Mutungi, C. et al. Physical quality of maize grain harvested and stored by smallholder farmers in the Northern Highlands of Tanzania: Effects of harvesting and pre-storage handling practices in two marginally contrasting agro-locations. J. Stored Prod. Res. 84, 101517 (2019).
Russo, M. L. et al. Effect of endophytic entomopathogenic fungi on soybean Glycine max (L.) Merr. growth and yield. J. King Saud. Univ. Sci. 31(4), 728–736 (2019).
Adetunji, M. C., Ezeokoli, O. T., Ngoma, L. & Mwanza, M. Phylogenetic diversity and prevalence of mycoflora in ready-to-eat supermarket and roadside-vended peanuts. Mycologia 113(1), 1–11 (2020).
Alshannaq, A. & Yu, J. H. Occurrence, toxicity, and analysis of major mycotoxins in food. Int. J. Environ. Res. Public Health 14, 6 (2017).
Roshan, A. B., Venkatesh, H. N. & Mohana, D. C. Chemical Characterization of Schefflera actinophylla (Endl.) harms essential oil: Antifungal and antimycotoxin activities for safe storage of food grains. J. Biol. Act. Prod. Nat. 11(1), 60–69 (2021).
Abhishek, R. U., Thippeswamy, S., Manjunath, K. & Mohana, D. C. Antifungal and antimycotoxigenic potency of Solanum torvum Swartz. leaf extract: Isolation and identification of compound active against mycotoxigenic strains of Aspergillus flavus and Fusarium verticillioides. J. Appl. Microbiol. 119(6), 1624–1636 (2015).
Tian, F. & Chun, H. S. Natural products for preventing and controlling aflatoxin contamination of food. Aflatoxin Control Anal. Detect. Heal. Risks 8, 13–44 (2017).
Thippeswamy, S., Abhishek, R. U., Manjunath, K., Raveesha, K. A. & Mohana, D. C. Antifumonisin efficacy of 2-hydroxy-4-methoxybenzaldehyde isolated from Decalepis hamiltonii. Int. J. Food Prop. 18(9), 2002–2008 (2015).
Adams, M. & Motarjemi, Y. Basic Food Safety for Health Workers World Health Organization Basic Food Safety for Health Workers (1999).
Ehrlich, K. C., Kobbeman, K., Montalbano, B. G. & Cotty, P. J. Aflatoxin-producing Aspergillus species from Thailand. Int. J. Food Microbiol. 114(2), 153–159 (2007).
Singh, P. & Cotty, P. J. Characterization of Aspergilli from Dried Red Chilies (Capsicum spp.): Insights into the Etiology of Aflatoxin Contamination, vol. 289 (2019).
Venkatesh, H. N. et al. Antifungal and antimycotoxigenic properties of chemically characterised essential oil of Boswellia serrata Roxb. ex Colebr. Int. J. Food Prop. 20(2), 1856–1868 (2017).
Ostry, V., Malir, F., Toman, J. & Grosse, Y. Mycotoxins as human carcinogens—The IARC Monographs classification. Mycotoxin Res. 33(1), 65–73 (2017).
Muhialdin, B. J., Saari, N. & Hussin, A. S. M. Review on the biological detoxification of mycotoxins using lactic acid bacteria to enhance the sustainability of foods supply. Molecules 25, 11 (2020).
Siahmoshteh, F., Hamidi-Esfahani, Z., Spadaro, D., Shams-Ghahfarokhi, M. & Razzaghi-Abyaneh, M. Unraveling the mode of antifungal action of Bacillus subtilis and Bacillus amyloliquefaciens as potential biocontrol agents against aflatoxigenic Aspergillus parasiticus. Food Control 89, 300–307 (2018).
Peles, F. et al. Biological control and mitigation of aflatoxin contamination in commodities. Toxins (Basel) 13(2), 1–19 (2021).
Rodriguez, H. et al. Degradation of ochratoxin a by Brevibacterium species. J. Agric. Food Chem. 59(19), 10755–10760 (2011).
Fuchs, E., Binder, E. M., Heidler, D. & Krska, R. Structural characterization of metabolites after the microbial degradation of type A trichothecenes by the bacterial strain BBSH 797. Food Addit. Contam. 19(4), 379–386 (2002).
Line, J., Brackett, R. & Willikinson, R. Evidence for degradation of aflatoxin B1 by Flavobacterium aurantiacum. J. Food Prot. 57, 788–791 (1994).
Alberts, J. F., Engelbrecht, Y., Steyn, P. S., Holzapfel, W. H. & van Zyl, W. H. Biological degradation of aflatoxin B1 by Rhodococcus erythropolis cultures. Int. J. Food Microbiol. 109(1–2), 121–126 (2006).
Hathout, A. & Abdel-Nasser, A. The efficiency of Saccharomyces cerevisiae as an antifungal and antimycotoxigenic agent. Biointerface Res. Appl. Chem. 13(4), 354 (2023).
Nasrollahzadeh, A., Mokhtari, S., Khomeiri, M. & Saris, P. Mycotoxin detoxification of food by lactic acid bacteria. Int. J. Food Contam. 9(1), 1–9 (2022).
Hathout, A. S. & Aly, S. E. Biological detoxification of mycotoxins: A review. Ann. Microbiol. 64(3), 905–919 (2014).
Schallmey, M., Singh, A. & Ward, O. P. Developments in the use of Bacillus species for industrial production. Can. J. Microbiol. 50(1), 1–17 (2004).
Abriouel, H., Franz, C. M. A. P., BenOmar, N. & Galvez, A. Diversity and applications of Bacillus bacteriocins. FEMS Microbiol. Rev. 35(1), 201–232 (2011).
Mondol, M. A. M., Shin, H. J. & Islam, M. T. Diversity of secondary metabolites from marine Bacillus species: Chemistry and biological activity. Mar. Drugs 11(8), 2846–2872 (2013).
Ren, X., Zhang, Q., Zhang, W., Mao, J. & Li, P. Control of aflatoxigenic molds by antagonistic microorganisms: Inhibitory behaviors, bioactive compounds, related mechanisms, and influencing factors. Toxins (Basel) 12(24), 1–21 (2020).
Monciardini, P., Iorio, M., Maffioli, S., Sosio, M. & Donadio, S. Discovering new bioactive molecules from microbial sources. Microb. Biotechnol. 7(3), 209–220 (2014).
Patridge, E., Gareiss, P., Kinch, M. S. & Hoyer, D. An analysis of FDA-approved drugs: Natural products and their derivatives. Drug Discov. Today 21(2), 204–207 (2016).
Abdel-Nasser, A., Hathout, A. S., Badr, A. N., Barakat, O. S. & Fathy, H. M. Extraction and characterization of bioactive secondary metabolites from lactic acid bacteria and evaluating their antifungal and antiaflatoxigenic activity. Biotechnol. Rep. 38(2022), e00799 (2023).
Hathout, A. S., Ghareeb, M. A., Abdel-Nasser, A. & Abu-Sree, Y. Saccharomyces cerevisiae bioactive metabolites: Characterization and biological activities. ChemistrySelect 9, 11 (2024).
Sakalauskas, S., Kačergius, A., Janušauskaite, D. & Čitavičius, D. Bacteria with a broad spectrum of antagonistic activity against pathogenic fungi of cereals. Zemdirbyste 101(2), 185–192 (2014).
Kim, Y. G. et al. Antagonistic activities of novel peptides from Bacillus amyloliquefaciens PT14 against Fusarium solani and Fusarium oxysporum. J. Agric. Food Chem. 63(48), 10380–10387 (2015).
Khan, N. et al. Antifungal activity of bacillus species against Fusarium and analysis of the potential mechanisms used in biocontrol. Front. Microbiol. 9, 1–12 (2018).
Stumbriene, K. et al. Screening of new bacterial isolates with antifungal activity and application of selected Bacillus sp. cultures for biocontrol of Fusarium graminearum under field conditions. Crop Prot. 113, 22–28 (2018).
Idiyatov, I. I., Eroshin, A. I., Yusupov, S. A., Tremasova, A. M. & Biryulya, V. V. Endophytic bacteria antagonists of the micromycete Aspergillus flavus: The prospect of improving the quality of food raw materials and food products. IOP Conf. Ser. Earth Environ. Sci. 949, 1 (2022).
Zhao, M., Liu, D., Liang, Z., Huang, K. & Wu, X. Antagonistic activity of Bacillus subtilis CW14 and its β-glucanase against Aspergillus ochraceus. Food Control 131, 108475 (2022).
Bizzini, A. et al. Matrix-assisted laser desorption ionization—Time of flight mass spectrometry as an alternative to 16S rRNA gene sequencing for identification of difficult-to-identify bacterial strains. J. Clin. Microbiol. 49(2), 693–696 (2011).
Rahi, P., Prakash, O. & Shouche, Y. S. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) based microbial identifications: Challenges and scopes for microbial ecologists. Front. Microbiol. 7, 1–12 (2016).
Stets, M. I. et al. Rapid identification of bacterial isolates from wheat roots by high-resolution whole cell MALDI-TOF MS analysis. J. Biotechnol. 165(3–4), 167–174 (2013).
Calderaro, A. et al. Identification of Borrelia species after creation of an in-house MALDI-TOF MS database. PLoS One 9, 2 (2014).
Gao, H., Xu, X., Dai, Y. & He, H. Isolation, identification, and characterization of Bacillus subtilis CF-3, a bacterium from fermented bean curd for controlling postharvest diseases of peach fruit. Food Sci. Technol. Res. 22(3), 377–385 (2016).
Gao, H., Xu, X., Zeng, Q. & Li, P. Optimization of headspace solid-phase microextraction for GC-MS analysis of volatile compounds produced by biocontrol strain Bacillus subtilis CF-3 using response surface methodology. Food Sci. Technol. Res. 23(4), 583–593 (2017).
Rajaofera, M. J. N. et al. Volatile organic compounds of Bacillus atrophaeus HAB-5 inhibit the growth of Colletotrichum gloeosporioides. Pestic. Biochem. Physiol. 156(February), 170–176 (2019).
He, C. N., Ye, W. Q., Zhu, Y. Y. & Zhou, W. W. Antifungal activity of volatile organic compounds produced by Bacillus methylotrophicus and Bacillus thuringiensis against five common spoilage fungi on loquats. Molecules 25, 3360 (2020).
Zhang, B. et al. High-cell-density culture enhances the antimicrobial and freshness effects of Bacillus subtilis S1702 on table grapes (Vitis vinifera cv. Kyoho). Food Chem. 286, 541–549 (2019).
Leelasuphakul, W., Hemmanee, P. & Chuenchitt, S. Growth inhibitory properties of Bacillus subtilis strains and their metabolites against the green mold pathogen (Penicillium digitatum Sacc.) of citrus fruit. Postharvest. Biol. Technol. 48(1), 113–121 (2008).
Sadiq, H. & Jamil, N. Antagonistic behaviour of organic compounds from Bacillus species and Brevundimonas species. Pak. J. Pharm. Sci. 31(3), 919–926 (2018).
Jangir, M., Pathak, R., Sharma, A., Sharma, S. & Sharma, S. Volatiles as strong markers for antifungal activity against Fusarium oxysporum f. sp. lycopersici. Indian Phytopathol. 72(4), 681–687 (2019).
Surya, M., Thiruvudainambi, S., Ebenezar, E. G., Vanniarajan, C. & Kumutha, K. GC-MS analysis of antimicrobial compounds produced by Bacillus spp. against rice sheath rot pathogen Sarocladium oryzae. J. Entomol. Zool. Stud. 8(1), 1417–1423 (2020).
Xu, M. et al. Antibiotic effects of volatiles produced by Bacillus tequilensis XK29 against the black spot disease caused by Ceratocystis fimbriata in postharvest sweet potato. J. Agric. Food Chem. 69(44), 13045–13054 (2021).
Yassein, A. S. & Elamary, R. B. Efficacy of soil paraburkholderia fungorum and Bacillus subtilis on the inhibition of Aspergillus niger growth and its ochratoxins production. Egypt. J. Bot. 61(1), 319–334 (2021).
Beres, C. & Ignacio Cabezudo, N. M. M. Metabolites of polyphenols produced by probiotic microorganisms and their beneficial effects on human health and intestinal microbiota. In Lactic Acid Bacteria A Functional Approach, 1st edn (2020).
Hassan, A. H. A. et al. Salinity stress enhances the antioxidant capacity of Bacillus and Planococcus species isolated from saline lake environment. Front. Microbiol. 11, 1–15 (2020).
Zhao, D. et al. Development and validation of an ultra-high performance liquid chromatography/triple quadrupole mass spectrometry method for analyzing microbial-derived grape polyphenol metabolites. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 1099, 34–45 (2018).
Huxley, R. R. & Neil, H. A. W. The relation between dietary flavonol intake and coronary heart disease mortality: A meta-analysis of prospective cohort studies. Eur. J. Clin. Nutr. 57, 904–908 (2003).
Huang, W.-Y., Cai, Y.-Z. & Zhang, Y. Natural phenolic compounds from medicinal herbs and dietary plants: Potential use for cancer prevention. Nutr. Cancer 62(1), 1–20 (2010).
Cheynier, V. Phenolic compounds: From plants to foods. Phytochem. Rev. 11(2–3), 153–177 (2012).
Lattanzio, V. Phenolic compounds: Introduction. In Natural Products: Phytochemistry, Botany and Metabolism of Alkaloids, Phenolics and Terpenes 1543–1580 (2013).
Weisskopf, L., Schulz, S. & Garbeva, P. Microbial volatile organic compounds in intra-kingdom and inter-kingdom interactions. Nat. Rev. Microbiol. 19(6), 391–404 (2021).
Hathout, A. et al. Novel Egyptian bacterial strains exhibiting antimicrobial and antiaflatoxigenic activity. J. Appl. Pharm. Sci. 6, 12 (2016).
Miljaković, D., Marinković, J. & Balešević-Tubić, S. The significance of Bacillus spp. In disease suppression and growth promotion of field and vegetable crops. Microorganisms 8(7), 1–19 (2020).
Ramírez, V. et al. Bacillus cereus MH778713 elicits tomato plant protection against Fusarium oxysporum. J. Appl. Microbiol. 132, 1–13 (2021).
Abdel-Wahhab, M. A. et al. Secondary metabolites from Bacillus sp. MERNA97 extract attenuates the oxidative stress, genotoxicity, and cytotoxicity of aflatoxin B1 in rats. Food Chem. Toxicol. 141, 111399 (2020).
Pereyra, M. L., Martínez, M. P., Petroselli, G., Balsells, R. & Cavaglieri, L. R. Antifungal and aflatoxin-reducing activity of extracellular compounds produced by soil Bacillus strains with potential application in agriculture. Food Control 85, 392–399 (2018).
Rao, K., Vipin, A. V., Hariprasad, P., Appaiah, K. A. & Venkateswaran, G. Biological detoxification of Aflatoxin B1 by Bacillus licheniformis CFR1. Food Control 71, 234–241 (2017).
Meyer, B. N. et al. Brine shrimp: A convenient general bioassay for active plant constituents. Planta Med. 45(1), 31–34 (1982).
Manilal, A., Sujith, S., Kiran, G. S., Selvin, J. & Shakir, C. Cytotoxic potentials of red alga, Laurencia brandenii collected from the indian coast. Glob. J. Pharmacol. 3(2), 90–94 (2009).
Haneen, A. I., Neihaya, H. Z. & Alhammar, A. Antibacterial, antibiofilm and anticancer activities of ethyl acetate extract of Bacillus spp. Int. J. Drug Deliv. Technol. 11(4), 1262–1268 (2021).
Ganguly, R. K., Midya, S. & Chakraborty, S. K. Antioxidant and anticancer roles of a novel strain of Bacillus anthracis isolated from vermicompost prepared from paper mill sludge. Biomed. Res. Int. 2018, 1–7 (2018).
Abdelghani, Z., Hourani, N., Zaidan, Z., Dbaibo, G. & Mrad, M. Therapeutic applications and biological activities of bacterial bioactive extracts. Arch. Microbiol. 203, 4755–4776 (2021).
Mehmood, M. A., Verma, P., Shah, M. P. & Betenbaugh, M. J. Pharmaceutical and Nutraceutical Potential of Cyanobacteria (Springer, 2024).
Abdel-Nasser, A. Maximizing the Benefits of Bacterial Metabolites as Biocontrol Agents Against Mycotoxigenic Fungi (Caio University, 2022).
Abdel-Nasser, A., Fathy, H. M., Badr, A. N., Hathout, A. S. & Barakat, O. S. M. Prevalence of aflatoxigenic fungi in cereal grains and their related chemical metabolites. Egypt. J. Chem. 65(10), 455–470 (2022).
Kumar, V., Jain, L., Jain, S. K., Chaturvedi, S. & Kaushal, P. Bacterial endophytes of rice (Oryza sativa L.) and their potential for plant growth promotion and antagonistic activities. S. Afr. J. Bot. 134, 50–63 (2020).
Juodeikiene, G. et al. Antifungal activity of lactic acid bacteria and their application for Fusarium mycotoxin reduction in malting wheat grains. LWT Food Sci. Technol. 89(2017), 307–314 (2018).
Sandle, T. Gram’s stain : History and explanation of the fundamental technique of determinative bacteriology. IST Sci. Technol. J. 54(2004), 3–4 (2004).
Dharmappa, D. C., Anokhe, A. & Kalia, V. Oxidase test: A biochemical methods in bacterial identification dharmappa. AgriCose Newsl. 3(1), 31–33 (2022).
Ashfaq, M. Y. et al. Isolation, identification and biodiversity of antiscalant degrading seawater bacteria using MALDI-TOF-MS and multivariate analysis. Sci. Total Environ. 656, 910–920 (2019).
Nisa, K., Rosyida, V. T., Nurhayati, S., Indrianingsih, A. W., Darsih, C. & Apriyana, W. Total phenolic contents and antioxidant activity of rice bran fermented with lactic acid bacteria. In IOP Conference Series: Earth and Environmental Science, vol. 251, no. 1 (2019).
Salman, M. et al. In vitro antimicrobial and antioxidant activities of lactobacillus coryniformis BCH-4 bioactive compounds and determination of their bioprotective effects on nutritional components of maize (Zea mays L.). Molecules 25, 4685 (2020).
Mims, C. W. Using electron microscopy to study plant pathogenic fungi. Mycologia 83(1), 1 (1991).
Gong, A. D. et al. Inhibitory effect of volatiles emitted from alcaligenes faecalis N1-4 on Aspergillus flavus and aflatoxins in storage. Front. Microbiol. 10, 1419 (2019).
Ghareeb, M. A. et al. Cytotoxic screening of three Egyptian plants using brine shrimp lethality test. Int. J. Pharm. Pharm. Sci. 7(9), 507–509 (2015).
Abd El-Rahman, A. A. A., Abd El-Aleem, I. M., Refahy, L. A. & El-Shazly, M. A. Total phenolic content, cytotoxic and antioxidant activities of Quisqualis indica (Linn.) growing in Egypt. Der Pharma Chem. 8(3), 53–59 (2016).
Ghareeb, M. A., Saad, A. M., Abdel-Aleem, A. H., Abdel-Aziz, M. S. & Hamed, M. M. Antioxidant, antimicrobial, cytotoxic activities and biosynthesis of silver & gold nanoparticles using Syzygium jambos leaves growing in Egypt. Der Pharma Chem. 8, 277–286 (2016).
Saad, A. M. et al. In vitro antioxidant, antimicrobial and cytotoxic activities and green biosynthesis of silver & gold nanoparticles using Callistemon citrinus leaf extract. J. Appl. Pharm. Sci. 7(6), 141–149 (2017).
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Immunol. Methods 65, 55–63 (1983).
- SEO Powered Content & PR Distribution. Get Amplified Today.
- PlatoData.Network Vertical Generative Ai. Empower Yourself. Access Here.
- PlatoAiStream. Web3 Intelligence. Knowledge Amplified. Access Here.
- PlatoESG. Carbon, CleanTech, Energy, Environment, Solar, Waste Management. Access Here.
- PlatoHealth. Biotech and Clinical Trials Intelligence. Access Here.
- Source: https://www.nature.com/articles/s41598-024-66700-y