Search
Close this search box.

Analysis of endothelial progenitor cell subtypes as clinical biomarkers for elderly patients with ischaemic stroke – Scientific Reports

  • Feigin, V. L. et al. Global, regional, and national burden of stroke and its risk factors, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 20(10), 795–820. https://doi.org/10.1016/S1474-4422(21)00252-0 (2021).

    Article 
    CAS 

    Google Scholar
     

  • King, D. et al. The future incidence, prevalence and costs of stroke in the UK. Age Ageing 49(2), 277–282. https://doi.org/10.1093/ageing/afz163 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kadir, R. R. A. et al. Outgrowth endothelial cell conditioned medium negates TNF-α-evoked cerebral barrier damage: A reverse translational research to explore mechanisms. Stem Cell Rev. Rep. https://doi.org/10.1007/s12015-022-10439-4 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ya, J., Kadir, R. R. A. & Bayraktutan, U. Delay of endothelial cell senescence protects cerebral barrier against age-related dysfunction: Role of senolytics and senomorphics. Tissue Barriers 11, 2103353. https://doi.org/10.1080/21688370.2022.2103353 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, S. et al. Neuroprotection via matrix-trophic coupling between cerebral endothelial cells and neurons. Proc. Natl. Acad. Sci. USA 105(21), 7582–7587. https://doi.org/10.1073/pnas.0801105105 (2008).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kadir, R. R. A., Alwjwaj, M. & Bayraktutan, U. Treatment with outgrowth endothelial cells protects cerebral barrier against ischemic injury. Cytotherapy https://doi.org/10.1016/j.jcyt.2021.11.005 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Abdulkadir, R. R. et al. Outgrowth endothelial cells form a functional cerebral barrier and restore its integrity after damage. Neural Regen. Res. 15(6), 1071–1078. https://doi.org/10.4103/1673-5374.269029 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chambers, S. E. J. et al. Current concepts on endothelial stem cells definition, location, and markers. Stem Cells Transl. Med. 10(S2), S54–S61. https://doi.org/10.1002/sctm.21-0022 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alwjwaj, M., Kadir, R. R. A. & Bayraktutan, U. The secretome of endothelial progenitor cells: A potential therapeutic strategy for ischemic stroke. Neural Regen. Res. 16(8), 1483–1489. https://doi.org/10.4103/1673-5374.303012 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kadir, R. R. A. et al. Inhibition of oxidative stress delays senescence and augments functional capacity of endothelial progenitor cells. Brain Res. 1787, 147925. https://doi.org/10.1016/j.brainres.2022.147925 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kukumberg, M. et al. Characterization and functional assessment of endothelial progenitor cells in ischemic stroke patients. Stem Cell Rev. Rep. https://doi.org/10.1007/s12015-020-10064-z (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Höhn, A. et al. Happily (n)ever after: Aging in the context of oxidative stress, proteostasis loss and cellular senescence. Redox Biol. 11, 482–501. https://doi.org/10.1016/j.redox.2016.12.001 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Satoh, M. et al. Association between oxidative DNA damage and telomere shortening in circulating endothelial progenitor cells obtained from metabolic syndrome patients with coronary artery disease. Atherosclerosis 198(2), 347–353. https://doi.org/10.1016/j.atherosclerosis.2007.09.040 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rakkar, K. et al. Endothelial progenitor cells, potential biomarkers for diagnosis and prognosis of ischemic stroke: Protocol for an observational case-control study. Neural. Regen. Res. 15(7), 1300–1307. https://doi.org/10.4103/1673-5374.269028 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martinez-Majander, N. et al. Endothelial dysfunction is associated with early-onset cryptogenic ischemic stroke in men and with increasing age. J. Am. Heart Assoc. 10(14), e020838. https://doi.org/10.1161/JAHA.121.020838 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kadir, R. R. A., Alwjwaj, M. & Bayraktutan, U. MicroRNA: An emerging predictive, diagnostic, prognostic and therapeutic strategy in ischaemic stroke. Cell. Mol. Neurobiol. https://doi.org/10.1007/s10571-020-01028-5 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chang, E. I. et al. Age decreases endothelial progenitor cell recruitment through decreases in hypoxia-inducible factor 1α stabilization during ischemia. Circulation 116(24), 2818–2829. https://doi.org/10.1161/CIRCULATIONAHA.107.715847 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rakkar, K. et al. Evaluation of endothelial progenitor cell characteristics as clinical biomarkers for elderly patients with ischaemic stroke. Stem Cell Rev. Rep. https://doi.org/10.1007/s12015-023-10544-y (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chu, K. et al. Circulating endothelial progenitor cells as a new marker of endothelial dysfunction or repair in acute stroke. Stroke 39(5), 1441–1447. https://doi.org/10.1161/STROKEAHA.107.499236 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bayraktutan, U. Endothelial progenitor cells: Potential novel therapeutics for ischaemic stroke. Pharmacol. Res. 144, 181–191. https://doi.org/10.1016/j.phrs.2019.04.017 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Camps-Renom, P. et al. Endothelial progenitor cells count after acute ischemic stroke predicts functional outcome in patients with carotid atherosclerosis. J. Stroke Cerebrovasc. Dis. 30(12), 106144. https://doi.org/10.1016/j.jstrokecerebrovasdis.2021.106144 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Gardener, H. et al. Functional status at 30 and 90 days after mild ischaemic stroke. Stroke Vasc. Neurol. 7(5), 375–380. https://doi.org/10.1136/svn-2021-001333 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pelosi, E. et al. Identification of the hemangioblast in postnatal life. Blood 100(9), 3203–3208. https://doi.org/10.1182/blood-2002-05-1511 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Popa, E. R. et al. Circulating CD34+ progenitor cells modulate host angiogenesis and inflammation in vivo. J. Mol. Cell Cardiol. 41(1), 86–96. https://doi.org/10.1016/j.yjmcc.2006.04.021 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peichev, M. et al. Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood 95(3), 952–958 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rossi, E. et al. Human endothelial colony forming cells express intracellular CD133 that modulates their vasculogenic properties. Stem Cell Rev. Rep. 15(4), 590–600. https://doi.org/10.1007/s12015-019-09881-8 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abumiya, T. et al. Activated microvessels express vascular endothelial growth factor and integrin alpha(v)beta3 during focal cerebral ischemia. J. Cereb. Blood Flow Metab. 19(9), 1038–1050. https://doi.org/10.1097/00004647-199909000-00012 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Di Santo, S. et al. Novel cell-free strategy for therapeutic angiogenesis: In vitro generated conditioned medium can replace progenitor cell transplantation. PLoS ONE 4(5), e5643. https://doi.org/10.1371/journal.pone.0005643 (2009).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, T. N. et al. Differential regulation of thrombospondin-1 and thrombospondin-2 after focal cerebral ischemia/reperfusion. Stroke 34(1), 177–186. https://doi.org/10.1161/01.str.0000047100.84604.ba (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Skovseth, D. K. et al. Endostatin dramatically inhibits endothelial cell migration, vascular morphogenesis, and perivascular cell recruitment in vivo. Blood 105(3), 1044–1051. https://doi.org/10.1182/blood-2004-03-1164 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ji, W. R. et al. Characterization of kringle domains of angiostatin as antagonists of endothelial cell migration, an important process in angiogenesis. Faseb J. 12(15), 1731–1738. https://doi.org/10.1096/fasebj.12.15.1731 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, C. et al. Endostatin as a novel prognostic biomarker in acute ischemic stroke. Atherosclerosis 293, 42–48. https://doi.org/10.1016/j.atherosclerosis.2019.11.032 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abdullah, Z. & Bayraktutan, U. NADPH oxidase mediates TNF-α-evoked in vitro brain barrier dysfunction: Roles of apoptosis and time. Mol. Cell Neurosci. 61, 72–84. https://doi.org/10.1016/j.mcn.2014.06.002 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Allen, C. L. & Bayraktutan, U. Oxidative stress and its role in the pathogenesis of ischaemic stroke. Int. J. Stroke 4(6), 461–470. https://doi.org/10.1111/j.1747-4949.2009.00387.x (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ülker, S., McKeown, P. P. & Bayraktutan, U. Vitamins reverse endothelial dysfunction through regulation of eNOS and NAD(P)H oxidase activities. Hypertension 41(3), 534–539. https://doi.org/10.1161/01.HYP.0000057421.28533.37 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ulker, S. et al. Antioxidant vitamins C and E ameliorate hyperglycaemia-induced oxidative stress in coronary endothelial cells. Diabetes Obes. Metab. 6(6), 442–451. https://doi.org/10.1111/j.1462-8902.2004.00443.x (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He, T., Joyner, M. J. & Katusic, Z. S. Aging decreases expression and activity of glutathione peroxidase-1 in human endothelial progenitor cells. Microvasc. Res. 78(3), 447–452. https://doi.org/10.1016/j.mvr.2009.08.009 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Y. et al. Proteomic analysis of endothelial progenitor cells exposed to oxidative stress. Int. J. Mol. Med. 32(3), 607–614. https://doi.org/10.3892/ijmm.2013.1419 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, C. et al. MeCP2 mediated dysfunction in senescent EPCs. Oncotarget 8(45), 78289–78299 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xia, W. H. et al. Age-related decline in reendothelialization capacity of human endothelial progenitor cells is restored by shear stress. Hypertension 59(6), 1225–1231. https://doi.org/10.1161/HYPERTENSIONAHA.111.179820 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Capillo, M. et al. Continuous infusion of endostatin inhibits differentiation, mobilization, and clonogenic potential of endothelial cell progenitors. Clin. Cancer Res. 9(1), 377 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Meijles, D. N. et al. The matricellular protein TSP1 promotes human and mouse endothelial cell senescence through CD47 and Nox1. Sci. Signal. 10(501), 1784. https://doi.org/10.1126/scisignal.aaj1784 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Cun, Y. et al. Role of the stromal cell derived factor-1 in the biological functions of endothelial progenitor cells and its underlying mechanisms. Exp. Ther. Med. 21(1), 39. https://doi.org/10.3892/etm.2020.9471 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Churdchomjan, W. et al. Comparison of endothelial progenitor cell function in type 2 diabetes with good and poor glycemic control. BMC Endocr. Disord. 10(1), 5. https://doi.org/10.1186/1472-6823-10-5 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fadini, G. P. et al. Gender differences in endothelial progenitor cells and cardiovascular risk profile. Arterioscler. Thromb. Vasc. Biol. 28(5), 997–1004. https://doi.org/10.1161/ATVBAHA.107.159558 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deng, Y. et al. Mobilization of endothelial progenitor cell in patients with acute ischemic stroke. Neurol. Sci. 39(3), 437–443. https://doi.org/10.1007/s10072-017-3143-y (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Sahebkar, A. et al. Does statin therapy reduce plasma VEGF levels in humans? A systematic review and meta-analysis of randomized controlled trials. Metabolism 64(11), 1466–1476. https://doi.org/10.1016/j.metabol.2015.08.002 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sodha, N. R. et al. Endostatin and angiostatin are increased in diabetic patients with coronary artery disease and associated with impaired coronary collateral formation. Am. J. Physiol. Heart Circ. Physiol. 296(2), H428-434. https://doi.org/10.1152/ajpheart.00283.2008 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Latest Intelligence