Antifungal activity of bio-active cell-free culture extracts and volatile organic compounds (VOCs) synthesised by endophytic fungal isolates of Garden Nasturtium – Scientific Reports

  • Ogunnigbo, O. et al. Exploring the antimicrobial stewardship educational needs of healthcare students and the potential of an antimicrobial prescribing app as an educational tool in selected African countries. Antibiotics 11(5), 691 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baddley, J. W., Stroud, T. P., Salzman, D. & Pappas, P. G. Invasive mold infections in allogeneic bone marrow transplant recipients. Clin. Infect. Dis. 32, 1319–1324 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roemer, T. & Krysan, D. J. Antifungal drug development: challenges, unmet clinical needs, and new approaches. Cold Spring Harb. Perspect. Med. 4, a019703–a019703 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pappas, P. G. et al. A prospective observational study of candidemia: epidemiology, therapy, and influences on mortality in hospitalized adult and pediatric patients. Clin. Infect. Dis. 37, 634–643 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Sardi, J. C. O., Scorzoni, L., Bernardi, T., Fusco-Almeida, A. M. & Mendes Giannini, M. J. S. Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. J. Med. Microbiol. 62, 10–24 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seneviratne, C. J. & Rosa, E. A. R. Editorial: Antifungal drug discovery: New theories and new therapies. Front. Microbiol. 7, 728 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Perfect, J. R. The antifungal pipeline: A reality check. Nat. Rev. Drug Discov. 16, 603–616 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kachroo, A. H. et al. Systematic humanization of yeast genes reveals conserved functions and genetic modularity. Science 1979(348), 921–925 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Chatterjee, S., Ghosh, R. & Mandal, N. C. Inhibition of biofilm- and hyphal- development, two virulent features of Candida albicans by secondary metabolites of an endophytic fungus Alternaria tenuissima having broad spectrum antifungal potential. Microbiol. Res. 232, 126386 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fanning, S. & Mitchell, A. P. Fungal biofilms. PLoS Pathog. 8, e1002585 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cragg, G. M. & Newman, D. J. Natural products: A continuing source of novel drug leads. Biochim. Biophys. Acta Gen. Subj. 1830, 3670–3695 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Arora, P., Ahmad, T., Farooq, S. & Riyaz-Ul-Hassan, S. Endophytes: A hidden treasure of novel antimicrobial metabolites. In Antibacterial Drug Discovery to Combat MDR 165–192 (Springer Singapore, 2019). https://doi.org/10.1007/978-981-13-9871-1_8.

  • Schulz, B., Wanke, U., Draeger, S. & Aust, H.-J. Endophytes from herbaceous plants and shrubs: effectiveness of surface sterilization methods. Mycol. Res. 97, 1447–1450 (1993).

    Article 

    Google Scholar
     

  • Santra, H. K. & Banerjee, D. Production, optimization, characterization and drought stress resistance by β-glucan-rich heteropolysaccharide from an endophytic fungi Colletotrichum alatae LCS1 isolated from clubmoss (Lycopodium clavatum). Front. Fungal Biol. 2, 796010 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Santra, H. K., Maity, S. & Banerjee, D. Production of bioactive compounds with broad spectrum bactericidal action, bio-film inhibition and antilarval potential by the secondary metabolites of the endophytic fungus Cochliobolus sp. APS1 isolated from the Indian medicinal herb Andrographis paniculata. Molecules 27, 1459 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rai, N. et al. Ethyl acetate extract of Colletotrichum gloeosporioides promotes cytotoxicity and apoptosis in human breast cancer cells. ACS Omega 8, 3768–3784 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Santra, H. K. & Banerjee, D. Production, optimisation and evaluation of plant growth promoting abilities of heteropolysaccharides isolated from endophytic fungi Mucor sp. HELF2. Front. Microbiol. 13, 5449 (2022).


    Google Scholar
     

  • Dal’Rio, I., Mateus, J. R. & Seldin, L. Unraveling the Tropaeolum majus L. (Nasturtium) root-associated bacterial community in search of potential biofertilizers. Microorganisms 10, 638 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gasparotto Junior, A. et al. Antihypertensive effects of isoquercitrin and extracts from Tropaeolum majus L.: Evidence for the inhibition of angiotensin converting enzyme. J. Ethnopharmacol. 134, 363–372 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jakubczyk, K., Janda, K., Watychowicz, K., Lukasiak, J. & Wolska, J. Garden nasturtium (Tropaeolum majus L.)-a source of mineral elements and bioactive compounds. Roczniki Państwowego Zakładu Higieny 69(2), 119 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Pena, L. C. et al. Muscodor brasiliensis sp. Nov. produces volatile organic compounds with activity against Penicillium digitatum. Microbiol. Res. 221, 28–35 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baiome, B. A. et al. Identification of volatile organic compounds produced by Xenorhabdus indica strain AB and investigation of their antifungal activities. Appl. Environ. Microbiol. 88(13), e00155-e222 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chatterjee, S., Kuang, Y., Splivallo, R., Chatterjee, P. & Karlovsky, P. Interactions among filamentous fungi Aspergillus niger, Fusarium verticillioides and Clonostachys rosea: fungal biomass, diversity of secreted metabolites and fumonisin production. BMC Microbiol. 16, 83–83. https://doi.org/10.1186/s12866-016-0698-3 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, J., Fei, Gu., Runian, Wu., Yang, JinKui & Zhang, K.-Q. Phylogenomic evolutionary surveys of subtilase superfamily genes in fungi. Sci. Rep. 7(1), 1–15 (2017).

    ADS 

    Google Scholar
     

  • Peng, Y. et al. Research progress on phytopathogenic fungi and their role as biocontrol agents. Front. Microbiol. 12, 1209 (2021).

    Article 

    Google Scholar
     

  • Sugden, R., Kelly, R. & Davies, S. Combatting antimicrobial resistance globally. Nat. Microbiol. 1, 16187 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Santra, H. K. & Banerjee, D. Bioactivity study and metabolic profiling of Colletotrichum alatae LCS1, an endophyte of club moss Lycopodium clavatum L. PLoS ONE 17, e0267302 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Biswas, K., Bhattarcharya, D., Saha, M., Mukherjee, J. & Karmakar, S. Evaluation of antimicrobial activity of the extract of Streptomyces euryhalinus isolated from the Indian Sundarbans. Arch Microbiol 204, 34 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kupferwasser, L. I. et al. Salicylic acid attenuates virulence in endovascular infections by targeting global regulatory pathways in Staphylococcus aureus. J. Clin. Investig. 112, 222–233 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schaller, M. et al. Secreted aspartic proteinase (Sap) activity contributes to tissue damage in a model of human oral candidosis. Mol. Microbiol. 34, 169–180 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Borg, M. & Rüchel, R. Expression of extracellular acid proteinase by proteolytic Candida spp. during experimental infection of oral mucosa. Infect. Immun. 56, 626–631 (1988).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chatterjee, S., Ghosh, S. & Mandal, N. C. Potential of an endophytic fungus Alternaria tenuissima PE2 isolated from Psidium guajava L. for the production of bioactive compounds. South Afr. J. Bot. 150, 658–670 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Santra, H. K. & Banerjee, D. Broad-spectrum antimicrobial action of cell-free culture extracts and volatile organic compounds produced by endophytic fungi Curvularia eragrostidis. Front. Microbiol. 13, 0561 (2022).

    Article 

    Google Scholar
     

  • Chatterjee, S., Ghosh, R. & Mandal, N. C. Production of bioactive compounds with bactericidal and antioxidant potential by endophytic fungus Alternaria alternata AE1 isolated from Azadirachta indica A. Juss. PLoS ONE 14, e0214744. https://doi.org/10.1371/journal.pone.0214744 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cavalheiro, M. & Teixeira, M. C. Candida biofilms: Threats, challenges, and promising strategies. Front. Med. 5, 28 (2018).

    Article 

    Google Scholar
     

  • Chowdhury, S., Ghosh, S. & Gond, S. K. Anti-MRSA and clot lysis activities of Pestalotiopsis microspora isolated from Dillenia pentagyna Roxb. J. Basic Microbiol. 63, 340–358 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Khan, M. S., Ahmad, I. & Cameotra, S. Phenyl aldehyde and propanoids exert multiple sites of action towards cell membrane and cell wall targeting ergosterol in Candida albicans. AMB Express 3, 54 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghannoum, M. A. & Rice, L. B. Antifungal agents: Mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clin. Microbiol. Rev. 12, 501–517 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, Y. et al. ERG3 and ERG11 genes are critical for the pathogenesis of Candida albicans during the oral mucosal infection. Int. J. Oral Sci. 10, 9 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bashir, A. et al. A secondary metabolite of Cercospora sp., associated with Rosa damascena Mill., inhibits proliferation, biofilm production, ergosterol synthesis and other virulence factors in Candida albicans. Microb. Ecol. 85, 1276–1287. https://doi.org/10.1007/s00248-022-02003-x (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Holmes, G. J. & Clark, C. A. First report of Geotrichum candidum as a pathogen of sweetpotato storage roots from flooded fields in North Carolina and Louisiana. Plant Dis. 86, 695–695 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Williamson, B., Tudzynski, B., Tudzynski, P. & van Kan, J. A. L. Botrytis cinerea: the cause of grey mould disease. Mol. Plant Pathol. 8, 561–580 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Verma, R. Biology and control of Rhizoctonia solani on rapeseed: A review. Phytoprotection 77, 99–111 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Agrios, G. N. Plant Pathology (Elsevier Academic Press, 2005).


    Google Scholar
     

  • Michielse, C. B. & Rep, M. Pathogen profile update: Fusarium oxysporum. Mol. Plant Pathol. 10, 311–324 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meena, M., Gupta, S. K., Swapnil, Z. & A., Dubey, M. K., and Upadhyay, R. S.,. Alternaria toxins: Potential virulence factors and genes related to pathogenesis. Front. Microbiol. 8, 1451. https://doi.org/10.3389/fmicb.2017.01451 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dagenais, T. R. T. & Keller, N. P. Pathogenesis of Aspergillus fumigatus in Invasive Aspergillosis. Clin. Microbiol. Rev. 22, 447–465 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Banerjee, D. et al. Muscodor albus strain GBA, an endophytic fungus of Ginkgo biloba from United States of America, produces volatile antimicrobials. Mycology 1, 179–186 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Banerjee, D., Pandey, A., Jana, M. & Strobel, G. Muscodor albus MOW12 an endophyte of Piper nigrum L. (Piperaceae) collected from North East India produces volatile antimicrobials. Indian J. Microbiol. 54, 27–32 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Singh, S. K. et al. An endophytic Phomopsis sp. possessing bioactivity and fuel potential with its volatile organic compounds. Microb. Ecol. 61, 729–739 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Strobel, G. et al. An endophytic/pathogenic Phoma sp. from creosote bush producing biologically active volatile compounds having fuel potential. FEMS Microbiol. Lett. 320, 87–94 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saxena, S. & Strobel, G. A. Marvellous Muscodor spp.: Update on their biology and applications. Microb. Ecol. 82, 5–20 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yeh, C. C., Wang, C. J., Chen, Y. J., Tsai, S. H. & Chung, W. H. Potential of a volatile-producing endophytic fungus Nodulisporium sp. PDL-005 for the control of Penicillium digitatum. Biol. Control 152, 1044 (2021).

    Article 

    Google Scholar
     

  • Oonmetta-Aree, J., Suzuki, T., Gasaluck, P. & Eumkeb, G. Antimicrobial properties and action of galangal (Alpinia galanga Linn.) on Staphylococcus aureus. LWT Food Sci. Technol. 39, 1214–1220. https://doi.org/10.1016/j.lwt.2005.06.015 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Bruce, A., Stewart, D., Verrall, S. & Wheatley, R. E. Effect of volatiles from bacteria and yeast on the growth and pigmentation of sapstain fungi. Int. Biodeterior Biodegrad. 51, 101–108. https://doi.org/10.1016/S0964-8305(02)00088-4 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Ye, X. et al. Biocidal effects of volatile organic compounds produced by the myxobacterium Corrallococcus sp. EGB against fungal phytopathogens. Food Microbiol. 91, 103502. https://doi.org/10.1016/j.fm.2020.103502 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bassam, S. E., Benhamou, N. & Carisse, O. The role of melanin in the antagonistic interaction between the apple scab pathogen Venturia inaequalis and Microsphaeropsis ochracea. Can J Microbiol 48, 349–358. https://doi.org/10.1139/w02-030 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Gupta, S., Kaul, S., Singh, B., Vishwakarma, R. A. & Dhar, M. K. Production of gentisyl alcohol from Phoma herbarum endophytic in Curcuma longa L. and its antagonistic activity towards leaf spot pathogen Colletotrichum gloeosporioides. Appl. Biochem. Biotechnol. 180, 1093–1109 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gupta, S. et al. Diversity and biological activity of fungal endophytes of Zingiber officinale Rosc. with emphasis on Aspergillus terreus as a biocontrol agent of its leaf spot. Biocatal. Agric. Biotechnol. 39, 102234 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Sharma, S., Gupta, S., Dhar, M. K. & Kaul, S. Diversity and bioactive potential of culturable fungal endophytes of medicinal shrub Berberis aristata DC.: A first report. Mycobiology 46, 370–381 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • White, T. J., Bruns, T., Lee, S. & Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications (eds Innis, M. H. et al.) 315–322 (Academic Press, 1990).


    Google Scholar
     

  • Bauer, A. W., Kirby, W. M., Sherris, J. C. & Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 45(4), 493–496 (1966).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Burton, K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem. J. 62, 315–323 (1956).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lowry, O. H., Rosenbrough, N. J., Farr, A. L. & Randall, R. J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 255–275. https://doi.org/10.1016/S0021-9258(19)52451-6 (1951).

    Article 

    Google Scholar
     

  • Mandal, N. C. & Chakrabartty, P. K. Succinate- mediated catabolic repression of enzymes of glucose metabolism in root- nodule bacteria. Curr. Microbiol. 26, 247–251 (1993).

    Article 

    Google Scholar
     

  • Ibrahim, H. R., Sugimoto, Y. & Aoki, T. Ovotransferrin antimicrobial peptide (OTAP-92) kills bacteria through a membrane damage mechanism. Biochim. Biophys. Acta 1523, 196–205 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Carlisle, P. L. & Kadosh, D. Candida albicans Ume6, a filament-specific transcriptional regulator, directs hyphal growth via a pathway involving Hgc1 cyclin-related protein. Eukaryot Cell 9, 1320–1328 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, L., Liao, K. & Wang, D. Effects of magnolol and honokiol on adhesion, yeast-hyphal transition, and formation of biofilm by Candida albicans. PLoS ONE 10, e0117695 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lorian, V. (ed.) Antibiotics in Laboratory Medicine (Lippincott Williams & Wilkins, 2005).


    Google Scholar
     

  • Jadhav, S., Shah, R., Bhave, M. & Palombo, E. A. Inhibitory activity of yarrow essential oil on Listeria planktonic cells and biofilms. Food Control 29, 125–130 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Orhan, G., Bayram, A., Zer, Y. & Balci, I. Synergy tests by E test and checkerboard methods of antimicrobial combinations against Brucella melitensis. J. Clin. Microbiol. 43, 140–143 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prinsloo, A., van Straten, A. M. S. & Weldhagen, G. F. Antibiotic synergy profiles of multidrug-resistant Pseudomonas aeruginosa in a nosocomial environment. South. Afr. J. Epidemiol. Infect. 23, 7–9 (2008).


    Google Scholar
     

  • Kaur, G., Balamurugan, P., Vasudevan, S., Jadav, S. & Princy, S. A. Antimicrobial and antibiofilm potential of acyclic amines and diamines against multi-drug resistant Staphylococcus aureus. Front. Microbiol. 8, 01767 (2017).

    Article 

    Google Scholar
     

  • Sundararaman, M., Rajesh Kumar, R., Venkatesan, P. & Ilangovan, A. 1-Alkyl-(N, N-dimethylamino)pyridinium bromides: inhibitory effect on virulence factors of Candida albicans and on the growth of bacterial pathogens. J. Med. Microbiol. 62, 241–248 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • da Rocha Neto, A. C., Maraschin, M. & Di Piero, R. M. Antifungal activity of salicylic acid against Penicillium expansum and its possible mechanisms of action. Int. J. Food Microbiol. 215, 64–70. https://doi.org/10.1016/j.ijfoodmicro.2015.08.018 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Paul, S., Dubey, R., Maheswari, D. & Kang, S. C. Trachyspermum ammi (L.) fruit essential oil influencing on membrane permeability and surface characteristics in inhibiting food-borne pathogens. Food Control 22, 725–731. https://doi.org/10.1016/j.foodcont.2010.11.003 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Pinkerton, F. & Strobel, G. Serinol as an activator of toxin production in attenuated cultures of Helminthosporium sacchari. Proc. Natl. Acad. Sci. 73, 4007–4011 (1976).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mitchell, A. M., Strobel, G. A., Moore, E., Robison, R. & Sears, J. Volatile antimicrobials from Muscodor crispans, a novel endophytic fungus. Microbiology 156, 270–277 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Park, M. S. et al. Potential of the volatile-producing fungus Nodulisporium sp. CF016 for the control of postharvest diseases of apple. Plant Pathol. J. 26(3), 253–259 (2010).

    Article 

    Google Scholar
     

  • Wang, Y., Yang, M.-H., Wang, X.-B., Li, T.-X. & Kong, L.-Y. Bioactive metabolites from the endophytic fungus Alternaria alternata. Fitoterapia 99, 153–158 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tomsheck, A. R. et al. Hypoxylon sp., an endophyte of Persea indica, producing 1,8-cineole and other bioactive volatiles with fuel potential. Microb. Ecol. 60, 903–914 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jemimah Naine, S., Subathra Devi, C., Mohanasrinivasan, V. & Vaishnavi, B. Bioactive potential of marine derived strain Streptomyces brasiliensis VITJS9 isolated from South East Coast of Tamil Nadu, India. Natl. Acad. Sci. Lett. 38, 221–224 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Wu, Y. et al. A new insight into 6-Pentyl-2H-pyran-2-one against Peronophythora litchii via TOR pathway. J. Fungi 9(8), 863 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Liu, M. et al. Comparative physiological and transcriptome analysis provide insights into the inhibitory effect of 6-pentyl-2H-pyran-2-one on Clarireedia jacksonii. Pestic. Biochem. Physiol. 193, 105456 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Calvo, H. et al. Antifungal activity of the volatile organic compounds produced by Bacillus velezensis strains against postharvest fungal pathogens. Postharvest Biol. Technol. 166, 111208 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Yang, X. et al. Two novel phenethylamine alkaloids from Streptomyces sp. YIM10049. Nat. Prod. Commun. 7(12), 1934 (2012).


    Google Scholar
     

  • Balogun, O. S., Ajayi, O. S. & Adeleke, A. J. Hexahydrofarnesyl acetone-rich extractives from Hildegardia barteri. J. Herbs Spices Med. Plants 23(4), 393–400 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Kumari, S. et al. GC-MS analysis, antioxidant and antifungal studies of different extracts of Chaetomium globosum isolated from Urginea indica. BioMed Res. Int. 2022, 1–12 (2022).

    Article 

    Google Scholar
     

  • Das, D. et al. Phytochemical constituents, antimicrobial properties and bioactivity of marine red seaweed (Kappaphycus alvarezii) and seagrass (Cymodocea serrulata). Foods 12(14), 2811 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Y. Y., Zheng, C. Z., Wang, L. & Xu, L. Synthesis, Crystal Structure and Antibacterial Activity of 4-Hydroxy-Benzaldehyde Benzoyl Hydrazone. Advanced Materials Research 893, 3–6 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Santra, H. K. & Banerjee, D. Antifungal activity of volatile and non-volatile metabolites of endophytes of Chloranthus elatior Sw. Front. Plant Sci. 14, 1156323 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ribeiro, L. S. et al. Volatile compounds for biotechnological applications produced during competitive interactions between yeasts and fungi. J. Basic Microbiol. 63, 658–667 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guluma, T., Babu, N., Teju, E. & Dekebo, A. Phytochemical investigation and evaluation of antimicrobial activities of Brucea antidysenterica leaves. Chem. Data Collect. 28, 100433 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Karrouchi, K. et al. Synthesis and pharmacological activities of pyrazole derivatives: A review. Molecules 23(1), 134 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tahri, D. et al. Biosynthesis and biological activities of carvone and carvotanacetone derivatives. Rev. Brasil. Farmacogn. 32(5), 708–723 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Spencer, P. V. D. et al. Chemical composition, antioxidant and antibacterial activities of essential oil from Cymbopogon densiflorus (Steud.) Stapf flowers. J. Essent. Oil Bearing Plants 24(1), 40–52 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Polatoğlu, K., Karakoç, Ö. C., Demirci, B. & Başer, K. H. C. Chemical composition and insecticidal activity of edible garland (Chrysanthemum coronarium L.) essential oil against the granary pest Sitophilus granarius L. (Coleoptera). J. Essent. Oil Res. 30(2), 120–130 (2018).

    Article 

    Google Scholar
     

  • Dalli, M. et al. Molecular composition and antibacterial effect of five essential oils extracted from Nigella sativa L. seeds against multidrug-resistant bacteria: a comparative study. Evid. Based Complement. Altern. Med. 2021(1), 9 (2021).


    Google Scholar
     

  • Szkudlarek, M., Heine, E., Keul, H., Beginn, U. & Möller, M. Synthesis, characterization, and antimicrobial properties of peptides mimicking copolymers of maleic anhydride and 4-methyl-1-pentene. Int. J. Mol. Sci. 19(9), 2617 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Petrović, J. et al. Individual stereoisomers of verbenol and verbenone express bioactive features. J. Mol. Struct. 1251, 131999 (2022).

    Article 

    Google Scholar
     

  • Lira, M. H. P. D. et al. Antimicrobial activity of geraniol: An integrative review. J. Essent. Oil Res. 32(3), 187–197 (2020).

    Article 
    CAS 

    Google Scholar