Aptamer-based gold nanoparticle aggregates for ultrasensitive amplification-free detection of PSMA – Scientific Reports

  • Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 70, 7–30 (2020).

    Article  PubMed  Google Scholar 

  • Etzioni, R. et al. The case for early detection. Nat. Rev. Cancer 3, 243–252 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Hori, S. S. & Gambhir, S. S. Mathematical model identifies blood biomarker-based early cancer detection strategies and limitations. Sci. Transl. Med. 3, 109ra116 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, S., Garcia-D’Angeli, A., Brennan, J. P. & Huo, Q. Predicting detection limits of enzyme-linked immunosorbent assay (ELISA) and bioanalytical techniques in general. Analyst 139, 439–445 (2013).

    Article  ADS  Google Scholar 

  • Giljohann, D. A. & Mirkin, C. A. Drivers of biodiagnostic development. Nature 462, 461–464 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Voskuil, J. Commercial antibodies and their validation. F1000Research 3, 232 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Seok Kim, Y., Ahmad Raston, N. H. & Bock Gu, M. Aptamer-based nanobiosensors. Biosens. Bioelectron. 76, 2–19 (2016).

    Article  CAS  Google Scholar 

  • Dunn, M. R., Jimenes, R. M. & Chaput, J. C. Analysis of aptamer discovery and technology. Nat. Rev. Chem. 3, 1–16 (2017).

    Google Scholar 

  • Nutiu, R. & Li, Y. Structure-switching signaling aptamers: Transducing molecular recognition into fluorescence signaling. Chem. A Eur. J. 10, 1868–1876 (2004).

    Article  CAS  Google Scholar 

  • Wang, Q. L. et al. A multimode aptasensor based on hollow gold nanoparticles and structure switching of aptamer: Fast and sensitive detection of carcinoembryonic antigen. Sensors Actuators Rep. 2, 100021 (2020).

    Article  Google Scholar 

  • Li, P. et al. Ultrasensitive and reversible nanoplatform of urinary exosomes for prostate cancer diagnosis. ACS Sensors 4, 1433–1441 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y., Li, M., Gao, X., Chen, Y. & Liu, T. Nanotechnology in cancer diagnosis: Progress, challenges and opportunities. J. Hematol. Oncol. 12, 1–13 (2019).

    Article  Google Scholar 

  • Amendola, V., Pilot, R., Frasconi, M., Maragò, O. M. & Iatì, M. A. Surface plasmon resonance in gold nanoparticles: A review. J. Phys. Condens. Matter 29, 203002 (2017).

    Article  ADS  PubMed  Google Scholar 

  • Jiang, Y. et al. Aptamer/AuNP biosensor for colorimetric profiling of exosomal proteins. Angew. Chem. Int. Ed. 56, 11916–11920 (2017).

    Article  CAS  Google Scholar 

  • Zhang, F. & Liu, J. Label-free colorimetric biosensors based on aptamers and gold nanoparticles: A critical review. Anal. Sens. 1, 30–43 (2021).

    CAS  Google Scholar 

  • Xu, N., Jin, S. & Wang, L. Metal nanoparticles-based nanoplatforms for colorimetric sensing: A review. Rev. Anal. Chem. 40, 1–11 (2020).

    Article  Google Scholar 

  • Trantakis, I. A., Bolisetty, S., Mezzenga, R. & Sturla, S. J. Reversible aggregation of DNA-decorated gold nanoparticles controlled by molecular recognition. Langmuir 29, 10824–10830 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Huang, C. C., Huang, Y. F., Cao, Z., Tan, W. & Chang, H. T. Aptamer-modified gold nanoparticles for colorimetric determination of platelet-derived growth factors and their receptors. Anal. Chem. 77, 5735–5741 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Liu, J. & Lu, Y. Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetric sensing of analytes. Nat. Protoc. 1, 246–252 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Ma, W. et al. Ultrasensitive aptamer-based SERS detection of PSAs by heterogeneous satellite nanoassemblie. Chem. Commun. 50, 9737–9740 (2014).

    Article  CAS  Google Scholar 

  • Huang, Y. et al. One-step competitive assay for detection of thrombin via disassembly of diblock oligonucleotide functionalised nanogold aggregates. Sensors Actuators B Chem. 376, 1–10 (2023).

    Article  Google Scholar 

  • Zhao, Q., Lu, X., Yuan, C. G., Li, X. F. & Le, X. C. Aptamer-linked assay for thrombin using gold nanoparticle amplification and inductively coupled plasma-mass spectrometry detection. Anal. Chem. 81, 7484–7489 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Navien, T. N., Thevendran, R., Hamdani, H. Y., Tang, T. H. & Citartan, M. In silico molecular docking in DNA aptamer development. Biochimie 180, 54–67 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Ross, J. S. et al. Correlation of primary tumor prostate-specific membrane antigen expression with disease recurrence in prostate cancer. Clin. Cancer Res. 9, 6357–6362 (2003).

    CAS  PubMed  Google Scholar 

  • Wernicke, A. G. et al. Prostate-specific membrane antigen expression in tumor-associated vasculature of breast cancers. APMIS 122, 482–489 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Evans, J. C., Malhotra, M., Cryan, J. F. & O’Driscoll, C. M. The therapeutic and diagnostic potential of the prostate specific membrane antigen/glutamate carboxypeptidase II (PSMA/GCPII) in cancer and neurological disease. Br. J. Pharmacol. https://doi.org/10.1111/bph.13576 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Nomura, N. et al. Prostate specific membrane antigen (PSMA) expression in primary gliomas and breast cancer brain metastases. Cancer Cell Int. 14, 26 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Boyacioglu, O., Stuart, C. H., Kulik, G. & Gmeiner, W. H. Dimeric DNA aptamer complexes for high-capacity-targeted drug delivery using pH-sensitive covalent linkages. Mol. Ther. Nucleic Acids 2, e107 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • Hinterwirth, H. et al. Comparative method evaluation for size and size-distribution analysis of gold nanoparticles. J. Sep. Sci. 36, 2952–2961 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Cassano, D., Rota Martir, D., Signore, G., Piazza, V. & Voliani, V. Biodegradable hollow silica nanospheres containing gold nanoparticle arrays. Chem. Commun. 51, 9939–9941 (2015).

    Article  CAS  Google Scholar 

  • Skeete, Z. et al. ‘Squeezed’ interparticle properties for plasmonic coupling and SERS characteristics of duplex DNA conjugated/linked gold nanoparticles of homo/hetero-sizes. Nanotechnology 27, 325706 (2016).

    Article  PubMed  Google Scholar 

  • Mauriz, E. Clinical applications of visual plasmonic colorimetric sensing. Sensors 20, 1–31 (2020).

    Article  Google Scholar 

  • Cassano, D., David, J., Luin, S. & Voliani, V. Passion fruit-like nanoarchitectures: A general synthesis route. Sci. Rep. 7, 1–9 (2017).

    Article  Google Scholar 

  • Li, Z., Wang, W. & Yin, Y. Colloidal assembly and active tuning of coupled plasmonic nanospheres. Trends Chem. 2, 593–608 (2020).

    Article  CAS  Google Scholar 

  • Kadkhodazadeh, S. et al. Scaling of the surface plasmon resonance in gold and silver dimers probed by EELS. J. Phys. Chem. C 118, 5478–5485 (2014).

    Article  CAS  Google Scholar 

  • Lee, J. H., Cho, H. Y., Choi, H. K., Lee, J. Y. & Choi, J. W. Application of gold nanoparticle to plasmonic biosensors. Int. J. Mol. Sci. 19, 2021 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Z., Yang, X., Lee, N. Z. & Cao, X. Multivalent aptamer approach: Designs, strategies, and applications. Micromachines 13, 1–17 (2022).

    Google Scholar 

  • Santi, M. et al. Rational design of a transferrin-binding peptide sequence tailored to targeted nanoparticle internalization. Bioconjug. Chem. 28, 471–480 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Mitchell, P. J. et al. Can urinary exosomes act as treatment response markers in prostate cancer?. J. Transl. Med. 7, 1–13 (2009).

    Article  Google Scholar 

  • Øverbye, A. et al. Identification of prostate cancer biomarkers in urinary exosomes. Oncotarget 6, 30357–30376 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Loynachan, C. N. et al. Renal clearable catalytic gold nanoclusters for in vivo disease monitoring. Nat. Nanotechnol. https://doi.org/10.1038/s41565-019-0527-6 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Zadeh, J. N. et al. NUPACK: Analysis and design of nucleic acid systems. J. Comput. Chem. 32, 170–173 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Antczak, M. et al. New functionality of RNAComposer: An application to shape the axis of miR160 precursor structure. Acta Biochim. Pol. 63, 737–744 (2016).

    CAS  PubMed  Google Scholar 

  • Phillips, J. C. et al. Scalable molecular dynamics on CPU and GPU architectures with NAMD. J. Chem. Phys. 153, 044130 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanommeslaeghe, K., Raman, E. P. & MacKerell, A. D. Automation of the CHARMM general force field (CGenFF) II: Assignment of bonded parameters and partial atomic charges. J. Chem. Inf. Model. 52, 3155–3168 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanommeslaeghe, K. & MacKerell, A. D. Automation of the CHARMM general force field (CGenFF) I: Bond perception and atom typing. J. Chem. Inf. Model. 52, 3144–3154 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Zundert, G. C. P. et al. The HADDOCK2.2 web server: User-friendly integrative modeling of biomolecular complexes. J. Mol. Biol. 428, 720–725 (2016).

    Article  PubMed  Google Scholar 

  • Bellucci, L., Corni, S., Di Felice, R. & Paci, E. The structure of neuronal calcium sensor-1 in solution revealed by molecular dynamics simulations. PLoS ONE 8, e74383 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).

    Article  ADS  CAS  Google Scholar 

  • Dirks, R. M., Bois, J. S., Schaeffer, J. M., Winfree, E. & Pierce, N. A. Thermodynamic analysis of interacting nucleic acid strands. SIAM Rev. 49, 65–88 (2007).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Schmid, F. Biological macromolecules: UV–visible spectrophotometry. In Encyclopedia of Life Sciences 1–4 (Wiley, 2001). https://doi.org/10.1038/npg.els.0003142