An RNA editing strategy rescues gene duplication in a mouse model of MECP2 duplication syndrome and nonhuman primates

  • Guy, J., Cheval, H., Selfridge, J. & Bird, A. The role of MeCP2 in the brain. Annu. Rev. Cell Dev. Biol. 27, 631–652 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chao, H. T. & Zoghbi, H. Y. MeCP2: only 100% will do. Nat. Neurosci. 15, 176–177 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leonard, H., Cobb, S. & Downs, J. Clinical and biological progress over 50 years in Rett syndrome. Nat. Rev. Neurol. 13, 37–51 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Van Esch, H. et al. Duplication of the MECP2 region is a frequent cause of severe mental retardation and progressive neurological symptoms in males. Am. J. Hum. Genet. 77, 442–453 (2005).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lugtenberg, D. et al. Structural variation in Xq28: MECP2 duplications in 1% of patients with unexplained XLMR and in 2% of male patients with severe encephalopathy. Eur. J. Hum. Genet. 17, 444–453 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Takeguchi, R. et al. Early diagnosis of MECP2 duplication syndrome: insights from a nationwide survey in Japan. J. Neurol. Sci. 422, 117321 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pascual-Alonso, A., Martinez-Monseny, A. F., Xiol, C. & Armstrong, J. MECP2-related disorders in males. Int. J. Mol. Sci. 22, 9610 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shahbazian, M. D. & Zoghbi, H. Y. Rett syndrome and MeCP2: linking epigenetics and neuronal function. Am. J. Hum. Genet. 71, 1259–1272 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ramocki, M. B. & Zoghbi, H. Y. Failure of neuronal homeostasis results in common neuropsychiatric phenotypes. Nature 455, 912–918 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nageshappa, S. et al. Altered neuronal network and rescue in a human MECP2 duplication model. Mol. Psychiatry 21, 178–188 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marafi, D. et al. Spectrum and time course of epilepsy and the associated cognitive decline in MECP2 duplication syndrome. Neurology 92, e108–e114 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ak, M. et al. Assessing the burden on caregivers of MECP2 duplication syndrome. Pediatr. Neurol. 133, 1–8 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Peters, S. U. et al. Phenotypic features in MECP2 duplication syndrome: effects of age. Am. J. Med. Genet. A 185, 362–369 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shao, Y. et al. Antisense oligonucleotide therapy in a humanized mouse model of MECP2 duplication syndrome. Sci. Transl. Med. 13, eaaz7785 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sztainberg, Y. et al. Reversal of phenotypes in MECP2 duplication mice using genetic rescue or antisense oligonucleotides. Nature 528, 123–126 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, B. et al. Reversal of social recognition deficit in adult mice with MECP2 duplication via normalization of MeCP2 in the medial prefrontal cortex. Neurosci. Bull. 36, 570–584 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, C. et al. Programmable RNA editing with compact CRISPR-Cas13 systems from uncultivated microbes. Nat. Methods 18, 499–506 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kannan, S. et al. Compact RNA editors with small Cas13 proteins. Nat. Biotechnol. 40, 194–197 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tong, H. et al. High-fidelity Cas13 variants for targeted RNA degradation with minimal collateral effects. Nat. Biotechnol. 41, 108–119 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pacheco, N. L. et al. RNA sequencing and proteomics approaches reveal novel deficits in the cortex of Mecp2-deficient mice, a model for Rett syndrome. Mol. Autism 8, 56 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brito, D. V. C., Gulmez Karaca, K., Kupke, J., Frank, L. & Oliveira, A. M. M. MeCP2 gates spatial learning-induced alternative splicing events in the mouse hippocampus. Mol. Brain 13, 156 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Renthal, W. et al. Characterization of human mosaic Rett syndrome brain tissue by single-nucleus RNA sequencing. Nat. Neurosci. 21, 1670–1679 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gogliotti, R. G. et al. Total RNA sequencing of Rett syndrome autopsy samples identifies the M4 muscarinic receptor as a novel therapeutic target. J. Pharmacol. Exp. Ther. 365, 291–300 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heckman, L. D., Chahrour, M. H. & Zoghbi, H. Y. Rett-causing mutations reveal two domains critical for MeCP2 function and for toxicity in MECP2 duplication syndrome mice. eLife 3, e02676 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Collins, A. L. et al. Mild overexpression of MeCP2 causes a progressive neurological disorder in mice. Hum. Mol. Genet. 13, 2679–2689 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ramocki, M. B., Tavyev, Y. J. & Peters, S. U. The MECP2 duplication syndrome. Am. J. Med. Genet. A 152A, 1079–1088 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chahrour, M. et al. MeCP2, a key contributor to neurological disease, activates and represses transcription. Science 320, 1224–1229 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morikawa, M., Derynck, R. & Miyazono, K. TGF-β and the TGF-β family: context-dependent roles in cell and tissue physiology. Cold Spring Harb. Perspect. Biol. 8, a021873 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bajikar, S. S. et al. MeCP2 regulates Gdf11, a dosage-sensitive gene critical for neurological function. eLife 12, e83806 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 15, R29 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang da, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Huang da, W., Sherman, B. T. & Lempicki, R. A. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1–13 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Challis, R. C. et al. Systemic AAV vectors for widespread and targeted gene delivery in rodents. Nat. Protoc. 14, 379–414 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Torregrosa, T. et al. Use of CRISPR/Cas9-mediated disruption of CNS cell type genes to profile transduction of AAV by neonatal intracerebroventricular delivery in mice. Gene Ther. 28, 456–468 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Swiech, L. et al. In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nat. Biotechnol. 33, 102–106 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar