Antimicrobial activity and cytotoxic and epigenetic effects of tannic acid-loaded chitosan nanoparticles

  • Meram, E. et al. Evaluation of staging systems to predict prognosis in hepatocellular carcinoma patients treated with radioembolization. Heliyon 8, e08770 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang, A., Hallouch, O., Chernyak, V., Kamaya, A. & Sirlin, C. B. Epidemiology of hepatocellular carcinoma: target population for surveillance and diagnosis. Abdom. Radiol. (New York) 43, 13–25 (2018).

    Article 

    Google Scholar
     

  • Nagaraju, G. P., Dariya, B., Kasa, P. & Peela, S. El-Rayes, B. F. Epigenetics in hepatocellular carcinoma. Semin. Cancer Biol. 86, 622–632 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ashe, A., Colot, V. & Oldroyd, B. P. How does epigenetics influence the course of evolution? Philos. Trans. R. Soc. B Biol. Sci. 376, 20200111 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Li, D., Yang, Y., Li, Y., Zhu, X. & Li, Z. Epigenetic regulation of gene expression in response to environmental exposures: from bench to model. Sci. Total Environ. 776, 145998 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Y. & Sirard, M. A. Epigenetic inheritance of acquired traits through DNA methylation. Anim. Front. 11, 19–27 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, C. et al. Meta-analysis of DNA methylation biomarkers in hepatocellular carcinoma. Oncotarget 7, 81255–81267 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sarabi, M. M., Khorramabadi, R. M., Zare, Z. & Eftekhar, E. Polyunsaturated fatty acids and DNA methylation in colorectal cancer. World J. Clin. Cases 7, 4172–4185 (2019).

    Article 

    Google Scholar
     

  • Sarabi, M. M. & Naghibalhossaini, F. Association of DNA methyltransferases expression with global and gene-specific DNA methylation in colorectal cancer cells. Cell. Biochem. Funct. 33, 427–433 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fu, S., Debes, J. D. & Boonstra, A. DNA methylation markers in the detection of hepatocellular carcinoma. Eur. J. Cancer 191, 112960 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, Y. et al. DNA methylation and gene expression profiling reveal potential association of retinol metabolism related genes with hepatocellular carcinoma development. PeerJ 12, e17916 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghazi, T., Arumugam, T., Foolchand, A. & Chuturgoon, A. A. The impact of natural dietary compounds and food-borne mycotoxins on DNA methylation and cancer. Cells 9, 2004 (2020).

  • Nurgali, K., Jagoe, R. T., Abalo, R. & Editorial Adverse effects of cancer chemotherapy: anything new to improve tolerance and reduce sequelae? Front. Pharmacol. 9, 245 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abu-Darwish, M. S. & Efferth, T. Medicinal plants from near east for cancer therapy. Front. Pharmacol. 9, 302475 (2018).

    Article 

    Google Scholar
     

  • Ojo, M. A. Tannins in foods: nutritional implications and processing effects of hydrothermal techniques on underutilized hard-to-cook legume seeds-A review. Prev. Nutr. Food Sci. 27, 14–19 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghigo, G. et al. New insights into the protogenic and spectroscopic properties of commercial tannic acid: the role of gallic acid impurities. New J. Chem. 42, 7703–7712 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Baer-Dubowska, W., Szaefer, H. & Majchrzak-Celińska, A. Krajka-Kuźniak, V. Tannic acid: specific form of tannins in cancer chemoprevention and therapy-old and new applications. Curr. Pharmacol. Rep. 6, 28–37 (2020).

    Article 

    Google Scholar
     

  • Baldwin, A. & Booth, B. W. Biomedical applications of tannic acid. J. Biomater. Appl. 36, 1503–1523 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Türkan, F., Taslimi, P. & Saltan, F. Z. Tannic acid as a natural antioxidant compound: Discovery of a potent metabolic enzyme inhibitor for a new therapeutic approach in diabetes and Alzheimer’s disease. J. Biochem. Mol. Toxicol. 33, e22340 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Soyocak, A. et al. Tannic acid exhibits anti-inflammatory effects on formalin-induced paw edema model of inflammation in rats. Hum. Exp. Toxicol. 38, 1296–1301 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dong, G. et al. Antimicrobial and anti-biofilm activity of tannic acid against Staphylococcus aureus. Nat. Prod. Res. 32, 2225–2228 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, C., Lei, M., Andargie, M., Zeng, J. & Li, J. Antifungal activity and mechanism of action of tannic acid against Penicillium Digitatum. Physiol. Mol. Plant. Pathol. 107, 46–50 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Q. et al. Preparation of pectin-tannic acid coated core-shell nanoparticle for enhanced bioavailability and antihyperlipidemic activity of curcumin. Food Hydrocoll. 119, 106858 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Nagesh, P. K. B. et al. Tannic acid induces endoplasmic reticulum stress-mediated apoptosis in prostate cancer. Cancers (Basel) 10, 68 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bona, N. P. et al. Tannic acid elicits selective antitumoral activity in vitro and inhibits cancer cell growth in a preclinical model of glioblastoma multiforme. Metab. Brain Dis. 35, 283–293 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Carbonaro, M., Grant, G. & Pusztai, A. Evaluation of polyphenol bioavailability in rat small intestine. Eur. J. Nutr. 40, 84–90 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Talegaonkar, S. & Bhattacharyya, A. Potential of lipid nanoparticles (SLNs and NLCs) in enhancing oral bioavailability of drugs with poor intestinal permeability. AAPS PharmSciTech. 20, 121 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abbaszadeh, S. et al. Biocompatibility, cytotoxicity, antimicrobial and epigenetic effects of novel chitosan-based quercetin nanohydrogel in human cancer cells. Int. J. Nanomed. 15, 5963 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Jafernik, K. et al. Chitosan-based nanoparticles as effective drug delivery dystems-A review. Molecules 28, 1963 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pellá, M. C. G. et al. Chitosan-based hydrogels: from preparation to biomedical applications. Carbohydr. Polym. 196, 233–245 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Rashidipour, M. et al. Pectin/chitosan/tripolyphosphate nanoparticles: efficient carriers for reducing soil sorption, cytotoxicity, and mutagenicity of paraquat and enhancing its herbicide activity. J. Agric. Food Chem. 67, 5736–5745 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, W. et al. Chitosan derivatives and their application in biomedicine. Int. J. Mol. Sci. 21, 487 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghaderpoori, M. et al. Preparation and characterization of loaded paraquat- polymeric chitosan/xantan/tripolyphosphate nanocapsules and evaluation for controlled release. J. Environ. Heal Sci. Eng. 18, 1057–1066 (2020).

    Article 

    Google Scholar
     

  • Patil, P. & Killedar, S. Formulation and characterization of gallic acid and quercetin chitosan nanoparticles for sustained release in treating colorectal cancer. J. Drug Deliv. Sci. Technol. 63, 102523 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Rozman, N. A. S. et al. Homalomena pineodora essential oil nanoparticle inhibits diabetic wound pathogens. Sci. Rep. 10, 3307 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sionkowska, A., Kaczmarek, B., Gnatowska, M. & Kowalonek, J. The influence of UV-irradiation on Chitosan modified by the tannic acid addition. J. Photochem. Photobiol. B Biol. 148, 333–339 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Clinical and Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Approved standard—Ninth Edition. CLSI; M07-A9 (2012).

  • Sarabi, M. M. et al. The effects of dietary polyunsaturated fatty acids on miR-126 promoter DNA methylation status and VEGF protein expression in the colorectal cancer cells. Genes Nutr. 13, 32 (2018).

    Article 

    Google Scholar
     

  • Babaeenezhad, E., Rashidipour, M., Jangravi, Z., Sarabi, M. M. & Shahriary, A. Cytotoxic and epigenetic effects of berberine-loaded chitosan/pectin nanoparticles on AGS gastric cancer cells: role of the miR-185-5p/KLF7 axis, DNMTs, and global DNA methylation. Int. J. Biol. Macromol. 260, 129618 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2–∆∆CT method. Methods 25, 402–408 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Woźniak, E. et al. Glyphosate affects methylation in the promoter regions of selected tumor suppressors as well as expression of major cell cycle and apoptosis drivers in PBMCs (in vitro study). Toxicol. Vitro 63, 104736 (2020).

    Article 

    Google Scholar
     

  • Roy, S. et al. Tannic-acid-cross-linked and TiO2-nanoparticle-reinforced chitosan-based nanocomposite film. Polymers (Basel) 13, 1–18 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Liang, X. et al. Tannic acid-fortified zein-pectin nanoparticles: Stability, properties, antioxidant activity, and in vitro digestion. Food Res. Int. 145, 110425 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Özkan, S. A., Dedeoğlu, A., Karadaş Bakirhan, N. & Özkan, Y. Nanocarriers used most in drug delivery and drug release: Nanohydrogel, Chitosan, graphene, and solid lipid. Turk. J. Pharm. Sci. 16, 481–492 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhan, F. et al. Enhancement of antioxidant and antibacterial properties for tannin acid/chitosan/tripolyphosphate nanoparticles filled electrospinning films: surface modification of sliver nanoparticles. Int. J. Biol. Macromol. 104, 813–820 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bhattacharjee, S. DLS and Zeta potential – what they are and what they are not? J. Control Release 235, 337–351 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, D. & Huang, L. Role of cholesterol in the stability of pH-sensitive, large unilamellar liposomes prepared by the detergent-dialysis method. Biochim. Biophys. Acta 981, 254–260 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Garrido-Maestu, A. et al. Engineering of Chitosan-derived nanoparticles to enhance antimicrobial activity against foodborne pathogen Escherichia coli O157:H7. Carbohydr. Polym. 197, 623–630 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hosseini, S. F., Zandi, M., Rezaei, M. & Farahmandghavi, F. Two-step method for encapsulation of oregano essential oil in chitosan nanoparticles: Preparation, characterization and in vitro release study. Carbohydr. Polym. 95, 50–56 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kang, M. J., Park, S. H., Kang, M. H., Park, M. J. & Choi, Y. W. Folic acid-tethered pep-1 peptide-conjugated liposomal nanocarrier for enhanced intracellular drug delivery to cancer cells: conformational characterization and in vitro cellular uptake evaluation. Int. J. Nanomed. 8, 1155–1165 (2013).


    Google Scholar
     

  • Wu, Y., Yang, W., Wang, C., Hu, J. & Fu, S. Chitosan nanoparticles as a novel delivery system for ammonium glycyrrhizinate. Int. J. Pharm. 295, 235–245 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ashjari, M., Khoee, S. & Mahdavian, A. R. Controlling the morphology and surface property of magnetic/cisplatin-loaded nanocapsules via W/O/W double emulsion method. Colloids Surf. Physicochem. Eng. Asp. 408, 87–96 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Ashrafi, B. et al. Mentha Piperita essential oils loaded in a chitosan nanogel with inhibitory effect on biofilm formation against S. mutans on the dental surface. Carbohydr. Polym. 212, 142–149 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rashidipour, M. et al. Pectin/chitosan/tripolyphosphate encapsulation protects the rat lung from fibrosis and apoptosis induced by paraquat inhalation. Pestic Biochem. Physiol. 178, 104919 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rashidipour, M. et al. Encapsulation of Satureja Khuzistanica jamzad essential oil in chitosan nanoparticles with enhanced antibacterial and anticancer activities. Prep. Biochem. Biotechnol. 51, 971–978 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bhattacharyya, A. et al. Nanodiamond enhanced mechanical and biological properties of extrudable gelatin hydrogel cross-linked with tannic acid and ferrous sulphate. Biomater. Res. 26, 37 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ali, F. et al. Synthesis and characterization of metal nanoparticles templated chitosan-SiO2 catalyst for the reduction of nitrophenols and dyes. Carbohydr. Polym. 192, 217–230 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, J., Shu, Q., Niu, Y., Jiao, Y. & Chen, Q. Preparation, characterization, and antibacterial effects of chitosan nanoparticles embedded with essential oils synthesized in an ionic liquid containing system. J. Agric. Food Chem. 66, 7006–7014 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, B., Yu, X. C., Xu, S. F. & Xu, M. Paclitaxel and Etoposide co-loaded polymeric nanoparticles for the effective combination therapy against human osteosarcoma. J. Nanobiotechnol. 13, 1–11 (2015).

    Article 

    Google Scholar
     

  • Kumar, S. et al. Recent advances and remaining challenges for polymeric nanocomposites in healthcare applications. Prog. Polym. Sci. 80, 1–38 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Abyadeh, M., Zarchi, K., Faramarzi, A. A., Amani, A. & M. A. & Evaluation of factors affecting size and size distribution of chitosan-electrosprayed nanoparticles. Avicenna J. Med. Biotechnol. 9, 126–132 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hao, G., Xu, Z. P. & Li, L. Manipulating extracellular tumour pH: an effective target for cancer therapy. RSC Adv. 8, 22182–22192 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beyki, M. et al. Encapsulation of Mentha Piperita essential oils in chitosan-cinnamic acid nanogel with enhanced antimicrobial activity against aspergillus flavus. Ind. Crops Prod. 54, 310–319 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Lekshmi, N. P., Sumi, S. B., Viveka, S., Jeeva, S. & Brindha, J. R. Antibacterial activity of nanoparticles from Allium Sp. World J. Microbiol. Biotechnol. 2, 115–119 (2017).


    Google Scholar
     

  • Slavin, Y. N., Asnis, J., Häfeli, U. O. & Bach, H. Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J. Nanobiotechnol. 15, 65 (2017).

    Article 

    Google Scholar
     

  • Cavassin, E. D. et al. Comparison of methods to detect the in vitro activity of silver nanoparticles (AgNP) against multidrug resistant bacteria. J. Nanobiotechnol. 13, 64 (2015).

    Article 

    Google Scholar
     

  • Feng, Q. L. et al. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 52, 662–668 (2000).

    <a data-track="click_references" rel="nofollow noopener" data-track-label="10.1002/1097-4636(20001215)52:43.0.CO;2-3″ data-track-item_id=”10.1002/1097-4636(20001215)52:43.0.CO;2-3″ data-track-value=”article reference” data-track-action=”article reference” href=”https://doi.org/10.1002%2F1097-4636%2820001215%2952%3A4%3C662%3A%3AAID-JBM10%3E3.0.CO%3B2-3″ aria-label=”Article reference 67″ data-doi=”10.1002/1097-4636(20001215)52:43.0.CO;2-3″>Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, C. et al. Research progress of polyphenols in nanoformulations for antibacterial application. Mater. Today Bio 21, 100729 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Geng, N. et al. Tannic acid synergistically enhances the anticancer efficacy of cisplatin on liver cancer cells through mitochondria–mediated apoptosis. Oncol. Rep. 42, 2108–2116 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Ghaffarzadegan, R., Khoee, S. & Rezazadeh, S. Fabrication, characterization and optimization of berberine-loaded PLA nanoparticles using coaxial electrospray for sustained drug release. Daru 28, 237–252 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nag, S., Manna, K., Saha, K. & Das Tannic acid-stabilized gold nano-particles are superior to native tannic acid in inducing ROS-dependent mitochondrial apoptosis in colorectal carcinoma cells via the p53/AKT axis. RSC Adv. 9, 8025–8038 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Youness, R. A., Kamel, R., Elkasabgy, N. A., Shao, P. & Farag, M. A. Recent advances in tannic acid (gallotannin) anticancer activities and drug delivery systems for efficacy improvement; a comprehensive review. Molecules 25, 1486 (2021).

    Article 

    Google Scholar
     

  • Oh, B. K. et al. DNA methyltransferase expression and DNA methylation in human hepatocellular carcinoma and their clinicopathological correlation. Int. J. Mol. Med. 20, 65–73 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Song, Y. et al. Inhibition of DNMT3B expression in activated hepatic stellate cells overcomes chemoresistance in the tumor microenvironment of hepatocellular carcinoma. Sci. Rep. 14, 115 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weng, Y. P. et al. The inhibitory activity of gallic acid against DNA methylation: application of gallic acid on epigenetic therapy of human cancers. Oncotarget 9, 361–374 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Calvisi, D. F. et al. Mechanistic and prognostic significance of aberrant methylation in the molecular pathogenesis of human hepatocellular carcinoma. J. Clin. Investig. 117, 2713–2722 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Braghini, M. R. et al. Epigenetic remodelling in human hepatocellular carcinoma. J. Exp. Clin. Cancer Res. 41, 107 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar