Advances in injectable hydrogels with biological and physicochemical functions for cell delivery – Polymer Journal

  • Levy O, Kuai R, Siren EMJ, Bhere D, Milton Y, Nissar N et al. Shattering barriers toward clinically meaningful MSC therapies. Sci Adv. 2020;6:eaba6884.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aijaz A, Li M, Smith D, Khong D, LeBlon C, Fenton OS et al. Biomanufacturing for clinically advanced cell therapies. Nat Biomed Eng. 2018;2:362–76.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hofmann M, Wollert KC, Meyer GP, Menke A, Arseniev L, Hertenstein B et al. Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation. 2005;111:2198–202.

    Article 
    PubMed 

    Google Scholar
     

  • Eggenhofer E, Benseler V, Kroemer A, Popp FC, Geissler EK, Schlitt HJ et al. Mesenchymal stem cells are short-lived and do not migrate beyond the lungs after intravenous infusion. Front Immunol. 2012;3:297.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sortwell CE, Pitzer MR, Collier TJ. Time course of apoptotic cell death within Mesencephalic cell suspension grafts: Implications for improving grafted dopamine neuron survival. Exp Neurol. 2000;165:268–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mitrousis N, Fokina A, Shoichet MS. Biomaterials for cell transplantation. Nat Rev Mater. 2018;3:441–56.

    Article 
    CAS 

    Google Scholar
     

  • Taboada GM, Yang K, Pereira MJN, Liu SS, Hu Y, Karp JM et al. Overcoming the translational barriers of tissue adhesives. Nat Rev Mater. 2020;5:310–29.

    Article 

    Google Scholar
     

  • Wu Z, Zhang S, Zhou L, Cai J, Tan J, Gao X et al. Thromboembolism Induced by Umbilical Cord Mesenchymal Stem Cell Infusion: A Report of Two Cases and Literature Review. Transpl Proc. 2017;49:1656–8.

    Article 
    CAS 

    Google Scholar
     

  • Moll G, Ankrum JA, Kamhieh-Milz J, Bieback K, Ringdén O, Volk HD et al. Intravascular Mesenchymal Stromal/Stem Cell Therapy Product Diversification: Time for New Clinical Guidelines. Trends Mol Med. 2019;25:149–63.

    Article 
    PubMed 

    Google Scholar
     

  • Cai L, Dewi RE, Heilshorn SC. Injectable Hydrogels with In Situ Double Network Formation Enhance Retention of Transplanted Stem Cells. Adv Funct Mater. 2015;25:1344–51.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Madl CM, Heilshorn SC, Blau HM. Bioengineering strategies to accelerate stem cell therapeutics. Nature. 2018;557:335–42.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nam S, Mooney D. Polymeric Tissue Adhesives. Chem. Rev. 2021;121:11336–11384.

  • Fischer D, Li Y, Ahlemeyer B, Krieglstein J, Kissel T. In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability andhemolysis. Biomaterials. 2003;24:1121–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wei Z, Gerecht S. A self-healing hydrogel as an injectable instructive carrier for cellular morphogenesis. Biomaterials. 2018;185:86–96.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nagahama K, Kimura Y, Takemoto A. Living functional hydrogels generated by bioorthogonal cross-linking reactions of azide-modified cells with alkyne-modified polymers. Nat Commun. 2018;9:2195.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wong Po Foo CT, Lee JS, Mulyasasmita W, Parisi-Amon A, Heilshorn SC. Two-component protein-engineered physical hydrogels for cell encapsulation. Proc Natl Acad Sci USA 2009;106:22067–72.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koh J, Griffin DR, Archang MM, Feng AC, Horn T, Margolis M et al. Enhanced In Vivo Delivery of Stem Cells using Microporous Annealed Particle Scaffolds. Small. 2019;15:e1903147.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paige KT, Cima LG, Yaremchuk MJ, Vacanti JP, Vacanti CA. Injectable Cartilage. Plast Reconstructive Surg. 1995;96:1390–8.

    Article 
    CAS 

    Google Scholar
     

  • Silverman RP, Passaretti D, Huang W, Randolph MA, Yaremchuk MJ. Injectable Tissue-Engineered Cartilage Using a Fibrin Glue Polymer. Plast Reconstructive Surg. 1999;103:1809–18.

    Article 
    CAS 

    Google Scholar
     

  • Mori D, Miyagawa S, Yajima S, Saito S, Fukushima S, Ueno T et al. Cell spray transplantation of adipose-derived mesenchymal stem cell recovers ischemic cardiomyopathy in a porcine model. Transplantation. 2018;102:2012–24.

    Article 
    PubMed 

    Google Scholar
     

  • Radosevich M, Goubran HA, Burnouf T. Fibrin sealant: Scientific rationale, production methods, properties, and current clinical use. Vox Sang. 1997;72:133–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hidas G, Kastin A, Mullerad M, Shental J, Moskovitz B, Nativ O. Sutureless nephron-sparing surgery: use of albumin glutaraldehyde tissue adhesive (BioGlue). Urology. 2006;67:697–700.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Glickman M, Gheissari A, Money S, Martin J, Ballard JL, Group, f. t. C. M. V. S. S. A polymeric sealant inhibits anastomotic suture hole bleeding more rapidly than gelfoam/thrombin: Results of a randomized controlled trial. Arch Surg. 2002;137:326–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wallace DG, Cruise GM, Rhee WM, Schroeder JA, Prior JJ, Ju J et al. A tissue sealant based on reactive multifunctional polyethylene glycol. J Biomed Mater Res. 2001;58:545–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoshizaki Y, Nagata T, Fujiwara S, Takai S, Jin D, Kuzuya A et al. Postoperative adhesion prevention using a biodegradable temperature-responsive injectable polymer system and concomitant effects of the chymase inhibitor. ACS Appl Bio Mater. 2021;4:3079–88.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ito T, Yeo Y, Highley CB, Bellas E, Benitez CA, Kohane DS. The prevention of peritoneal adhesions by in situ cross-linking hydrogels of hyaluronic acid and cellulose derivatives. Biomaterials. 2007;28:975–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mizuta R, Mizuno Y, Chen X, Kurihara Y, Taguchi T. Evaluation of an octyl group-modified Alaska pollock gelatin-based surgical sealant for prevention of postoperative adhesion. Acta Biomater. 2021;121:328–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brubaker CE, Messersmith PB. Enzymatically degradable mussel-inspired adhesive hydrogel. Biomacromolecules. 2011;12:4326–34.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matsuda M, Inoue M, Taguchi T. Adhesive properties and biocompatibility of tissue adhesives composed of various hydrophobically modified gelatins and disuccinimidyl tartrate. J Bioact Compat Polym. 2012;27:481–98.

    Article 

    Google Scholar
     

  • Zhang E, Song B, Shi Y, Zhu H, Han X, Du H et al. Fouling-resistant zwitterionic polymers for complete prevention of postoperative adhesion. Proc Natl Acad Sci USA 2020;117:32046–55.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bertsch P, Diba M, Mooney DJ, Leeuwenburgh SCG. Self-healing injectable hydrogels for tissue regeneration. Chem Rev. 2022. https://doi.org/10.1021/acs.chemrev.2c00179.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nishiguchi A, Taguchi T. Engineering thixotropic supramolecular gelatin-based hydrogel as an injectable scaffold for cell transplantation. Biomed. Mater. 2023;18:015012.

  • Gaffey AC, Chen MH, Venkataraman CM, Trubelja A, Rodell CB, Dinh PV et al. Injectable shear-thinning hydrogels used to deliver endothelial progenitor cells, enhance cell engraftment, and improve ischemic myocardium. J Thorac Cardiovasc Surg. 2015;150:1268–76.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao L, Weir MD, Xu HH. An injectable calcium phosphate-alginate hydrogel-umbilical cord mesenchymal stem cell paste for bone tissue engineering. Biomaterials. 2010;31:6502–10.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Akhilesh K. Gaharwar, Reginald K. Avery, Alexander Assmann, Arghya Paul, Gareth H. McKinley, Ali Khademhosseini & Olsen, B. D. Shear-Thinning Nanocomposite Hydrogels for the Treatment of Hemorrhage. ACS Nano. 2014;8:9833–42.


    Google Scholar
     

  • Nagahama K, Ouchi T, Ohya Y. Temperature-Induced Hydrogels Through Self-Assembly of Cholesterol-Substituted Star PEG-b-PLLA Copolymers: An Injectable Scaffold for Tissue Engineering. Adv Funct Mater. 2008;18:1220–31.

    Article 
    CAS 

    Google Scholar
     

  • Yoshizaki Y, Takai H, Mayumi N, Fujiwara S, Kuzuya A, Ohya Y. Cellular therapy for myocardial ischemia using a temperature-responsive biodegradable injectable polymer system with adipose-derived stem cells. Sci Technol Adv Mater. 2021;22:627–42.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nishiguchi A, Ichimaru H, Ito S, Nagasaka K, Taguchi T. Hotmelt tissue adhesive with supramolecularly-controlled sol-gel transition for preventing postoperative abdominal adhesion. Acta Biomater. 2022;146:80–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Assmann A, Vegh A, Ghasemi-Rad M, Bagherifard S, Cheng G, Sani ES et al. A highly adhesive and naturally derived sealant. Biomaterials. 2017;140:115–27.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin RZ, Chen YC, Moreno-Luna R, Khademhosseini A, Melero-Martin JM. Transdermal regulation of vascular network bioengineering using a photopolymerizable methacrylated gelatin hydrogel. Biomaterials. 2013;34:6785–96.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cukierman E, Pankov R, Stevens DR, Yamada KM. Taking cell-matrix adhesions to the third dimension. Science. 2001;294:1708–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vachon PH. Integrin signaling, cell survival, and anoikis: distinctions, differences, and differentiation. J Signal Transduct. 2011;2011:738137.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zustiak SP, Durbal R, Leach JB. Influence of cell-adhesive peptide ligands on poly(ethylene glycol) hydrogel physical, mechanical and transport properties. Acta Biomater. 2010;6:3404–14.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hussey GS, Dziki JL, Badylak SF. Extracellular matrix-based materials for regenerative medicine. Nat Rev Mater. 2018;3:159–73.

    Article 
    CAS 

    Google Scholar
     

  • Boer U, Lohrenz A, Klingenberg M, Pich A, Haverich A, Wilhelmi M. The effect of detergent-based decellularization procedures on cellular proteins and immunogenicity in equine carotid artery grafts. Biomaterials. 2011;32:9730–7.

    Article 
    PubMed 

    Google Scholar
     

  • Fernandez-Perez J, Ahearne M. The impact of decellularization methods on extracellular matrix derived hydrogels. Sci Rep. 2019;9:14933.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Funamoto S, Nam K, Kimura T, Murakoshi A, Hashimoto Y, Niwaya K et al. The use of high-hydrostatic pressure treatment to decellularize blood vessels. Biomaterials. 2010;31:3590–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Uygun BE, Soto-Gutierrez A, Yagi H, Izamis ML, Guzzardi MA, Shulman C et al. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat Med 2010;16:814–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee JS, Roh YH, Choi YS, Jin Y, Jeon EJ, Bong KW, et al. Tissue Beads: Tissue‐Specific Extracellular Matrix Microbeads to Potentiate Reprogrammed Cell‐Based Therapy. Adv. Functional Mater. 2019;29:1807803.

  • Folkman J, Hochberg M. Self-regulation of growth in three dimensions. J Exp Med. 1973;138:745–53.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thomas D, O’Brien T, Pandit A. Toward customized extracellular niche engineering: Progress in cell-entrapment technologies. Adv Mater. 2018;30:1703948.

    Article 

    Google Scholar
     

  • Razavi M, Primavera R, Kevadiya BD, Wang J, Buchwald P, Thakor AS. A Collagen Based Cryogel Bioscaffold that Generates Oxygen for Islet Transplantation. Adv. Funct. Mater. 2020;30:1902463.

  • Weaver JD, Headen DM, Aquart J, Johnson CT, Shea LD, Shirwan H et al. Vasculogenic hydrogel enhances islet survival, engraftment, and function in leading extrahepatic sites. Sci Adv. 2017;3:e1700184.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Briquez PS, Clegg LE, Martino MM, Gabhann FM, Hubbell JA. Design principles for therapeutic angiogenic materials. Nat Rev Mater. 2016:1.

  • Hill E, Boontheekul T, Mooney DJ. Regulating activation of transplanted cells controls tissue regeneration. Proc Natl Acad Sci USA 2006;103:2494–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sasagawa T, Shimizu T, Sekiya S, Haraguchi Y, Yamato M, Sawa Y et al. Design of prevascularized three-dimensional cell-dense tissues using a cell sheet stacking manipulation technology. Biomaterials. 2010;31:1646–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Takebe T, Sekine K, Enomura M, Koike H, Kimura M, Ogaeri T et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature. 2013;499:481–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mao AS, Mooney DJ. Regenerative medicine: Current therapies and future directions. Proc Natl Acad Sci USA 2015;112:14452–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Korsgren O, Nilsson B, Berne C, Felldin M, Foss A, Kallen R et al. Current status of clinical islet transplantation. Transplantation. 2005;79:1289–93.

    Article 
    PubMed 

    Google Scholar
     

  • Shapiro AMJ, Pokrywczynska M, Ricordi C. Clinical pancreatic islet transplantation. Nat Rev Endocrinol. 2017;13:268–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dang TT, Thai AV, Cohen J, Slosberg JE, Siniakowicz K, Doloff JC et al. Enhanced function of immuno-isolated islets in diabetes therapy by co-encapsulation with an anti-inflammatory drug. Biomaterials. 2013;34:5792–801.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lim F, Sun AM. Microencapsulated Islets as Bioartificial Endocrine Pancreas. Science. 1980;210:908–10.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Teramura Y, Kaneda Y, Iwata H. Islet-encapsulation in ultra-thin layer-by-layer membranes of poly(vinyl alcohol) anchored to poly(ethylene glycol)-lipids in the cell membrane. Biomaterials. 2007;28:4818–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Headen DM, Woodward KB, Coronel MM, Shrestha P, Weaver JD, Zhao H et al. Local immunomodulation with Fas ligand-engineered biomaterials achieves allogeneic islet graft acceptance. Nat Mater. 2018;17:732–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Graham JG, Zhang X, Goodman A, Pothoven K, Houlihan J, Wang S et al. PLG scaffold delivered antigen-specific regulatory T cells induce systemic tolerance in autoimmune diabetes. Tissue Eng Part A. 2013;19:1465–75.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ingber DE. Mechanical control of tissue morphogenesis during embryological development. Int J Dev Biol. 2006;50:255–66.

    Article 
    PubMed 

    Google Scholar
     

  • Jaalouk DE, Lammerding J. Mechanotransduction gone awry. Nat Rev Mol Cell Biol. 2009;10:63–73.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126:677–89.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abdeen AA, Weiss JB, Lee J, Kilian KA. Matrix composition and mechanics direct proangiogenic signaling from mesenchymal stem cells. Tissue Eng Part A. 2014;20:2737–45.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huebsch N, Lippens E, Lee K, Mehta M, Koshy ST, Darnell MC et al. Matrix elasticity of void-forming hydrogels controls transplanted-stem-cell-mediated bone formation. Nat Mater. 2015;14:1269–77.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chaudhuri O, Gu L, Darnell M, Klumpers D, Bencherif SA, Weaver JC et al. Substrate stress relaxation regulates cell spreading. Nat Commun. 2015;6:6364.

    Article 
    PubMed 

    Google Scholar
     

  • Chaudhuri O, Gu L, Klumpers D, Darnell M, Bencherif SA, Weaver JC et al. Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat Mater. 2016;15:326–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Elosegui-Artola A, Gupta A, Najibi AJ, Seo BR, Garry R, Tringides CM, de Lazaro I, Darnell M, Gu W, Zhou Q, Weitz DA, Mahadevan L, Mooney DJ. Matrix viscoelasticity controls spatiotemporal tissue organization. Nat Mater. 2023;22:117–127.

  • Wang KY, Jin XY, Ma YH, Cai WJ, Xiao WY, Li ZW et al. Injectable stress relaxation gelatin-based hydrogels with positive surface charge for adsorption of aggrecan and facile cartilage tissue regeneration. J Nanobiotechnol. 2021;19:214.

    Article 
    CAS 

    Google Scholar
     

  • Chan V, Zorlutuna P, Jeong JH, Kong H, Bashir R. Three-dimensional photopatterning of hydrogels using stereolithography for long-term cell encapsulation. Lab Chip. 2010;10:2062–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han LH, Conrad B, Chung MT, Deveza L, Jiang X, Wang A et al. Microribbon-based hydrogels accelerate stem cell-based bone regeneration in a mouse critical-size cranial defect model. J Biomed Mater Res A. 2016;104:1321–31.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang X, Yang B, Deng Y, Xie X, Qi Y, Yan G et al. Coacervation-mediated cytocompatible formation of supramolecular hydrogels with self-evolving macropores for 3D multicellular spheroid culture. Adv Mater. 2023;35:e2300636.

    Article 
    PubMed 

    Google Scholar
     

  • Rommel D, Mork M, Vedaraman S, Bastard C, Guerzoni LPB, Kittel Y et al. Functionalized Microgel Rods Interlinked into Soft Macroporous Structures for 3D Cell Culture. Ad Sci. 2022;9:2103554.

    Article 
    CAS 

    Google Scholar
     

  • Sleep E, Cosgrove BD, McClendon MT, Preslar AT, Chen CH, Sangji MH et al. Injectable biomimetic liquid crystalline scaffolds enhance muscle stem cell transplantation. Proc Natl Acad Sci USA 2017;114:E7919–928.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bai F, Wang Z, Lu J, Liu J, Chen G, Lv R et al. The correlation between the internal structure and vascularization of controllable porous bioceramic materials in vivo: a quantitative study. Tissue Eng Part A. 2010;16:3791–803.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brauker JH, Carr-Brendel VE, Martinson LA, Crudele J, Johnston WD, Johnson RC. Neovascularization of synthetic membranes directed by membrane microarchitecture. J Biomed Mater Res. 1995;29:1517–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nishiguchi A, Ito S, Nagasaka K, Komatsu H, Uto K, Taguchi T. Injectable microcapillary network hydrogels engineered by liquid-liquid phase separation for stem cell transplantation. Biomaterials. 2024;305:122451.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bracha D, Walls MT, Brangwynne CP. Probing and engineering liquid-phase organelles. Nat Biotechnol 2019;37:1435–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Paterson SM, Shadforth AMA, Brown DH, Madden PW, Chirila TV, Baker MV. The synthesis and degradation of collagenase-degradable poly(2-hydroxyethyl methacrylate)-based hydrogels and sponges for potential applications as scaffolds in tissue engineering. Mater Sci Eng C. 2012;32:2536–44.

    Article 
    CAS 

    Google Scholar
     

  • Marquardt LM, Heilshorn SC. Design of injectable materials to improve stem cell transplantation. Curr Stem Cell Rep. 2016;2:207–20.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar