Search
Close this search box.

An in vitro assessment of the residual dentin after using three minimally invasive caries removal techniques – Scientific Reports

  • Bjorndal, L., Simon, S., Tomson, P. L. & Duncan, H. F. Management of deep caries and the exposed pulp. Int. Endo. J. 52(7), 949–973. https://doi.org/10.1111/iej.13128 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Lim, Z. E., Duncan, H. F., Moorthy, A. & McReynolds, D. Minimally invasive selective caries removal: A clinical guide. Br. Dent. J. 234(4), 233–240. https://doi.org/10.1038/s41415-023-5515-4 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ali, A. et al. Self-limiting versus conventional caries removal: A randomized clinical trial. J. Dent. Res. 97(11), 1207–1213. https://doi.org/10.1177/0022034518769255 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schwendicke, F., Frencken, J. & Innes, N. Caries Excavation: Evolution of Treating Cavitated Carious Lesions Vol. 27 (Karger Medical and Scientific Publishers, 2018).

    Book 

    Google Scholar
     

  • Ali, A., Almaroof, A., Festy, F., Banerjee, A. & Mannocci, F. In vitro remineralization of caries-affected dentin after selective carious tissue removal. World J. Dent. 9(3), 170–179. https://doi.org/10.5005/jp-journals-10015-1529 (2018).

    Article 

    Google Scholar
     

  • Prabhakar, A., Lokeshwari, M., Naik, S. V. & Yavagal, C. Efficacy of caries removal by Carie-Care and Erbium-doped Yttrium Aluminum Garnet Laser in primary molars: A scanning electron microscope study. Int. J. Clin. Pediatr. Dent. 11(4), 323–329. https://doi.org/10.5005/jp-journals-10005-1533 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rainey, J. T. Air abrasion: An emerging standard of care in conservative operative dentistry. Dent. Clin. North Am. 46, 185–209. https://doi.org/10.1016/S0011-8532(01)00011-8 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Koubi, S. & Tassery, H. Minimally invasive dentistry using sonic and ultra-sonic devices in ultraconservative Class 2 restorations. J. Contemp. Dent. Pract. 9, 155–165 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Soni, H. K., Sharma, A. & Sood, P. B. A comparative clinical study of various methods of caries removal in children. Eur. Arch. Paediatr. Dent. 16, 19–26. https://doi.org/10.1007/s40368-014-0140-1 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meyfarth, S., Cassano, K., Warol, F., de Deus Santos, M. & Scarparo, A. A new efficient agent to chemomechanical caries removal. Braz. Dent. J. 77, e1946. https://doi.org/10.18363/rbo.v77.2020.e1946 (2020).

    Article 

    Google Scholar
     

  • Neves, A. D. A., Coutinho, E., De Munck, J. & Van Meerbeek, B. Caries-removal effectiveness and minimal-invasiveness potential of caries-excavation techniques: A micro-CT investigation. J. Dent. 39, 154–162. https://doi.org/10.1016/j.jdent.2010.11.006 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Jingarwar, M. M., Bajwa, N. K. & Pathak, A. Minimal intervention dentistry-a new frontier in clinical dentistry. J. Clin. Diagn. Res. 8(7), ZE04 (2014).


    Google Scholar
     

  • Banerjee, A., Kidd, E. A. & Watson, T. F. In vitro evaluation of five alternative methods of carious dentine excavation. Caries Res. 34, 144–150. https://doi.org/10.1159/000016582 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tao, S. et al. Erbium laser technology vs traditional drilling for caries removal: A systematic review with meta-analysis. J. Evid.-Based Dent. Pr. 17(4), 324–334. https://doi.org/10.1016/j.jebdp.2017.05.004 (2017).

    Article 

    Google Scholar
     

  • Kinoshita, J. I., Kimura, Y. & Matsumoto, K. Comparative study of carious dentin removal by Er, Cr: YSGG laser and Carisolv. J. Clin. Laser Med. Surg. 21, 307–315. https://doi.org/10.1089/104454703322564532 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Alturki, M., Koller, G., Almhöjd, U. & Banerjee, A. Chemo-mechanical characterization of carious dentine using Raman microscopy and Knoop microhardness. R. Soc. Open Sci. 7, 200404. https://doi.org/10.1098/rsos.200404 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Al-Shareefi, S., Addie, A. & Al-Taee, L. Biochemical and mechanical analysis of occlusal and proximal carious lesions. Diagnostics 12(12), 2944. https://doi.org/10.3390/diagnostics12122944 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wachsmann-Hogiu, S., Weeks, T. & Huser, T. Chemical analysis in vivo and in vitro by Raman spectroscopy-from single cells to humans. Curr. Opin. Biotechnol. 20, 63–73. https://doi.org/10.1016/j.copbio.2009.02.006 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Júnior, Z. S. S. et al. Effect of papain-based gel on type I collagen-spectroscopy applied for microstructural analysis. Sci. Rep. 5, 1–7. https://doi.org/10.1038/srep11448 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Corrêa-Afonso, A. M. et al. CO2-lased enamel microhardness after brushing and cariogenic challenge. J. Biomed. Opt. 18(10), 108003–108003. https://doi.org/10.1117/1.JBO.18.10.108003 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pitts, N. B., Ekstrand, K. R. & Foundation, I. International Caries Detection and Assessment System (ICDAS) and its International Caries Classification and Management System (ICCMS)-methods for staging of the caries process and enabling dentists to manage caries. Community Dent. Oral. Epidemiol. 41, e41–e52. https://doi.org/10.1111/cdoe.12025 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alkhouli, M., Al Nesser, S., Bshara, N., AlMidani, A. & Comisi, J. Comparing the efficacies of two chemo-mechanical caries removal agents (2.25% sodium hypochlorite gel and brix 3000), in caries removal and patient cooperation: A randomized controlled clinical trial. J. Dent. 93, 103280. https://doi.org/10.1016/j.jdent.2020.103280 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fatma Dilsad, O. Z., Ergin, E., Attar, N. & Gurgan, S. Comparison of laser-and bur-prepared class I cavities restored with two different low-shrinkage composite resins: A randomized, controlled 60-month clinical trial. Clin. Oral. Investig. 24, 357–368. https://doi.org/10.1007/s00784-019-02931-y (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Innes, N. P. T. et al. Managing carious lesions: Consensus recommendations on terminology. Adv. Dent. Res. 28(2), 49–57. https://doi.org/10.1177/0022034516639276 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Al-Taee, L., Banerjee, A. & Deb, S. In-vitro adhesive and interfacial analysis of a phosphorylated resin polyalkenoate cement bonded to dental hard tissues. J. Dent. 118, 104050. https://doi.org/10.1016/j.jdent.2022.104050 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lussi, A. et al. Detection of approximal caries with a new laser fluorescence device. Caries Res. 40(2), 97–103. https://doi.org/10.1159/000091054 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Al-Hasan, R. M. & Al-Taee, L. A. Interfacial bond strength and morphology of sound and caries-affected dentin surfaces bonded to two resin-modified glass Ionomer cements. Oper. Dent. 47(4), E188–E196. https://doi.org/10.2341/21-048-L (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sadasiva, K. et al. Evaluation of the efficacy of visual, tactile method, caries detector dye, and laser fluorescence in removal of dental caries and confirmation by culture and polymerase chain reaction: An in vivo study. J. Pharm. Bioall. Sci. 11, S146. https://doi.org/10.4103/JPBS.JPBS_279_18 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Al-Qazzaz, S. & Hassan, A. Detection of early occlusal caries of the first permanent molar using different techniques (An in vivo study). J. Baghdad Coll. Dent. 31(1), 1–8. https://doi.org/10.2677/jbcd.v31i1.2570 (2019).

    Article 

    Google Scholar
     

  • Ástvaldsdóttir, A., Tranæus, S., Karlsson, L. & Peter Holbrook, W. DIAGNOdent measurements of cultures of selected oral bacteria and demineralized enamel. Acta. Odontol. Scand. 68, 148–153. https://doi.org/10.3109/00016350903567176 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Eberhard, J., Eisenbeiss, A. K., Braun, A., Hedderich, J. & Jepsen, S. Evaluation of selective caries removal by a fluorescence feedback-controlled Er: YAG laser in vitro. Caries Res. 39(6), 496–504. https://doi.org/10.1159/000088186 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Iwami, Y., Shimizu, A., Hayashi, M., Takeshige, F. & Ebisu, S. Relationship between colors of carious dentin and laser fluorescence evaluations in caries diagnosis. Dent. Mater. J. 25(3), 584–590. https://doi.org/10.4012/dmj.25.584 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Ntovas, P., Loubrinis, N., Maniatakos, P. & Rahiotis, C. Evaluation of dental explorer and visual inspection for the detection of residual caries among Greek dentists. J. Conserv. Dent. 21, 311–318. https://doi.org/10.4103/JCD.JCD_67_17 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Santos, T. M. L. et al. Comparison between conventional and chemomechanical approaches for the removal of carious dentin: An in vitro study. Sci. Rep. 10(1), 8127. https://doi.org/10.1038/s41598-020-65159-x (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maru, V. P., Shakuntala, B. S. & Nagarathna, C. Caries removal by chemomechanical (Carisolv™) vs. rotary drill: A systematic review. Open Dent. J. 9, 462. https://doi.org/10.2174/1874210601509010462 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ismail, M. M. & Haidar, A. H. Impact of Brix 3000 and conventional restorative treatment on pain reaction during caries removal among group of children in Baghdad city. J. Baghdad Coll. Dent. 31, 7–13. https://doi.org/10.26477/jbcd.v31i2.2617 (2019).

    Article 

    Google Scholar
     

  • Johar, S., Goswami, M., Kumar, G. & Dhillon, J. K. Caries removal by Er, Cr: YSGG laser and Air-rotor handpiece comparison in primary teeth treatment: an in vivo study Caries removal by Er, Cr: YSGG laser and Air-rotor handpiece. Laser Ther. 28(2), 116–122. https://doi.org/10.5978/islsm.28_19-OR-08 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Celiberti, P., Francescut, P. & Lussi, A. Performance of four dentine excavation methods in deciduous teeth. Caries Res. 40(2), 117–123. https://doi.org/10.1159/000091057 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shigetani, Y., Okamoto, A., Abu-Bakr, N. & Iwaku, M. A study of cavity preparation by Er: YAG laser observation of hard tooth structures by laser scanning microscope and examination of the time necessary to remove caries. Dent. Mater. J. 21(1), 20–21. https://doi.org/10.4012/dmj.21.20 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Almahdy, A. et al. Microbiochemical analysis of carious dentine using Raman and fluorescence spectroscopy. Caries Res. 46(5), 432–440. https://doi.org/10.1159/000339487 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mollica, F. B., Torres, C. R. G., Gonçalves, S. E. & Mancini, M. N. G. Dentine microhardness after different methods for detection and removal of carious dentine tissue. J. Appl. Oral Sci. 20, 449–454. https://doi.org/10.1590/S1678-77572012000400010 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hamama, H. H., Yiu, C. K. Y., Burrow, M. F. & King, N. M. Chemical, morphological and microhardness changes of dentine after chemomechanical caries removal. Aust. Dent. J. 58(3), 283–292. https://doi.org/10.1111/adj.12093 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Y. et al. The use of sodium trimetaphosphate as a biomimetic analog of matrix phosphoproteins for remineralization of artificial caries-like dentin. Dent. Mater. 27, 465–477. https://doi.org/10.1016/j.dental.2011.01.008 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Y., Yao, X., Liu, Y. W. & Wang, Y. A. Fourier transform infrared spectroscopy analysis of carious dentin from transparent zone to normal zone. Caries Res. 48, 320–329. https://doi.org/10.1159/000356868 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alturki, M., Almhöjd, U., Koller, G., Warburton, F. & Banerjee, A. In vitro analysis of organic ester functional groups in carious dentine. Appl. Sci. 12(3), 1088. https://doi.org/10.3390/app12031088 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Lopes, C. D., Limirio, P. H., Novais, V. R. & Dechichi, P. Fourier transform infrared spectroscopy (FTIR) application chemical characterization of enamel, dentin and bone. Appl. Spectrosc. Rev. 53, 747–769. https://doi.org/10.1080/05704928.2018.1431923 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nakornchai, S., Atsawasuwan, P., Kitamura, E., Surarit, R. & Yamauchi, M. Partial biochemical characterisation of collagen in carious dentin of human primary teeth. Arch. Oral Biol. 49(4), 267–273. https://doi.org/10.1016/j.archoralbio.2003.11.003 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pai, V. S. et al. Chemical analysis of dentin surfaces after Carisolv treatment. J. Conserv. Dent. 12(3), 118. https://doi.org/10.4103/0972-0707.57636 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hossain, M. et al. Dentinal composition and Knoop hardness measurements of cavity floor following carious dentin removal with Carisolv. Oper. Dent. 28, 346–351 (2003).

    PubMed 

    Google Scholar
     

  • Sakoolnamarka, R., Burrow, M. F., Swain, M. & Tyas, M. J. Microhardness and Ca: P ratio of carious and Carisolv™ treated caries-affected dentine using an ultra-micro-indentation system and energy dispersive analysis of x-rays—A pilot study. Aust. Dent. J. 50(4), 246–250. https://doi.org/10.1111/j.1834-7819.2005.tb00368.x (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yazici, A. R., Ozgunaltay, G. & Dayangac, B. A scanning electron microscopic study of different caries removal techniques on human dentin. Oper. Dent. 27, 360–366 (2002).

    PubMed 

    Google Scholar
     

  • Cardoso, M. V. et al. Influence of dentin cavity surface finishing on micro-tensile bond strength of adhesives. Dent. Mater. 24, 492–501. https://doi.org/10.1016/j.dental.2007.04.011 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Al-Badri, H., Al-Shammaree, S. A., Banerjee, A. & Al-Taee, L. A. The in-vitro development of novel enzyme-based chemo-mechanical caries removal agents. J. Dent. 138, 104714. https://doi.org/10.1016/j.jdent.2023.104714 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marotti, J. et al. Influence of etching with erbium, chromium:yttrium-scandium-gallium-garnet laser on microleakage of class V restoration. Lasers Med. Sci. 25(3), 325–329. https://doi.org/10.1007/s10103-008-0623-6 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Isolan, C. P., Sarkis-Onofre, R., Lima, G. S. & Moraes, R. R. Bonding to sound and caries-affected dentin: A systematic review and meta-analysis. J. Adhes. Dent. 20(1), 7–18 (2018).

    PubMed 

    Google Scholar