Search
Close this search box.

Allogeneic umbilical cord blood-derived mesenchymal stem cell implantation versus microdrilling combined with high tibial osteotomy for cartilage regeneration – Scientific Reports

  • Biant, L. C., McNicholas, M. J., Sprowson, A. P. & Spalding, T. The surgical management of symptomatic articular cartilage defects of the knee: consensus statements from United Kingdom knee surgeons. Knee 22, 446–449 (2015).

    PubMed 

    Google Scholar
     

  • Seo, S. S., Kim, C. W. & Jung, D. W. Management of focal chondral lesion in the knee joint. Knee. Surg. Relat. Res. 23, 185–196 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Onoi, Y. et al. Second-look arthroscopic findings and clinical outcomes after adipose-derived regenerative cell injection in knee osteoarthritis. Clin. Orthop. Surg. 14, 377–385 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mina, C., Garrett, W. E. Jr., Pietrobon, R., Glisson, R. & Higgins, L. High tibial osteotomy for unloading osteochondral defects in the medial compartment of the knee. Am. J. Sports Med. 36, 949–955 (2008).

    PubMed 

    Google Scholar
     

  • Choi, H. U., Kim, D. H., Lee, S. W., Choi, B. C. & Bae, K. C. Comparison of lower-limb alignment in patients with advanced knee osteoarthritis: EOS biplanar stereoradiography versus conventional scanography. Clin. Orthop. Surg. 14, 370–376 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Agneskirchner, J. D., Hurschler, C., Wrann, C. D. & Lobenhoffer, P. The effects of valgus medial opening wedge high tibial osteotomy on articular cartilage pressure of the knee: a biomechanical study. Arthroscopy 23, 852–861 (2007).

    PubMed 

    Google Scholar
     

  • Bode, G. et al. A non-randomized controlled clinical trial on autologous chondrocyte implantation (ACI) in cartilage defects of the medial femoral condyle with or without high tibial osteotomy in patients with varus deformity of less than 5°. Arch. Orthop. Trauma Surg. 133, 43–49 (2013).

    PubMed 

    Google Scholar
     

  • Kang, B. Y., Lee, D. K., Kim, H. S. & Wang, J. H. How to achieve an optimal alignment in medial opening wedge high tibial osteotomy?. Knee. Surg. Relat. Res. 34, 3 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amendola, A. & Bonasia, D. E. Results of high tibial osteotomy: review of the literature. Int. Orthop. 34, 155–160 (2010).

    PubMed 

    Google Scholar
     

  • Gstöttner, M., Pedross, F., Liebensteiner, M. & Bach, C. Long-term outcome after high tibial osteotomy. Arch. Orthop. Trauma Surg. 128, 111–115 (2008).

    PubMed 

    Google Scholar
     

  • Hui, C. et al. Long-term survival of high tibial osteotomy for medial compartment osteoarthritis of the knee. Am. J. Sports Med. 39, 64–70 (2011).

    PubMed 

    Google Scholar
     

  • Song, I. S. & Kwon, J. Analysis of changes in tibial torsion angle on open-wedge high tibial osteotomy depending on the osteotomy level. Knee. Surg. Relat. Res. 34, 17 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ollivier, B., Berger, P., Depuydt, C. & Vandenneucker, H. Good long-term survival and patient-reported outcomes after high tibial osteotomy for medial compartment osteoarthritis. Knee. Surg. Sports Traumatol. Arthrosc. 29, 3569–3584 (2021).

    PubMed 

    Google Scholar
     

  • Jung, W. H. et al. Second-look arthroscopic assessment of cartilage regeneration after medial opening-wedge high tibial osteotomy. Arthroscopy 30, 72–79 (2014).

    PubMed 

    Google Scholar
     

  • Kumagai, K. et al. Factors affecting cartilage repair after medial opening-wedge high tibial osteotomy. Knee. Surg. Sports Traumatol. Arthrosc. 25, 779–784 (2017).

    PubMed 

    Google Scholar
     

  • Schuster, P. et al. Open-wedge high tibial osteotomy and combined abrasion/microfracture in severe medial osteoarthritis and varus malalignment: 5-year results and arthroscopic findings after 2 years. Arthroscopy 31, 1279–1288 (2015).

    PubMed 

    Google Scholar
     

  • Wakitani, S. et al. Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees. Osteoarthr. Cartil. 10, 199–206 (2002).

    CAS 

    Google Scholar
     

  • Bode, L. et al. 10-Year survival rates after high tibial osteotomy using angular stable internal plate fixation: case series with subgroup analysis of outcomes after combined autologous chondrocyte implantation and high tibial osteotomy. Orthop. J. Sports Med. 10, 23259671221078004 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, D. H., Kim, S. J., Kim, S. A. & Ju, G. I. Past, present, and future of cartilage restoration: from localized defect to arthritis. Knee. Surg. Relat. Res. 34, 1 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gomoll, A. H., Farr, J., Gillogly, S. D., Kercher, J. & Minas, T. Surgical management of articular cartilage defects of the knee. J. Bone Joint. Surg. Am. 92, 2470–2490 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Goyal, D., Keyhani, S., Lee, E. H. & Hui, J. H. Evidence-based status of microfracture technique: a systematic review of level I and II studies. Arthroscopy 29, 1579–1588 (2013).

    PubMed 

    Google Scholar
     

  • Mithoefer, K., McAdams, T., Williams, R. J., Kreuz, P. C. & Mandelbaum, B. R. Clinical efficacy of the microfracture technique for articular cartilage repair in the knee: an evidence-based systematic analysis. Am. J. Sports Med. 37, 2053–2063 (2009).

    PubMed 

    Google Scholar
     

  • Kim, J. K. et al. Clinical and radiological changes after microfracture of knee chondral lesions in middle-aged asian patients. Clin. Orthop. Surg. 11, 282–290 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jung, W. H., Takeuchi, R., Chun, C. W., Lee, J. S. & Jeong, J. H. Comparison of results of medial opening-wedge high tibial osteotomy with and without subchondral drilling. Arthroscopy 31, 673–679 (2015).

    PubMed 

    Google Scholar
     

  • Ferruzzi, A. et al. Cartilage repair procedures associated with high tibial osteotomy in varus knees: clinical results at 11 years’ follow-up. Knee 21, 445–450 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Martin, J. A. & Buckwalter, J. A. The role of chondrocyte senescence in the pathogenesis of osteoarthritis and in limiting cartilage repair. JBJS. 85(2), 106–110 (2003).


    Google Scholar
     

  • Kim, Y. S. et al. Implantation of mesenchymal stem cells in combination with allogenic cartilage improves cartilage regeneration and clinical outcomes in patients with concomitant high tibial osteotomy. Knee. Surg. Sports Traumatol. Arthrosc. 28, 544–554 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Kim, Y. S., Suh, D. S., Tak, D. H., Kwon, Y. B. & Koh, Y. G. Adipose-derived stromal vascular fractions are comparable with allogenic human umbilical cord blood-derived mesenchymal stem cells as a supplementary strategy of high tibial osteotomy for varus knee osteoarthritis. Arthrosc. Sports Med. Rehabil. 5, e751–e764 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, N. H. et al. Allogenic human umbilical cord blood-derived mesenchymal stem cells are more effective than bone marrow aspiration concentrate for cartilage regeneration after high tibial osteotomy in medial unicompartmental osteoarthritis of knee. Arthroscopy 37, 2521–2530 (2021).

    PubMed 

    Google Scholar
     

  • Hass, R., Kasper, C., Böhm, S. & Jacobs, R. Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue-derived MSC. Cell. Commun. Signal 9, 12 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Flynn, A., Barry, F. & O’Brien, T. UC blood-derived mesenchymal stromal cells: an overview. Cytotherapy 9, 717–726 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Kern, S., Eichler, H., Stoeve, J., Klüter, H. & Bieback, K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24, 1294–1301 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Park, Y.-B., Ha, C.-W., Rhim, J. H. & Lee, H.-J. Stem cell therapy for articular cartilage repair: review of the entity of cell populations used and the result of the clinical application of each entity. Am. J. Sports Med. 46, 2540–2552 (2018).

    PubMed 

    Google Scholar
     

  • Park, Y. B., Ha, C. W., Lee, C. H., Yoon, Y. C. & Park, Y. G. Cartilage regeneration in osteoarthritic patients by a composite of allogeneic umbilical cord blood-derived mesenchymal stem cells and hyaluronate hydrogel: Results from a clinical trial for safety and proof-of-concept with 7 years of extended follow-Up. Stem Cells Transl. Med. 6, 613–621 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Lim, H. C. et al. Allogeneic umbilical cord blood-derived mesenchymal stem cell implantation versus microfracture for large, full-thickness cartilage defects in older patients: A multicenter randomized clinical trial and extended 5-year clinical follow-up. Orthop. J. Sports Med. 9, 2325967120973052 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schiphof, D., Boers, M. & Bierma-Zeinstra, S. M. Differences in descriptions of Kellgren and Lawrence grades of knee osteoarthritis. Ann. Rheum. Dis. 67, 1034–1036 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Moon, H. S. et al. The effect of medial open wedge high tibial osteotomy on the patellofemoral joint: comparative analysis according to the preexisting cartilage status. BMC Musculoskelet. Disord. 20, 607 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Collins, N. J., Misra, D., Felson, D. T., Crossley, K. M. & Roos, E. M. Measures of knee function: international knee documentation committee (IKDC) subjective knee evaluation form, knee injury and osteoarthritis outcome score (KOOS), knee injury and osteoarthritis outcome score physical function short form (KOOS-PS), knee outcome survey activities of daily living scale (KOS-ADL), Lysholm knee scoring scale, Oxford knee score (OKS), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), activity rating scale (ARS), and Tegner activity score (TAS). Arthritis Care Res. Hoboken 63(Suppl 11), S208-228 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Davis, A. M., King, L. K., Stanaitis, I. & Hawker, G. A. Fundamentals of osteoarthritis: outcome evaluation with patient-reported measures and functional tests. Osteoarthr. Cartil. 30, 775–785 (2022).

    CAS 

    Google Scholar
     

  • de Windt, T. S. et al. Is magnetic resonance imaging reliable in predicting clinical outcome after articular cartilage repair of the knee? A systematic review and meta-analysis. Am. J. Sports Med. 41, 1695–1702 (2013).

    PubMed 

    Google Scholar
     

  • Schreiner, M. M. et al. The MOCART (magnetic resonance observation of cartilage repair tissue) 2.0 knee score and atlas. Cartilage 13, 571s–587s (2021).

    PubMed 

    Google Scholar
     

  • Schreiner, M. M. et al. Reliability of the MOCART (Magnetic Resonance Observation of Cartilage Repair Tissue) 20 knee score for different cartilage repair techniques-a retrospective observational study. Eur Radiol 31, 5734–5745 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • van den Borne, M. P. et al. International Cartilage Repair Society (ICRS) and Oswestry macroscopic cartilage evaluation scores validated for use in autologous chondrocyte implantation (ACI) and microfracture. Osteoarthr. Cartil. 15, 1397–1402 (2007).


    Google Scholar
     

  • Ryu, D. J. et al. Comparison of bone marrow aspirate concentrate and allogenic human umbilical cord blood derived mesenchymal stem cell implantation on chondral defect of knee: assessment of clinical and magnetic resonance imaging outcomes at 2-year follow-up. Cell. Transp. 29, 963689720943581 (2020).


    Google Scholar
     

  • Yang, H. Y. et al. Allogenic umbilical cord blood-derived mesenchymal stromal cell implantation was superior to bone marrow aspirate concentrate augmentation for cartilage regeneration despite similar clinical outcomes. Knee. Surg. Sports Traumatol. Arthrosc. 30, 208–218 (2022).

    PubMed 

    Google Scholar
     

  • Song, J. S. et al. High tibial osteotomy with human umbilical cord blood-derived mesenchymal stem cells implantation for knee cartilage regeneration. World J. Stem. Cells 12, 514–526 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suh, D. W. et al. Human umbilical cord-blood-derived mesenchymal stem cell can improve the clinical outcome and Joint space width after high tibial osteotomy. Knee 33, 31–37 (2021).

    PubMed 

    Google Scholar
     

  • Chung, Y. W., Yang, H. Y., Kang, S. J., Song, E. K. & Seon, J. K. Allogeneic umbilical cord blood-derived mesenchymal stem cells combined with high tibial osteotomy: a retrospective study on safety and early results. Int. Orthop. 45, 481–488 (2021).

    PubMed 

    Google Scholar
     

  • Chang, A. et al. Subregional effects of meniscal tears on cartilage loss over 2 years in knee osteoarthritis. Ann. Rheum. Dis. 70, 74–79 (2011).

    PubMed 

    Google Scholar
     

  • Jørgensen, D. R., Lillholm, M., Genant, H. K. & Dam, E. B. On Subregional analysis of cartilage loss from knee MRI. Cartilage 4, 121–130 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adams, B. G., Houston, M. N. & Cameron, K. L. The epidemiology of meniscus injury. Sports Med. Arthrosc. Rev. 29, e24–e33 (2021).

    PubMed 

    Google Scholar
     

  • Wirth, W. et al. Spatial patterns of cartilage loss in the medial femoral condyle in osteoarthritic knees: data from the Osteoarthritis Initiative. Magn. Reson. Med. 63, 574–581 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shah, S. S., Lee, S. & Mithoefer, K. Next-generation marrow stimulation technology for cartilage repair: Basic science to clinical application. JBJS reviews. 9(1), e20 (2021).


    Google Scholar
     

  • Kraeutler, M. J., Aliberti, G. M., Scillia, A. J., McCarty, E. C. & Mulcahey, M. K. Microfracture versus drilling of articular cartilage defects: A systematic review of the basic science evidence. Orthop. J. Sports Med. 8, 2325967120945313 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pohlig, F. et al. Biomechanical properties of repair cartilage tissue are superior following microdrilling compared to microfracturing in critical size cartilage defects. In Vivo 37, 565–573 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Latest Intelligence