, 6–12 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fadok, V. A., De Cathelineau, A., Daleke, D. L., Henson, P. M. & Bratton, D. L. Loss of phospholipid asymmetry and surface exposure of phosphatidylserine is required for phagocytosis of apoptotic cells by macrophages and fibroblasts. J. Biol. Chem. 276, 1071–1077 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martínez-Vieyra, I. et al. Alterations to plasma membrane lipid contents affect the biophysical properties of erythrocytes from individuals with hypertension. Biochim. Biophys. Acta Biomembr. 1861, 182996 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Gurtovenko, A. A. & Vattulainen, I. Lipid transmembrane asymmetry and intrinsic membrane potential: two sides of the same coin. J. Am. Chem. Soc. 129, 5358–5359 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zwaal, R. F. A. & Schroit, A. J. Pathophysiologic implications of membrane phospholipid asymmetry in blood cells. Blood 89, 1121–1132 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Daleke, D. L. Regulation of phospholipid asymmetry in the erythrocyte membrane. Curr. Opin. Hematol. 15, 191–195 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Witasp, E., Kagan, V. & Fadeel, B. Programmed cell clearance: molecular mechanisms and role in autoimmune disease, chronic inflammation, and anti-cancer immune responses. Curr. Immunol. Rev. 4, 53–69 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Chen, W. et al. Comparison of erythrocyte membrane lipid profiles between NAFLD patients with or without hyperlipidemia. Int. J. Endocrinol. 2020, 9501826 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cournia, Z. et al. Membrane protein structure, function, and dynamics: a perspective from experiments and theory. J. Membr. Biol. 248, 611–640 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lew, V. L. & Tiffert, T. On the mechanism of human red blood cell longevity: roles of calcium, the sodium pump, PIEZO1, and gardos channels. Front. Physiol. 8, 977 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brittain, J. E., Mlinar, K. J., Anderson, C. S., Orringer, E. P. & Parise, L. V. Activation of sickle red blood cell adhesion via integrin-associated protein/CD47-induced signal transduction. J. Clin. Invest. 107, 1555–1562 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burger, P., Hilarius-Stokman, P., De Korte, D., Van Den Berg, T. K. & Van Bruggen, R. CD47 functions as a molecular switch for erythrocyte phagocytosis. Blood 119, 5512–5521 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ninomiya, H. & Sims, P. J. The human complement regulatory protein CD59 binds to the α-chain of C8 and to the ’b’ domain of C9. J. Biol. Chem. 267, 13675–13680 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chasis, J. A. & Mohandas, N. Red blood cell glycophorins. Blood 80, 1869–1879 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ho, J. C., Rangamani, P., Liedberg, B. & Parikh, A. N. Mixing water, transducing energy, and shaping membranes: autonomously self-regulating giant vesicles. Langmuir 32, 2151–2163 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Glogowska, E. & Gallagher, P. G. Disorders of erythrocyte volume homeostasis. Int. J. Lab. Hematol. 37, 85–91 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mathai, J. C. et al. Functional analysis of aquaporin-1 deficient red cells. J. Biol. Chem. 271, 1309–1313 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kaplan, J. H. Biochemistry of Na,K-ATPase. Annu. Rev. Biochem. 71, 511–535 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Quemeneur, F., Rammal, A., Rinaudo, M. & Pépin-Donat, B. Large and giant vesicles “decorated” with chitosan: effects of pH, salt or glucose stress, and surface adhesion. Biomacromolecules 8, 2512–2519 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Q., Li, S., Zhang, X., Xu, W. & Han, X. Programmed magnetic manipulation of vesicles into spatially coded prototissue architectures arrays. Nat. Commun. 11, 232 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhatia, T. et al. Spatial distribution and activity of Na + /K + -ATPase in lipid bilayer membranes with phase boundaries. Biochim. Biophys. Acta Biomembr. 1858, 1390–1399 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Cahalan, S. M. et al. Piezo1 links mechanical forces to red blood cell volume. eLife 4, e07370 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Verbalis, J. G. Disorders of body water homeostasis. Best Pract. Res. Clin. Endocrinol. Metab. 17, 471–503 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Knop, J.-M. et al. Life in multi-extreme environments: brines, osmotic and hydrostatic pressure – a physicochemical view. Chem. Rev. 123, 73–104 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, X., Stenhammar, J., Wennerström, H. & Sparr, E. Vesicles balance osmotic stress with bending energy that can be released to form daughter vesicles. J. Phys. Chem. Lett. 13, 498–507 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chapanian, R. et al. Enhancement of biological reactions on cell surfaces via macromolecular crowding. Nat. Commun. 5, 4683 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shou, K. et al. Effect of red blood cell shape changes on haemoglobin interactions and dynamics: a neutron scattering study. R. Soc. Open Sci. 7, 201507 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ding, Y., Contreras-Llano, L. E., Morris, E., Mao, M. & Tan, C. Minimizing context dependency of gene networks using artificial cells. ACS Appl. Mater. Interfaces 10, 30137–30146 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gore, M., Narvekar, A., Bhagwat, A., Jain, R. & Dandekar, P. Macromolecular cryoprotectants for the preservation of mammalian cell culture: Lessons from crowding, overview and perspectives. J. Mater. Chem. B 10, 143–169 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deng, N.-N. et al. Macromolecularly crowded protocells from reversibly shrinking monodisperse liposomes. J. Am. Chem. Soc. 140, 7399–7402 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vibhute, M. A. et al. Transcription and translation in cytomimetic protocells perform most efficiently at distinct macromolecular crowding conditions. ACS Synth. Biol. 9, 2797–2807 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guerzoni, L. P. et al. High macromolecular crowding in liposomes from microfluidics. Adv. Sci. 9, 2201169 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Tivony, R., Fletcher, M., Al Nahas, K. & Keyser, U. F. A microfluidic platform for sequential assembly and separation of synthetic cell models. ACS Synth. Biol. 10, 3105–3116 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fujiwara, K. & Yanagisawa, M. Generation of giant unilamellar liposomes containing biomacromolecules at physiological intracellular concentrations using hypertonic conditions. ACS Synth. Biol. 3, 870–874 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Zarrin, A., Foroozesh, M. & Hamidi, M. Carrier erythrocytes: recent advances, present status, current trends and future horizons. Expert Opin. Drug Deliv. 11, 433–447 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kravtzoff, R., Ropars, C., Laguerre, M., Muh, J. P. & Chassaigne, M. Erythrocytes as carriers for L-asparaginase. methodological and mouse in-vivo studies. J. Pharm. Pharmacol. 42, 473–476 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chessa, L. Current and future therapeutic strategies to treat ataxia telangiectasia. Expert Opin. Orphan Drugs 2, 877–887 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Leuzzi, V. et al. Positive effect of erythrocyte-delivered dexamethasone in ataxia-telangiectasia. Neurol. Neuroimmunol. Neuroinflamm. 2, e98 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hunault-Berger, M. et al. A Phase 2 study of L-asparaginase encapsulated in erythrocytes in elderly patients with Philadelphia chromosome negative acute lymphoblastic leukemia: the GRASPALL/GRAALL-SA2-2008 study. Am. J. Hematol. 90, 811–818 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bachet, J.-B. et al. Asparagine synthetase expression and phase I study with l-asparaginase encapsulated in red blood cells in patients with pancreatic adenocarcinoma. Pancreas 44, 1141–1147 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • A study of safety, tolerability, pharmacodynamics, and pharmacokinetics of KAN-101 in people with celiac disease https://www.clinicaltrials.gov/ct2/show/NCT05574010 (2022).

  • Sahoo, K. et al. Nanoparticle attachment to erythrocyte via the glycophorin A targeted ERY1 ligand enhances binding without impacting cellular function. Pharm. Res. 33, 1191–1203 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y. et al. Red blood cell-hitchhiking chitosan nanoparticles for prolonged blood circulation time of vitamin K1. Int. J. Pharm. 592, 120084 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, J. et al. Red blood cell-hitchhiking mediated pulmonary delivery of ivermectin: effects of nanoparticle properties. Int. J. Pharm. 619, 121719 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, Z. et al. Screening of Zwitterionic liposomes with red blood cell hitchhiking and tumor cell active transporting capability for efficient tumor entrance. Adv. Funct. Mater. 33, 2214369 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Guo, J. et al. Modular assembly of red blood cell superstructures from metal-organic framework nanoparticle-based building blocks. Adv. Funct. Mater. 31, 2005935 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ferenz, K., Karaman, O. & Shah, S. B. Artificial red blood cells. In Nanotechnology for Hematology, Blood Transfusion, and Artificial Blood (eds Denizli, A., Nguyen, T. A., Rajan, M., Alam, M. F. & Rahman Blood Transfusion, and Artificial Blood, K. B. T. N. f. H.) 397–427 (Elsevier, 2022).

  • Douay, L. Why industrial production of red blood cells from stem cells is essential for tomorrow’s blood transfusion. Regener. Med. 13, 627–632 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, X. et al. Engineered red blood cells as an off-the-shelf allogeneic anti-tumor therapeutic. Nat. Commun. 12, 2637 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deák, R. et al. Physicochemical characterization of artificial nanoerythrosomes derived from erythrocyte ghost membranes. Colloids Surf. B Biointerfaces 135, 225–234 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Le, Q.-V., Lee, J., Lee, H., Shim, G. & Oh, Y.-K. Cell membrane-derived vesicles for delivery of therapeutic agents. Acta Pharm. Sin. B 11, 2096–2113 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, W. et al. Biomimetic nanoerythrosome coated aptamer-DNA tetrahedron/maytansine conjugates: pH responsive and targeted cytotoxicity for HER2 positive breast cancer. Adv. Mater. 34, 2109609 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Han, X. et al. Red blood cell-derived nanoerythrosome for antigen delivery with enhanced cancer immunotherapy. Sci. Adv. 5, 6870–6893 (2019).

    Article 

    Google Scholar
     

  • Kuo, Y.-C. et al. Colloidal properties of nanoerythrosomes derived from bovine red blood cells. Langmuir 32, 171–179 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mehta, S., Dumoga, S., Malhotra, S. & Singh, N. Comparative analysis of PEG-liposomes and RBCs-derived nanovesicles for anti-tumor therapy. Colloids Surf. B Biointerfaces 218, 112785 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bóta, A. et al. Lipid nanoparticles with erythrocyte cell-membrane proteins. J. Mol. Liquids 369, 120791 (2023).

    Article 

    Google Scholar
     

  • Agnihotri, J. & Jain, N. K. Biodegradable long circulating cellular carrier for antimalarial drug pyrimethamine. Artif. Cells Nanomed. Biotechnol. 41, 309–314 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gupta, N., Patel, B., Nahar, K. & Ahsan, F. Cell permeable peptide conjugated nanoerythrosomes of fasudil prolong pulmonary arterial vasodilation in PAH rats. Eur. J. Pharm. Biopharm. 88, 1046–1055 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, P. et al. Bioinspired red blood cell membrane-encapsulated biomimetic nanoconstructs for synergistic and efficacious chemo-photothermal therapy. Colloids Surf. B Biointerfaces 189, 110842 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, M. et al. Red blood cell membrane-coated upconversion nanoparticles for pretargeted multimodality imaging of triple-negative breast cancer. Biomater. Sci. 8, 1802–1814 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, J. Y. et al. Red blood cell membrane bioengineered Zr-89 labelled hollow mesoporous silica nanosphere for overcoming phagocytosis. Sci. Rep. 9, 7419 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Malhotra, S., Dumoga, S. & Singh, N. Red blood cells membrane derived nanoparticles: applications and key challenges in their clinical translation. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 14, 1–26 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kazakov, S. Lipobeads. In Liposomes (ed. Catala, A.) Ch. 3, 49–93 (InTech, London, UK, 2017).

  • Ulker, D., Ozyurt, R., Erkasap, N. & Butun, V. Magnetic targeting of 5-fluorouracil-loaded liposome-nanogels for in vivo breast cancer therapy and the cytotoxic effects on liver and kidney. AAPS PharmSciTech 23, 289 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Olden, B. R. et al. Cell templated silica microparticles with supported lipid bilayers as artificial antigen presenting cells for T cell activation. Adv. Healthc. Mater. 8, 1801188 (2019).

    Article 

    Google Scholar
     

  • Ashley, C. E. et al. The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers. Nat. Mater. 10, 389–397 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huo, C., Li, M., Huang, X., Yang, H. & Mann, S. Membrane engineering of colloidosome microcompartments using partially hydrophobic mesoporous silica nanoparticles. Langmuir 30, 15047–15052 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Antonietti, M. & Förster, S. Vesicles and liposomes: a self assembly principle beyond lipids. Adv. Mater. 15, 1323–1333 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, W. et al. Artificial cells: past, present and future. ACS Nano 16, 15705–15733 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jayaraman, P. et al. Cell-free optogenetic gene expression system. ACS Synth. Biol. 7, 986–994 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wei, M., Lin, Y. & Qiao, Y. Engineered colloidosomes as biomimetic cellular models. Giant 13, 100143 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Chang, T. M. S. Therapeutic applications of polymeric artificial cells. Nat. Rev. Drug Discov. 4, 221–235 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, Y., Allegri, G. & Huskens, J. Vesicle-based artificial cells: materials, construction methods and applications. Mater. Horiz. 9, 892–907 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dao, T. P. T. et al. Phase separation and nanodomain formation in hybrid polymer/lipid vesicles. ACS Macro Lett. 4, 182–186 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mittal, N. et al. Erythromer (EM), a nanoscale bio-synthetic artificial red cell. In Blood Substitutes and Oxygen Biotherapeutics (eds Liu, H., Kaye, A. D. & Jahr, J. S.) Ch. 24, 253–265 (Springer, Cham, 2022).

  • Pan, D. et al. Erythromer (EM), a nanoscale bio-synthetic artificial red cell: proof of concept and in vivo efficacy results. Blood 128, 1027 (2016).

    Article 

    Google Scholar
     

  • Nguyen, H. T., Lee, S. & Shin, K. Controlled metabolic cascades for protein synthesis in an artificial cell. Biochem. Soc. Trans. 49, 2143–2151 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Komiya, M. et al. Advances in artificial cell membrane systems as a platform for reconstituting ion channels. Chem. Rec. 20, 730–742 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chakraborty, T. & Wegner, S. V. Cell to cell signaling through light in artificial cell communities: glowing predator lures prey. ACS Nano 15, 9434–9444 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hindley, J. W., Law, R. V. & Ces, O. Membrane functionalization in artificial cell engineering. SN Appl. Sci. 2, 593 (2020).

    Article 

    Google Scholar
     

  • Langecker, M. et al. Synthetic lipid membrane channels formed by designed DNA nanostructures. Science 338, 932–936 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Langton, M. J., Keymeulen, F., Ciaccia, M., Williams, N. H. & Hunter, C. A. Controlled membrane translocation provides a mechanism for signal transduction and amplification. Nat. Chem. 9, 426–430 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Langton, M. J., Scriven, L. M., Williams, N. H. & Hunter, C. A. Triggered release from lipid bilayer vesicles by an artificial transmembrane signal transduction system. J. Am. Chem. Soc. 139, 15768–15773 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Søgaard, A. B. et al. Transmembrane signaling by a synthetic receptor in artificial cells. Nat. Commun. 14, 1646 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mikhaylov, G. et al. Ferri-liposomes as an MRI-visible drug-delivery system for targeting tumours and their microenvironment. Nat. Nanotechnol. 6, 594–602 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yavlovich, A. et al. Design of liposomes containing photopolymerizable phospholipids for triggered release of contents. J. Therm. Anal. Calorim. 98, 97–104 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nishimura, K. et al. Cell-free protein synthesis inside giant unilamellar vesicles analyzed by flow cytometry. Langmuir 28, 8426–8432 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Noireaux, V. & Libchaber, A. A vesicle bioreactor as a step toward an artificial cell assembly. Proc. Natl. Acad. Sci. USA 101, 17669–17674 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boyd, M. A. & Kamat, N. P. Designing artificial cells towards a new generation of biosensors. Trends Biotechnol. 39, 927–939 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dwidar, M. et al. Programmable artificial cells using histamine-responsive synthetic riboswitch. J. Am. Chem. Soc. 141, 11103–11114 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Majumder, S. et al. Cell-sized mechanosensitive and biosensing compartment programmed with DNA. Chem. Commun. 53, 7349–7352 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Lentini, R. et al. Two-way chemical communication between artificial and natural cells. ACS Cent. Sci. 3, 117–123 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Erguven, H., Wang, L., Gutierrez, B. & Izgu, E. C. Biomimetic Vesicles with Designer Phospholipids Can Sense Environmental Redox Cues. Preprint at ChemRxiv https://doi.org/10.26434/chemrxiv-2023-p0nwc (2023).

  • Yatvin, M. B., Weinstein, J. N., Dennis, W. H. & Blumenthal, R. Design of liposomes for enhanced local release of drugs by hyperthermia. Science 202, 1290–1293 (1978).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mackanos, M. A. et al. Laser-induced disruption of systemically administered liposomes for targeted drug delivery. J. Biomed. Opt. 14, 44009 (2009).

    Article 

    Google Scholar
     

  • Yuba, E. et al. Bleomycin-loaded pH-sensitive polymer-lipid-incorporated liposomes for cancer chemotherapy. Polymers 10, 74 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sihorwala, A. Z., Lin, A. J., Stachowiak, J. C. & Belardi, B. Light-activated assembly of connexon nanopores in synthetic cells. J. Am. Chem. Soc. 145, 3561–3568 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuan, Z., Das, S., Lazenby, R. A., White, R. J. & Park, Y. C. Repetitive drug releases from light-activatable micron-sized liposomes. Colloids Surf. A Physicochem. Eng. Asp. 625, 126778 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, C. et al. Lymphatic-targeted cationic liposomes: a robust vaccine adjuvant for promoting long-term immunological memory. Vaccine 32, 5475–5483 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Belwal, V. K. & Singh, K. P. Nanosilica-supported liposome (protocells) as a drug vehicle for cancer therapy. Int. J. Nanomed. 13, 125–127 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Raphael, J. L. The role of policy in red blood cell storage and transfusion in children. Pediatr. Res. 82, 894–896 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Sparrow, R. L. Red blood cell storage and transfusion-related immunomodulation. Blood Transfus. 8, s26–30 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cliff, R. O. et al. Liposome encapsulated hemoglobin: long-term storage stability and in vivo characterization. Biomater. Artif. Cells Immob. Biotechnol. 20, 619–626 (1992).

    CAS 

    Google Scholar
     

  • Stark, B., Pabst, G. & Prassl, R. Long-term stability of sterically stabilized liposomes by freezing and freeze-drying: effects of cryoprotectants on structure. Eur. J. Pharm. Sci. 41, 546–555 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, M. et al. Freeze-drying of mammalian cells using trehalose: preservation of DNA integrity. Sci. Rep. 7, 6198 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sum, R. et al. Wound-healing properties of trehalose-stabilized freeze-dried outdated platelets. Transfusion 47, 672–679 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alves, D., Sparrow, R. & Garnier, G. Rapidly freeze-dried human red blood cells for pre-transfusion alloantibody testing reagents. J. Biomed. Mater. Res. Part B Appl. Biomater. 109, 1689–1697 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Chaudhari, C. Frozen red blood cells in transfusion. Med. J. Armed Forces India 65, 55–58 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Henkelman, S., Noorman, F., Badloe, J. F. & Lagerberg, J. W. M. Utilization and quality of cryopreserved red blood cells in transfusion medicine. Vox Sang. 108, 103–112 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jeyaram, A. & Jay, S. M. Preservation and storage stability of extracellular vesicles for therapeutic applications. AAPS J. 20, 1 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Susa, F., Bucca, G., Limongi, T., Cauda, V. & Pisano, R. Enhancing the preservation of liposomes: The role of cryoprotectants, lipid formulations and freezing approaches. Cryobiology 98, 46–56 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bosch, S. et al. Trehalose prevents aggregation of exosomes and cryodamage. Sci. Rep. 6, 36162 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, W. et al. Biomimetic erythrocytes engineered drug delivery for cancer therapy. Chem. Eng. J. 433, 133498 (2022).

    Article 
    CAS 

    Google Scholar