Search
Close this search box.

Antifungal, antiaflatoxigenic, and cytotoxic properties of bioactive secondary metabolites derived from Bacillus species – Scientific Reports

  • Mutungi, C. et al. Physical quality of maize grain harvested and stored by smallholder farmers in the Northern Highlands of Tanzania: Effects of harvesting and pre-storage handling practices in two marginally contrasting agro-locations. J. Stored Prod. Res. 84, 101517 (2019).

    Article 

    Google Scholar
     

  • Russo, M. L. et al. Effect of endophytic entomopathogenic fungi on soybean Glycine max (L.) Merr. growth and yield. J. King Saud. Univ. Sci. 31(4), 728–736 (2019).

    Article 

    Google Scholar
     

  • Adetunji, M. C., Ezeokoli, O. T., Ngoma, L. & Mwanza, M. Phylogenetic diversity and prevalence of mycoflora in ready-to-eat supermarket and roadside-vended peanuts. Mycologia 113(1), 1–11 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Alshannaq, A. & Yu, J. H. Occurrence, toxicity, and analysis of major mycotoxins in food. Int. J. Environ. Res. Public Health 14, 6 (2017).

    Article 

    Google Scholar
     

  • Roshan, A. B., Venkatesh, H. N. & Mohana, D. C. Chemical Characterization of Schefflera actinophylla (Endl.) harms essential oil: Antifungal and antimycotoxin activities for safe storage of food grains. J. Biol. Act. Prod. Nat. 11(1), 60–69 (2021).

    CAS 

    Google Scholar
     

  • Abhishek, R. U., Thippeswamy, S., Manjunath, K. & Mohana, D. C. Antifungal and antimycotoxigenic potency of Solanum torvum Swartz. leaf extract: Isolation and identification of compound active against mycotoxigenic strains of Aspergillus flavus and Fusarium verticillioides. J. Appl. Microbiol. 119(6), 1624–1636 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tian, F. & Chun, H. S. Natural products for preventing and controlling aflatoxin contamination of food. Aflatoxin Control Anal. Detect. Heal. Risks 8, 13–44 (2017).


    Google Scholar
     

  • Thippeswamy, S., Abhishek, R. U., Manjunath, K., Raveesha, K. A. & Mohana, D. C. Antifumonisin efficacy of 2-hydroxy-4-methoxybenzaldehyde isolated from Decalepis hamiltonii. Int. J. Food Prop. 18(9), 2002–2008 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Adams, M. & Motarjemi, Y. Basic Food Safety for Health Workers World Health Organization Basic Food Safety for Health Workers (1999).

  • Ehrlich, K. C., Kobbeman, K., Montalbano, B. G. & Cotty, P. J. Aflatoxin-producing Aspergillus species from Thailand. Int. J. Food Microbiol. 114(2), 153–159 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Singh, P. & Cotty, P. J. Characterization of Aspergilli from Dried Red Chilies (Capsicum spp.): Insights into the Etiology of Aflatoxin Contamination, vol. 289 (2019).

  • Venkatesh, H. N. et al. Antifungal and antimycotoxigenic properties of chemically characterised essential oil of Boswellia serrata Roxb. ex Colebr. Int. J. Food Prop. 20(2), 1856–1868 (2017).

    CAS 

    Google Scholar
     

  • Ostry, V., Malir, F., Toman, J. & Grosse, Y. Mycotoxins as human carcinogens—The IARC Monographs classification. Mycotoxin Res. 33(1), 65–73 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Muhialdin, B. J., Saari, N. & Hussin, A. S. M. Review on the biological detoxification of mycotoxins using lactic acid bacteria to enhance the sustainability of foods supply. Molecules 25, 11 (2020).

    Article 

    Google Scholar
     

  • Siahmoshteh, F., Hamidi-Esfahani, Z., Spadaro, D., Shams-Ghahfarokhi, M. & Razzaghi-Abyaneh, M. Unraveling the mode of antifungal action of Bacillus subtilis and Bacillus amyloliquefaciens as potential biocontrol agents against aflatoxigenic Aspergillus parasiticus. Food Control 89, 300–307 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Peles, F. et al. Biological control and mitigation of aflatoxin contamination in commodities. Toxins (Basel) 13(2), 1–19 (2021).

    Article 

    Google Scholar
     

  • Rodriguez, H. et al. Degradation of ochratoxin a by Brevibacterium species. J. Agric. Food Chem. 59(19), 10755–10760 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fuchs, E., Binder, E. M., Heidler, D. & Krska, R. Structural characterization of metabolites after the microbial degradation of type A trichothecenes by the bacterial strain BBSH 797. Food Addit. Contam. 19(4), 379–386 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Line, J., Brackett, R. & Willikinson, R. Evidence for degradation of aflatoxin B1 by Flavobacterium aurantiacum. J. Food Prot. 57, 788–791 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alberts, J. F., Engelbrecht, Y., Steyn, P. S., Holzapfel, W. H. & van Zyl, W. H. Biological degradation of aflatoxin B1 by Rhodococcus erythropolis cultures. Int. J. Food Microbiol. 109(1–2), 121–126 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hathout, A. & Abdel-Nasser, A. The efficiency of Saccharomyces cerevisiae as an antifungal and antimycotoxigenic agent. Biointerface Res. Appl. Chem. 13(4), 354 (2023).

    CAS 

    Google Scholar
     

  • Nasrollahzadeh, A., Mokhtari, S., Khomeiri, M. & Saris, P. Mycotoxin detoxification of food by lactic acid bacteria. Int. J. Food Contam. 9(1), 1–9 (2022).

    Article 

    Google Scholar
     

  • Hathout, A. S. & Aly, S. E. Biological detoxification of mycotoxins: A review. Ann. Microbiol. 64(3), 905–919 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Schallmey, M., Singh, A. & Ward, O. P. Developments in the use of Bacillus species for industrial production. Can. J. Microbiol. 50(1), 1–17 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abriouel, H., Franz, C. M. A. P., BenOmar, N. & Galvez, A. Diversity and applications of Bacillus bacteriocins. FEMS Microbiol. Rev. 35(1), 201–232 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mondol, M. A. M., Shin, H. J. & Islam, M. T. Diversity of secondary metabolites from marine Bacillus species: Chemistry and biological activity. Mar. Drugs 11(8), 2846–2872 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ren, X., Zhang, Q., Zhang, W., Mao, J. & Li, P. Control of aflatoxigenic molds by antagonistic microorganisms: Inhibitory behaviors, bioactive compounds, related mechanisms, and influencing factors. Toxins (Basel) 12(24), 1–21 (2020).


    Google Scholar
     

  • Monciardini, P., Iorio, M., Maffioli, S., Sosio, M. & Donadio, S. Discovering new bioactive molecules from microbial sources. Microb. Biotechnol. 7(3), 209–220 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patridge, E., Gareiss, P., Kinch, M. S. & Hoyer, D. An analysis of FDA-approved drugs: Natural products and their derivatives. Drug Discov. Today 21(2), 204–207 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abdel-Nasser, A., Hathout, A. S., Badr, A. N., Barakat, O. S. & Fathy, H. M. Extraction and characterization of bioactive secondary metabolites from lactic acid bacteria and evaluating their antifungal and antiaflatoxigenic activity. Biotechnol. Rep. 38(2022), e00799 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Hathout, A. S., Ghareeb, M. A., Abdel-Nasser, A. & Abu-Sree, Y. Saccharomyces cerevisiae bioactive metabolites: Characterization and biological activities. ChemistrySelect 9, 11 (2024).

    Article 

    Google Scholar
     

  • Sakalauskas, S., Kačergius, A., Janušauskaite, D. & Čitavičius, D. Bacteria with a broad spectrum of antagonistic activity against pathogenic fungi of cereals. Zemdirbyste 101(2), 185–192 (2014).

    Article 

    Google Scholar
     

  • Kim, Y. G. et al. Antagonistic activities of novel peptides from Bacillus amyloliquefaciens PT14 against Fusarium solani and Fusarium oxysporum. J. Agric. Food Chem. 63(48), 10380–10387 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khan, N. et al. Antifungal activity of bacillus species against Fusarium and analysis of the potential mechanisms used in biocontrol. Front. Microbiol. 9, 1–12 (2018).

    Article 

    Google Scholar
     

  • Stumbriene, K. et al. Screening of new bacterial isolates with antifungal activity and application of selected Bacillus sp. cultures for biocontrol of Fusarium graminearum under field conditions. Crop Prot. 113, 22–28 (2018).

    Article 

    Google Scholar
     

  • Idiyatov, I. I., Eroshin, A. I., Yusupov, S. A., Tremasova, A. M. & Biryulya, V. V. Endophytic bacteria antagonists of the micromycete Aspergillus flavus: The prospect of improving the quality of food raw materials and food products. IOP Conf. Ser. Earth Environ. Sci. 949, 1 (2022).

    Article 

    Google Scholar
     

  • Zhao, M., Liu, D., Liang, Z., Huang, K. & Wu, X. Antagonistic activity of Bacillus subtilis CW14 and its β-glucanase against Aspergillus ochraceus. Food Control 131, 108475 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Bizzini, A. et al. Matrix-assisted laser desorption ionization—Time of flight mass spectrometry as an alternative to 16S rRNA gene sequencing for identification of difficult-to-identify bacterial strains. J. Clin. Microbiol. 49(2), 693–696 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rahi, P., Prakash, O. & Shouche, Y. S. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) based microbial identifications: Challenges and scopes for microbial ecologists. Front. Microbiol. 7, 1–12 (2016).

    Article 

    Google Scholar
     

  • Stets, M. I. et al. Rapid identification of bacterial isolates from wheat roots by high-resolution whole cell MALDI-TOF MS analysis. J. Biotechnol. 165(3–4), 167–174 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Calderaro, A. et al. Identification of Borrelia species after creation of an in-house MALDI-TOF MS database. PLoS One 9, 2 (2014).

    Article 

    Google Scholar
     

  • Gao, H., Xu, X., Dai, Y. & He, H. Isolation, identification, and characterization of Bacillus subtilis CF-3, a bacterium from fermented bean curd for controlling postharvest diseases of peach fruit. Food Sci. Technol. Res. 22(3), 377–385 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Gao, H., Xu, X., Zeng, Q. & Li, P. Optimization of headspace solid-phase microextraction for GC-MS analysis of volatile compounds produced by biocontrol strain Bacillus subtilis CF-3 using response surface methodology. Food Sci. Technol. Res. 23(4), 583–593 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Rajaofera, M. J. N. et al. Volatile organic compounds of Bacillus atrophaeus HAB-5 inhibit the growth of Colletotrichum gloeosporioides. Pestic. Biochem. Physiol. 156(February), 170–176 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He, C. N., Ye, W. Q., Zhu, Y. Y. & Zhou, W. W. Antifungal activity of volatile organic compounds produced by Bacillus methylotrophicus and Bacillus thuringiensis against five common spoilage fungi on loquats. Molecules 25, 3360 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, B. et al. High-cell-density culture enhances the antimicrobial and freshness effects of Bacillus subtilis S1702 on table grapes (Vitis vinifera cv. Kyoho). Food Chem. 286, 541–549 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leelasuphakul, W., Hemmanee, P. & Chuenchitt, S. Growth inhibitory properties of Bacillus subtilis strains and their metabolites against the green mold pathogen (Penicillium digitatum Sacc.) of citrus fruit. Postharvest. Biol. Technol. 48(1), 113–121 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Sadiq, H. & Jamil, N. Antagonistic behaviour of organic compounds from Bacillus species and Brevundimonas species. Pak. J. Pharm. Sci. 31(3), 919–926 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Jangir, M., Pathak, R., Sharma, A., Sharma, S. & Sharma, S. Volatiles as strong markers for antifungal activity against Fusarium oxysporum f. sp. lycopersici. Indian Phytopathol. 72(4), 681–687 (2019).

    Article 

    Google Scholar
     

  • Surya, M., Thiruvudainambi, S., Ebenezar, E. G., Vanniarajan, C. & Kumutha, K. GC-MS analysis of antimicrobial compounds produced by Bacillus spp. against rice sheath rot pathogen Sarocladium oryzae. J. Entomol. Zool. Stud. 8(1), 1417–1423 (2020).


    Google Scholar
     

  • Xu, M. et al. Antibiotic effects of volatiles produced by Bacillus tequilensis XK29 against the black spot disease caused by Ceratocystis fimbriata in postharvest sweet potato. J. Agric. Food Chem. 69(44), 13045–13054 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yassein, A. S. & Elamary, R. B. Efficacy of soil paraburkholderia fungorum and Bacillus subtilis on the inhibition of Aspergillus niger growth and its ochratoxins production. Egypt. J. Bot. 61(1), 319–334 (2021).


    Google Scholar
     

  • Beres, C. & Ignacio Cabezudo, N. M. M. Metabolites of polyphenols produced by probiotic microorganisms and their beneficial effects on human health and intestinal microbiota. In Lactic Acid Bacteria A Functional Approach, 1st edn (2020).

  • Hassan, A. H. A. et al. Salinity stress enhances the antioxidant capacity of Bacillus and Planococcus species isolated from saline lake environment. Front. Microbiol. 11, 1–15 (2020).

    Article 

    Google Scholar
     

  • Zhao, D. et al. Development and validation of an ultra-high performance liquid chromatography/triple quadrupole mass spectrometry method for analyzing microbial-derived grape polyphenol metabolites. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 1099, 34–45 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Huxley, R. R. & Neil, H. A. W. The relation between dietary flavonol intake and coronary heart disease mortality: A meta-analysis of prospective cohort studies. Eur. J. Clin. Nutr. 57, 904–908 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, W.-Y., Cai, Y.-Z. & Zhang, Y. Natural phenolic compounds from medicinal herbs and dietary plants: Potential use for cancer prevention. Nutr. Cancer 62(1), 1–20 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Cheynier, V. Phenolic compounds: From plants to foods. Phytochem. Rev. 11(2–3), 153–177 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Lattanzio, V. Phenolic compounds: Introduction. In Natural Products: Phytochemistry, Botany and Metabolism of Alkaloids, Phenolics and Terpenes 1543–1580 (2013).

  • Weisskopf, L., Schulz, S. & Garbeva, P. Microbial volatile organic compounds in intra-kingdom and inter-kingdom interactions. Nat. Rev. Microbiol. 19(6), 391–404 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hathout, A. et al. Novel Egyptian bacterial strains exhibiting antimicrobial and antiaflatoxigenic activity. J. Appl. Pharm. Sci. 6, 12 (2016).


    Google Scholar
     

  • Miljaković, D., Marinković, J. & Balešević-Tubić, S. The significance of Bacillus spp. In disease suppression and growth promotion of field and vegetable crops. Microorganisms 8(7), 1–19 (2020).

    Article 

    Google Scholar
     

  • Ramírez, V. et al. Bacillus cereus MH778713 elicits tomato plant protection against Fusarium oxysporum. J. Appl. Microbiol. 132, 1–13 (2021).


    Google Scholar
     

  • Abdel-Wahhab, M. A. et al. Secondary metabolites from Bacillus sp. MERNA97 extract attenuates the oxidative stress, genotoxicity, and cytotoxicity of aflatoxin B1 in rats. Food Chem. Toxicol. 141, 111399 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pereyra, M. L., Martínez, M. P., Petroselli, G., Balsells, R. & Cavaglieri, L. R. Antifungal and aflatoxin-reducing activity of extracellular compounds produced by soil Bacillus strains with potential application in agriculture. Food Control 85, 392–399 (2018).

    Article 

    Google Scholar
     

  • Rao, K., Vipin, A. V., Hariprasad, P., Appaiah, K. A. & Venkateswaran, G. Biological detoxification of Aflatoxin B1 by Bacillus licheniformis CFR1. Food Control 71, 234–241 (2017).

    Article 

    Google Scholar
     

  • Meyer, B. N. et al. Brine shrimp: A convenient general bioassay for active plant constituents. Planta Med. 45(1), 31–34 (1982).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Manilal, A., Sujith, S., Kiran, G. S., Selvin, J. & Shakir, C. Cytotoxic potentials of red alga, Laurencia brandenii collected from the indian coast. Glob. J. Pharmacol. 3(2), 90–94 (2009).


    Google Scholar
     

  • Haneen, A. I., Neihaya, H. Z. & Alhammar, A. Antibacterial, antibiofilm and anticancer activities of ethyl acetate extract of Bacillus spp. Int. J. Drug Deliv. Technol. 11(4), 1262–1268 (2021).


    Google Scholar
     

  • Ganguly, R. K., Midya, S. & Chakraborty, S. K. Antioxidant and anticancer roles of a novel strain of Bacillus anthracis isolated from vermicompost prepared from paper mill sludge. Biomed. Res. Int. 2018, 1–7 (2018).

    Article 

    Google Scholar
     

  • Abdelghani, Z., Hourani, N., Zaidan, Z., Dbaibo, G. & Mrad, M. Therapeutic applications and biological activities of bacterial bioactive extracts. Arch. Microbiol. 203, 4755–4776 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mehmood, M. A., Verma, P., Shah, M. P. & Betenbaugh, M. J. Pharmaceutical and Nutraceutical Potential of Cyanobacteria (Springer, 2024).

    Book 

    Google Scholar
     

  • Abdel-Nasser, A. Maximizing the Benefits of Bacterial Metabolites as Biocontrol Agents Against Mycotoxigenic Fungi (Caio University, 2022).


    Google Scholar
     

  • Abdel-Nasser, A., Fathy, H. M., Badr, A. N., Hathout, A. S. & Barakat, O. S. M. Prevalence of aflatoxigenic fungi in cereal grains and their related chemical metabolites. Egypt. J. Chem. 65(10), 455–470 (2022).


    Google Scholar
     

  • Kumar, V., Jain, L., Jain, S. K., Chaturvedi, S. & Kaushal, P. Bacterial endophytes of rice (Oryza sativa L.) and their potential for plant growth promotion and antagonistic activities. S. Afr. J. Bot. 134, 50–63 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Juodeikiene, G. et al. Antifungal activity of lactic acid bacteria and their application for Fusarium mycotoxin reduction in malting wheat grains. LWT Food Sci. Technol. 89(2017), 307–314 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Sandle, T. Gram’s stain : History and explanation of the fundamental technique of determinative bacteriology. IST Sci. Technol. J. 54(2004), 3–4 (2004).


    Google Scholar
     

  • Dharmappa, D. C., Anokhe, A. & Kalia, V. Oxidase test: A biochemical methods in bacterial identification dharmappa. AgriCose Newsl. 3(1), 31–33 (2022).


    Google Scholar
     

  • Ashfaq, M. Y. et al. Isolation, identification and biodiversity of antiscalant degrading seawater bacteria using MALDI-TOF-MS and multivariate analysis. Sci. Total Environ. 656, 910–920 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Nisa, K., Rosyida, V. T., Nurhayati, S., Indrianingsih, A. W., Darsih, C. & Apriyana, W. Total phenolic contents and antioxidant activity of rice bran fermented with lactic acid bacteria. In IOP Conference Series: Earth and Environmental Science, vol. 251, no. 1 (2019).

  • Salman, M. et al. In vitro antimicrobial and antioxidant activities of lactobacillus coryniformis BCH-4 bioactive compounds and determination of their bioprotective effects on nutritional components of maize (Zea mays L.). Molecules 25, 4685 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mims, C. W. Using electron microscopy to study plant pathogenic fungi. Mycologia 83(1), 1 (1991).

    Article 

    Google Scholar
     

  • Gong, A. D. et al. Inhibitory effect of volatiles emitted from alcaligenes faecalis N1-4 on Aspergillus flavus and aflatoxins in storage. Front. Microbiol. 10, 1419 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghareeb, M. A. et al. Cytotoxic screening of three Egyptian plants using brine shrimp lethality test. Int. J. Pharm. Pharm. Sci. 7(9), 507–509 (2015).


    Google Scholar
     

  • Abd El-Rahman, A. A. A., Abd El-Aleem, I. M., Refahy, L. A. & El-Shazly, M. A. Total phenolic content, cytotoxic and antioxidant activities of Quisqualis indica (Linn.) growing in Egypt. Der Pharma Chem. 8(3), 53–59 (2016).

    CAS 

    Google Scholar
     

  • Ghareeb, M. A., Saad, A. M., Abdel-Aleem, A. H., Abdel-Aziz, M. S. & Hamed, M. M. Antioxidant, antimicrobial, cytotoxic activities and biosynthesis of silver & gold nanoparticles using Syzygium jambos leaves growing in Egypt. Der Pharma Chem. 8, 277–286 (2016).

    CAS 

    Google Scholar
     

  • Saad, A. M. et al. In vitro antioxidant, antimicrobial and cytotoxic activities and green biosynthesis of silver & gold nanoparticles using Callistemon citrinus leaf extract. J. Appl. Pharm. Sci. 7(6), 141–149 (2017).

    CAS 

    Google Scholar
     

  • Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Immunol. Methods 65, 55–63 (1983).

    Article 
    CAS 

    Google Scholar