
Schneider, L. Alzheimer’s disease and other dementias: Update on research. Lancet Neurol. 16, 4–5 (2017).
Weuve, J., Hebert, L. E., Scherr, P. A. & Evans, D. A. Prevalence of Alzheimer disease in US states. Epidemiology 26, e4–6 (2015).
Zeng, H. M., Han, H. B., Zhang, Q. F. & Bai, H. Application of modern neuroimaging technology in the diagnosis and study of Alzheimer’s disease. Neural Regen. Res. 16, 73–79 (2021).
d’Abramo, C., D’Adamio, L. & Giliberto, L. Significance of blood and cerebrospinal fluid biomarkers for Alzheimer’s disease: Sensitivity, specificity and potential for clinical use. J. Pers. Med. 10, E116 (2020).
McKhann, G. M. et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 7, 263–269 (2011).
Jack, C. R. et al. Introduction to the recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 7, 257–262 (2011).
Blennow, K., Hampel, H., Weiner, M. & Zetterberg, H. Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat. Rev. Neurol. 6, 131–144 (2010).
Atri, A. The Alzheimer’s disease clinical spectrum: Diagnosis and management. Med. Clin. North. Am. 103, 263–293 (2019).
Davda, N. & Corkill, R. Biomarkers in the diagnosis and prognosis of Alzheimer’s disease. J. Neurol. 267, 2475–2477 (2020).
Hampel, H. et al. Core candidate neurochemical and imaging biomarkers of Alzheimer’s disease. Alzheimers Dement. 4, 38–48 (2008).
Bălașa, A. F., Chircov, C. & Grumezescu, A. M. Body fluid biomarkers for Alzheimer’s disease—an up-to-date overview. Biomedicines 8, 421 (2020).
Auso, E., Gomez-Vicente, V. & Esquiva, G. Biomarkers for Alzheimer’s disease early diagnosis. J. Pers. Med. 10, E114 (2020).
Van Cauwenberghe, C., Van Broeckhoven, C. & Sleegers, K. The genetic landscape of Alzheimer disease: Clinical implications and perspectives. Genet. Med. 18, 421–430 (2016).
Chung, S. J. et al. Alzheimer’s disease and Parkinson’s disease genome-wide association study top hits and risk of Parkinson’s disease in Korean population. Neurobiol. Aging 34, 2695e1–2695e7 (2013).
Khater, T. et al. Explainable machine learning model for Alzheimer detection using genetic data: A genome-wide association study approach. IEEE Access 12, 95091–95105 (2024).
Alatrany, A. S., Khan, W., Hussain, A., Kolivand, H. & Al-Jumeily, D. An explainable machine learning approach for Alzheimer’s disease classification. Sci. Rep. 14, 2637 (2024).
Askenazi, M. et al. Compilation of reported protein changes in the brain in Alzheimer’s disease. Nat. Commun. 14, 4466 (2023).
Alamro, H. et al. Exploiting machine learning models to identify novel Alzheimer’s disease biomarkers and potential targets. Sci. Rep. 13, 4979 (2023).
Wang, Y. et al. Integrative graph-based framework for predicting circRNA drug resistance using disease contextualization and deep learning. IEEE J. Biomed. Health Inf. (2024).
Ma, B. et al. Mechanisms of circRNA/lncRNA-miRNA interactions and applications in disease and drug research. Biomed. Pharmacother. 162, 114672 (2023).
Altshuler, D., Daly, M. J. & Lander, E. S. Genetic mapping in human disease. Science 322, 881–888 (2008).
Furney, S. J., Higgins, D. G., Ouzounis, C. A. & López-Bigas, N. Structural and functional properties of genes involved in human cancer. BMC Genom. 7, 3 (2006).
Li, Y. et al. A network-based, integrative approach to identify genes with aberrant co-methylation in colorectal cancer. Mol. Biosyst. 10, 180–190 (2014).
Ostlund, G., Lindskog, M. & Sonnhammer, E. L. L. Network-based identification of novel cancer genes. Mol. Cell. Proteom. 9, 648–655 (2010).
Kramarz, B. et al. Improving the gene ontology resource to facilitate more informative analysis and interpretation of Alzheimer’s disease data. Genes 9, 593 (2018).
Kramarz, B. et al. Gene ontology curation of neuroinflammation biology improves the interpretation of Alzheimer’s disease gene expression data. J. Alzheimers Dis. 75, 1417–1435 (2020).
Wang, Y. et al. Collaborative deep learning improves disease-related circRNA prediction based on multi-source functional information. Brief Bioinform 24, bbad069 (2023).
Mishra, P. J. The miRNA-drug resistance connection: A new era of personalized medicine using noncoding RNA begins. Pharmacogenomics 13, 1321–1324 (2012).
Jamal, S., Goyal, S., Shanker, A. & Grover, A. Integrating network, sequence and functional features using machine learning approaches towards identification of novel Alzheimer genes. BMC Genom. 17, 807 (2016).
Barman, R. K., Mukhopadhyay, A., Maulik, U. & Das, S. Identification of infectious disease-associated host genes using machine learning techniques. BMC Bioinform. 20, 736 (2019).
Liu, W. & Xie, H. Predicting potential cancer genes by integrating network properties, sequence features and functional annotations. Sci. China Life Sci. 56, 751–757 (2013).
Vanunu, O., Magger, O., Ruppin, E., Shlomi, T. & Sharan, R. Associating genes and protein complexes with disease via network propagation. PLoS Comput. Biol. 6, e1000641 (2010).
Pinero, J. et al. DisGeNET: A comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res. 45, D833–D839 (2017).
Davis, A. P. et al. The comparative Toxicogenomics Database’s 10th year anniversary: Update 2015. Nucleic Acids Res. 43, D914–920 (2015).
Welter, D. et al. The NHGRI GWAS catalog, a curated resource of SNP-trait associations. Nucleic Acids Res. 42, D1001–1006 (2014).
Landrum, M. J. et al. ClinVar: Public archive of interpretations of clinically relevant variants. Nucleic Acids Res. 44, D862–868 (2016).
UniProt Consortium. UniProt: A hub for protein information. Nucleic Acids Res. 43, D204–212 (2015).
Shimoyama, M. et al. The rat genome database 2015: Genomic, phenotypic and environmental variations and disease. Nucleic Acids Res. 43, D743–750 (2015).
Rath, A. et al. Representation of rare diseases in health information systems: The Orphanet approach to serve a wide range of end users. Hum. Mutat. 33, 803–808 (2012).
Becker, K. G., Barnes, K. C., Bright, T. J. & Wang, S. A. The genetic association database. Nat. Genet. 36, 431–432 (2004).
Bravo, À., Cases, M., Queralt-Rosinach, N., Sanz, F. & Furlong, L. I. A knowledge-driven approach to extract disease-related biomarkers from the literature. Biomed. Res. Int. 253128 (2014).
Bravo, À., Piñero, J., Queralt-Rosinach, N., Rautschka, M. & Furlong, L. I. extraction of relations between genes and diseases from text and large-scale data analysis: Implications for translational research. BMC Bioinform. 16, 55 (2015).
Eppig, J. T. et al. The Mouse Genome Database (MGD): Facilitating mouse as a model for human biology and disease. Nucleic Acids Res. 43, D726–736 (2015).
Bundschus, M., Dejori, M., Stetter, M., Tresp, V. & Kriegel, H. P. Extraction of semantic biomedical relations from text using conditional random fields. BMC Bioinform. 9, 207 (2008).
Huang, Y., Niu, B., Gao, Y., Fu, L. & Li, W. CD-HIT suite: A web server for clustering and comparing biological sequences. Bioinformatics 26, 680–682 (2010).
Chen, Z. et al. iFeature: A Python package and web server for features extraction and selection from protein and peptide sequences. Bioinformatics 34, 2499–2502 (2018).
Bhasin, M. & Raghava, G. P. S. Classification of nuclear receptors based on amino acid composition and dipeptide composition. J. Biol. Chem. 279, 23262–23266 (2004).
Shen, J. et al. Predicting protein-protein interactions based only on sequences information. Proc. Natl. Acad. Sci. U. S. A. 104, 4337–4341 (2007).
Cai, C. Z., Han, L. Y., Ji, Z. L., Chen, X. & Chen, Y. Z. SVM-Prot: Web-based support vector machine software for functional classification of a protein from its primary sequence. Nucleic Acids Res. 31, 3692–3697 (2003).
Dubchak, I., Muchnik, I., Holbrook, S. R. & Kim, S. H. Prediction of protein folding class using global description of amino acid sequence. Proc. Natl. Acad. Sci. U. S. A. 92, 8700–8704 (1995).
Chou, K. C. Prediction of protein subcellular locations by incorporating quasi-sequence-order effect. Biochem. Biophys. Res. Commun. 278, 477–483 (2000).
Chou, K. C. Prediction of protein cellular attributes using pseudo-amino acid composition. Proteins 43, 246–255 (2001).
Shannon, P. et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).
Assenov, Y., Ramírez, F., Schelhorn, S. E., Lengauer, T. & Albrecht, M. Computing topological parameters of biological networks. Bioinformatics 24, 282–284 (2008).
Basith, S., Manavalan, B., Shin, H., Lee, G. & T. & Machine intelligence in peptide therapeutics: A next-generation tool for rapid disease screening. Med. Res. Rev. 40, 1276–1314 (2020).
Chen, Z. et al. Large-scale comparative assessment of computational predictors for lysine post-translational modification sites. Brief. Bioinform. 20, 2267–2290 (2019).
Manavalan, B., Basith, S., Shin, T. H., Wei, L. & Lee, G. AtbPpred: A robust sequence-based prediction of anti-tubercular peptides using extremely randomized trees. Comput. Struct. Biotechnol. J. 17, 972–981 (2019).
Chen, T., Guestrin, C. & XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 785–794 (Association for Computing Machinery, 2016). https://doi.org/10.1145/2939672.2939785
Jia, C. et al. PASSION: An ensemble neural network approach for identifying the binding sites of RBPs on circRNAs. Bioinformatics 36, 4276–4282 (2020).
Yu, J., Shi, S., Zhang, F., Chen, G. & Cao, M. PredGly: Predicting lysine glycation sites for Homo sapiens based on XGboost feature optimization. Bioinformatics 35, 2749–2756 (2019).
Hasan, M. M. et al. Meta-i6mA: An interspecies predictor for identifying DNA N6-methyladenine sites of plant genomes by exploiting informative features in an integrative machine-learning framework. Brief Bioinform. 22 (2021).
Niu, M. et al. CirRNAPL: A web server for the identification of circRNA based on extreme learning machine. Comput. Struct. Biotechnol. J. 18, 834–842 (2020).
Bertram, L., McQueen, M. B., Mullin, K., Blacker, D. & Tanzi, R. E. Systematic meta-analyses of Alzheimer disease genetic association studies: The AlzGene database. Nat. Genet. 39, 17–23 (2007).
Leinonen, R. et al. The European nucleotide archive. Nucleic Acids Res. 39, D28–D31 (2011).
Kim, D., Langmead, B. & Salzberg, S. L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).
Anders, S., Pyl, P. T. & Huber, W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).
Pao, P. C. et al. HDAC1 modulates OGG1-initiated oxidative DNA damage repair in the aging brain and Alzheimer’s disease. Nat. Commun. 11, 2484 (2020).
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).
Magistri, M., Velmeshev, D., Makhmutova, M. & Faghihi, M. A. Transcriptomics profiling of Alzheimer’s disease reveal neurovascular defects, altered amyloid-β homeostasis, and deregulated expression of long noncoding RNAs. J. Alzheimers Dis. 48, 647–665 (2015).
Hanna, R., Flamier, A., Barabino, A. & Bernier, G. G-quadruplexes originating from evolutionary conserved L1 elements interfere with neuronal gene expression in Alzheimer’s disease. Nat. Commun. 12, 1828 (2021).
van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008).
Li, F. et al. Computational prediction and interpretation of both general and specific types of promoters in Escherichia coli by exploiting a stacked ensemble-learning framework. Brief. Bioinform. 22, 2126–2140 (2021).
Elbasir, A. et al. BCrystal: An interpretable sequence-based protein crystallization predictor. Bioinformatics 36, 1429–1438 (2020).
Yu, B. et al. SubMito-XGBoost: Predicting protein submitochondrial localization by fusing multiple feature information and eXtreme gradient boosting. Bioinformatics 36, 1074–1081 (2020).
Wang, Y. et al. prPred: A predictor to identify Plant Resistance proteins by incorporating k-Spaced amino acid (Group) pairs. Front. Bioeng. Biotechnol. 8 (2021).
Galindez, G., Sadegh, S., Baumbach, J., Kacprowski, T. & List, M. Network-based approaches for modeling disease regulation and progression. Comput. Struct. Biotechnol. J. 21, 780–795 (2023).
Qiang, X. et al. CPPred-FL: A sequence-based predictor for large-scale identification of cell-penetrating peptides by feature representation learning. Brief. Bioinform. https://doi.org/10.1093/bib/bby091 (2018).
Yadav, A. K., Singla, D. & VacPred Sequence-based prediction of plant vacuole proteins using machine-learning techniques. J. Biosci. 45, 106 (2020).
Yadav, A. K., Gupta, P. K. & Singh, T. R. PMTPred: machine-learning-based prediction of protein methyltransferases using the composition of k-spaced amino acid pairs. Mol. Divers. 28, 2301–2315 (2024).
Huang, X. et al. Revealing Alzheimer’s disease genes spectrum in the whole-genome by machine learning. BMC Neurol. 18, 5 (2018).
- SEO Powered Content & PR Distribution. Get Amplified Today.
- PlatoData.Network Vertical Generative Ai. Empower Yourself. Access Here.
- PlatoAiStream. Web3 Intelligence. Knowledge Amplified. Access Here.
- PlatoESG. Carbon, CleanTech, Energy, Environment, Solar, Waste Management. Access Here.
- PlatoHealth. Biotech and Clinical Trials Intelligence. Access Here.
- Source: https://www.nature.com/articles/s41598-024-82208-x